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Abstract

In this work, we prove some properties of a family of Fibonacci numbers and a family of Lucas numbers.

Also,we give some identities between the family of Fibonacci numbers and family of Lucas numbers.
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Introduction

Fibonacci numbers and their generalizations have many important applications to various fields of
science (e.g. see [9]). Also, we see application of Fibonacci numbers in many branches of mathematics in
[1, 2, 3,4, 6,7, 8, 10-18.]. In present paper, we give some properties of a family k-Fibonacci numbers

and relationship between the family of k-Fibonacci and k-Lucas numbers.

The Fibonacci numbers F,, are the terms of the sequence 1,1,2,3,5,8,13,21,34,55,89,144,... . Every
Fibonacci number, except the first two, is the sum of the two previous Fibonacci numbers. The numbers

F,, satisfy the second order linear recurrence relation
F,=F, 1+F, 5, n=234,..

with the initial values Fy = 0,F; = 1.
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It is well known that the Fibonacci numbers are defined by Binet's formula

1
F, = NG (a™t—pm*t1),  n=0,12,..

where a@ = (1++5)/2 and g = (1-+5)/2.
Definition: Let n and k # 0 be natural numbers, then there exist unique numbers m and r such
that n = mk + r(0 < r < k). The generalized k-Fibonacci numbers F;k) are defined by

Fglk) — (\/g)k (am+2 _ Bm+2)r(am+1 _ ﬂm+1)k_r’

n=mk+r
where a@ = (1++5)/2 and g = (1-+5)/2.

The first few numbers of the family for k = 2, 3,4 are as follows:

10
{FHZ)} 0 = {1, 1; 1, 2; 4) 6' 9; 15! 25’ 40' 64}
n=

3) 11
{ (¢ } ,={11,1,1,2,4,812,18,27,45,75}
n=

~

@ 12
{F,, } ,=(1,1,1,1,1,2,4,8,16,24,36,54,81}.
n=
It is well known that the relation of the generalized k-Fibonacci and Fibonacci numbers is
k _
F = (F) " (Fpny)"

where n =mk + r. Consider the case k=1 in last equation, we get that m=n and r =0 so
FO =F,,

The Lucas numbers L,, are defined

Ln = Ln—l + Ln_z , n= 2, 3,4‘,

with initial conditions Ly = 2, Ly = 1.

The first a few Lucas numbers are 2,1,3,4,7,11,18,29,47,76,123,199,322, ... . The Binet’s formula for
the Lucas numbers L,, is
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Ly=a+p", n=0,1,2,...
where @ = (1++5)/2 and B = (1-+5)/2.
We see that the Lucas numbers and Fibonacci numbers are related by
Fon_
L,=F,+F, ,=-221
Fn—l
Definition: Let n and k # 0 be natural numbers, then there exist unique numbers m and r such
that n = mk + r(0 < r < k). The generalized k-Lucas numbers L;k) are defined

Lglk) — (am+1 + Bm+1)r(am + pmyk-T, n=mk+r

where a@ = (1++5)/2 and B = (1-+5)/2.

It is well known that the relation of the generalized k-Lucas and Lucas numbers is

k _
LY = (L) Ly )"
where n=mk +r.

The first few numbers of the family for k = 2,3, 4 are as follows:

9
(LP}  =1421391216,2849,77)
.

3) 10
{Ln } | = (8,4,2,1,3,9,27,36,48,64,112)

n=

Some ldentities For Fibonacci And Lucas Numbers

The following identities for Fibonacci and Lucas numbers are given in [5] and [9]

Fl, —F3—F) {=3F,1 Fy Fp4 (1)
n

t_lFtht = FpFpi1Fani1 (2)
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Fy_+F5+Fpq = 2[2F; + (—1)"]3 +3Fh_(FiFy 4
SFp=1Lyyz =Ly

SFyy = (Ln+1)2 - (Ln)z

Fon=Fri1 —Fpy=Fply

F3n, = 5(Fp)° +3(=1)"F,
LY — F} = 4F,_1Fpiy

LyLyiz +4(—1)" =5F,_1F, 3
(Fn41)® = Fy + Fy_y +3Fy_1FyFniq

Main Results

Theorem 1. Let n € {1,2,...}. For fixed n, the generalized 2-Fibonacci numbers satisfy

F®

(2) _ (2) (2)
oniz T Fop =2F +F

2n+1 2n-2 -

Proof. Bythe (1), we may write
F13;+1 ~-F = F%—l +3Fp41.Fp. Fyyq
(Fns1—Fp)(Frys + FoFpia + F) = Fooq(Fa_y + 3Fn. Fny1)

(2) (2) )Y (2) (2)
Fny (F2n+2 *t Fona +F2n) =Fn4 (FZ =2t 3F2n+1)

n

F;Zn)+2 +ng)+1+Fan) = 3F§Zn)+1+ng)—z
(2) 2) _ (2) (2)
F2n+Z+F2n _2F2n+1+F2n—2

Theorem 2. Let n € {1,2,...}. For fixed n, the generalized 2-Fibonacci numbers satisfy

n
—_ @ (2) (2)
z FiF3i = Fap 1 (Foiz — Fong
i=1
Proof. Using (2) and F,.q = F2,; + F%, we have

FiF3; = FpFp(FypioFpi1—Fy. Fp_q)

n
=1

2

3)

(4)
Q)
(6)
()
(8)
©)
(10)
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(ngn)+3 - ng)q)

Theorem 3: Let n € {1,2,...}. For fixed n, the generalized 2-Fibonacci numbers satisfy

—_ @
- F2n+1

3 3 3 3
(Finz) +(F) + (Fokz) =2[2F5) + "] +3F ,FOFG,,
Proof. We get from (3)
3 3 3 3 3 3
(ngn)—z) + (ngn)) + (ng)+2) = (F121—1) + (Frzz) + (F121+1)
= (Fn—1)6 + (Fn)6 + (Fn+1)6
= 2[2F2 + (-1)"]° + 3F2_,F2F2,

2 2 2 2
= 2[2FP + (-1)"]3 + 3F% ,FEFE .

Theorem 4. Let n € {1,2,3,...}. For fixed n, we have a relation among the generalized 2-Lucas

numbers as follows

L@

2 _ ;@ (2) (2) (2)
2n+2 L2n =1L + LZn - L - L2n—4-'

2n+1 2n—-3
Proof. We have

2
Lgn)+1 = LyLniq

L;Zn) = (Ln)z

2
L) 3= Ly-1Lln»

ngn)—zl- = (Ln—Z)Z
then we get from (4), (5) and (6)

2 2 2 2
Lgn)+1 + Lgn) - Lgn)—3 - Lgn)—4- = (LnLn+1 + (Ln)z) - (Ln—an—z + (Ln—z)z)

=Lp(Lp +Lpy1) — Lyp2(Lpq + Ly_3)

=LyLyiz — Ly 2Ly

=Lp(Lpiz — Lp_2)
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=5F,L,

= 5F3,

= (Lp41)? — (Lp)?
_ 7@ (2)

- L2n+2 - LZn

Theorem 5. Let n € {1,2,...}. For fixed n, the generalized 2-Fibonacci numbers satisfy
F) (SFo +3(=1)") = Firy 1 Fansr = FonyFan 1 -
Proof. We get from (7)
F&) (5FS) +3(-1)") =5 (Fg‘;))z +3(—1)"FP

= 5((F)?)" + 3(~D"(F,)?
= 5(Fp)* + 3(=1)"(F,)?

= F,(5(F)% + 3(—1)™(F,)
= FpF3,

= Fp(Fans1Fny1 — Fon-1Fn-1)

= FpFp1Foni1 — FaFp_1F2nq

2 2
= F) \Fans1 — Fom 1Fon_q

Theorem 6. Let n € {1, 2, ...}. For fixed n, we have the relation

(2) 2) _ (2) (2)
LZn - FZn - 4(F2n—2 + FZn—l

between the generalized 2-Fibonacci numbers and Lucas numbers.

Proof. Using (8), we can write

2 2
4 (FE), + F2) ) = 4[(Fuy)? + FuFyy]
=4(Fy-1(Fp-1 + Fp))
=4F, 1Fniq
S

_ 7@ (2)
- LZn - FZn
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Theorem 7. Let n € {1, 2, ...}. For fixed n, we have the relation

(2) (2) — (2) (2)
Ly, . tL;, +4(-1)" =15F;  , +10F; _,

between the generalized 2-Fibonacci numbers and Lucas numbers.

Proof. By (9), we may write

LP,, + L +4(—1)" = LyLy g + LyLy+4(—1)"

= Lp(Lp4+1 + Lp)+4(=D"

= LyLp2+4(-1D"

= 5F;_1Fp43

= 5Fy_1(2Fp41 + Fp)

=10F, 1Fy 1+ 5F,Fy 4
=10F,_1(Fp—1 + Fy) + 5F,Fp4

= 10F,,_,F,_ + 10F,_F, + 5F,F,_,

= 10Fy) , + 15F%)
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Theorem 8. Let n € {1,2,...}. For fixed n, we have a relation among the generalized 2-Fibonacci

numbers,

2 2
@ _ (@ (€)) (€)) 2 @ (2
F4-n+5_(F2n) t Fania T 2F 4 3 +3F5, 4 F; +3+(F2n—2) :

n+1 n n

Proof. We get from (10),

Fz(;:l)+5 = (Fn+1)3(Fn+2)
= (F% + F?z—l + 3Fy 1 FuFpi1)Fny2

= F3Fni2 + Fy_1Fniy + 3Fn_1FrnFui1Frps

=F3(Fy+Fpy1) + Fi—l(ZFn +Fp 1)+ 3F;§2—1ng)+3

2 2
= F3F, + F3Fpq + 2F3_ F, + F3_,F,_; +3F% FZ) .

—_ (p2 4) (C)) 2) p2) (2)
- (FZn)Z + F4-n+1 + 2F4-n—3 + 3F2n—1FZn+3—*_(FZn—Z)2
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