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Abstract 

The aim of this paper is to spread the basic concept and the application of orthogonal collocation 

finite elements method (OCFEM) to the field of engineering and science. OCFEM is based on 

Weierstraß's polynomial approximation theorem. In the formulation of PDE as strong form by 

OCFEM, the differential operator represented by matrix in time and space is used for the translation 

of PDE to algebraic equation. This paper explains the concept of matrix representation method of the 

differential operator in time and space, the coordinate transformation matrix based on the partial 

derivative of composite function and integration of element (for example, Consumption rate) or 

element boundary (for example, Flux) by using Gauss Legendre iintegration. On the other hand, this 

paper presents the formulation of advection-diffusion-reaction equation (PDE) as initial boundary 

value problem, which is Biofilm model, by differential operator of OCFEM.  
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Introduction 

The basic concept of the orthogonal collocation finite element method (OCFEM), which is the subject 

of this paper, is based on orthogonal collocation method (OCM), which is considered to be a kind of 

weighted residual method. Since it seems important for understanding OCFEM to describe the historical 

evolution of the orthogonal collocation method, we will explain it using the literature (1) of B.A. Finlayson. 

In addition, since there is a risk of confusion about the interpretation of the basic concepts in the spectral 
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collocation method, differential quadrature method (2), and spectral element method, which are said to be 

the same concept as the orthogonal collocation method, we will not explain them here. The basic concept 

of differential operators (matrix) is used for the explanation.  

The orthogonal collocation method was first advanced by Lanczos (1938, 1956), Clenshaw, Norton 

(1963), Norton (1964), and Wright (1964) used the Chebyshev polynomial to solve the initial value 

problem of ordinary differential equations as an application example. This implicitly indicates that the 

orthogonal collocation method could be used to solve the initial value problem of the evolution equation. 

Villadesen and Stewart (1967) (3) applied the orthogonal collocation method to the boundary value 

problem, and chose a collocation orthogonal polynomial (N+1st order polynomial) as a trial function that 

satisfies the boundary conditions and in which the roots of the Nth order orthogonal polynomial give 

collocations. On the other hand, the solution is simplified by directly calculating the solution of the 

boundary value problem by giving it as the values of the solution at the orthogonal collocation (the root of 

the orthogonal polynomial), rather than finding the solution as a coefficient of the polynomial. The entire 

problem is replaced by a series of matrix equations, which can be easily solved by a computer. In addition, 

an accurate quadrature equation is used (an orthogonal polynomial with weights w = 1-x2 in the Jacobi 

polynomial: also called the Lobatto polynomial), which makes it possible to integrate using the solution at 

the orthogonal collocation. If the root of the Legendre polynomial used in this paper is chosen as the 

orthogonal collocation, it can be seen that the numerical integration point of Gauss Legendre's numerical 

integral (Gauss's numerical integral) is the same as the orthogonal collocation, so it can be almost 

accurately integrated (4).  

The orthogonal collocation method has been applied mainly to the field of chemical engineering 

(advection-diffusion-reaction equations) (5) ~ (11). Subsequent research on the orthogonal collocation method 

was directed toward the finite element of the orthogonal collocation method, and the research was mainly 

led by Finlayson et al. (5)(6). In order to know the past research and development direction of Finlayson et 

al.'s collocation method on finite element (OCFE) (5) ~ (11), the outline of the contents of the paper by 

Finlayson et al. is itemized and Ohkubo's current idea of orthogonal collocation finite element method 

(OCFEM)) (12) ~ (16) will also be explained. 

① Finlayson et al. (5) ~ (11) formulated the basic equations on the internal collocations in the elements and 

the boundary condition equations (Directre conditions, Neumann conditions, and mixed boundary 

conditions) on the external collocations on the boundary by the orthogonal collocation method, and 

used the mixed method in the collocation method of ②. 
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② The selection method of polynomials as a trial function of OCFEM is a mixed method that uses a trial 

function that does not satisfy both the basic equations and the boundary conditions, and finds a 

solution that satisfies both the boundary conditions and the PDE. In the case of one-dimensional 

spaces, the same method is used in OCFEM by Mikami et al. (17) and Finlayson et al. However, in 

order to facilitate the procedure of element connection in the mixed method for two-dimensional 

problem, it is necessary to create a differential operator (matrix) that can be derived from the Lagrange 

interpolation formula for two-dimensional space, and connect the elements at external collocations 

according to the numbering of finite elements. It will be possible to further extend to 

three-dimensional space. 

③ In the case of a two-dimensional space, the representation of the interpolation equation using 

orthogonal collocations as a function is two-dimensional Lagrange interpolation formula. When the 

Hermite interpolation equation is used as in Finlayson et al, the concept of a differential operator 

cannot be constructed. At each point of four corner collocation, least square method is used to put 

together 4 boundary condition in corner collocation to one conditional equation. 

④ Finlayson et al. focused only on rectangular elements as two-dimensional element shapes. In Ohkubo's 

OCFEM, a coordinate transformation matrix from the local coordinate system to the global coordinate 

system is created. The coordinate transformation matrix is a point-in-point transformation in its strong 

form, and it uses the law of partial derivatives of composite functions to convert partial derivatives 

from the local coordinate system to the global coordinate system.  

⑤ Differential operators (matrices) in space and time by OCFEM are not limited to abstract concepts, but 

can be used to create concrete differential operators (matrices) for various orthogonal polynomials (18) 

Jacobi, Legendre, Tschebyscheff, Laguerre (0,∞), Hermite (−∞,∞). I believe that this suggests the 

possibility of applying differential operators (matrices) in OCFEM to physics. 

Based on these ideas, we have introduced the foundations of past researchers leading up to OCFEM and 

Ohkubo's ideas. Differential operators (matrices), coordinate transformation matrices, and the area 

integration within an element (Gauss numerical integration) and the line integration of element boundaries 

(Gauss numerical integration) in OCFEM are described in each section. In order to formulate PDE’s 

(advective diffusive reaction equation) by orthogonal collocation finite element method (OCFEM), we 

performed an analysis using differential operators (matrices) in space and time, which is the basic concept 

of the OCFEM.  

This paper presents the results of the OCFEM formulation and numerical calculation of two-region 
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biofilm model of the two-substrate limitation advection-diffusion-reaction equation which is Biofilm 

model.  

Basic Concept of OCFEM 

The orthogonal collocation finite element method (OCFEM) is a method that uses the orthogonal 

collocation method, which is said to be one of the weighted residual methods, on finite elements. In the 

general finite element method, the Galerkin method is used as the weighted residual method, which uses 

the same weight function as the trial function, but the orthogonal collocation method uses Dirac's delta 

function. In a strong-form differential equation, it means that the residual is zero at the orthogonal 

collocations. This can be expressed mathematically by the following formula. 

The spatial two-dimensional linear partial differential equation is expressed by the following equations 

(1) and (2). 

            

 

            

   L，B is a linear partial differential operator 

Integrating the basic equation by multiplying Dirac's delta function at the internal collocation q and the 

boundary condition by multiplying Dirac's delta function at the external collocation r yields Equations (3) 

and (4), resulting in conditional equations (5) and (6) in which the residuals are zero at the orthogonal 

collocation in the original basic equations (1) and boundary conditions (2). 
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to be found is increased (4). In the orthogonal collocation method, the Lagrange interpolation equation 

using the solution at the orthogonal collocation is used. In other words, it comes down to finding the 

solution at the orthogonal collocation instead of finding the coefficient of the polynomial assuming that 

the residual at the orthogonal collocation of the polynomial is zero, but by defining the differential 

operator (matrix) of partial derivatives (13), it is possible to easily translate partial differential equations 

into algebraic equations. The differential operators (matrices) for one-dimensional orthogonal polynomials 

can be calculated by the method of Hasegawa et al. (19) which calculate differential operators (matrices) 

with high numerical accuracy even in numerical calculations by differentiating the Lagrange interpolation 

equations. A two-dimensional differential operator can be created using a one-dimensional differential 

operator (the derivative of the coefficients of the Lagrange interpolation formula), and it can also be 

extended to three dimensions. In order to explain the relationship between Weierstraß's theorem of 

polynomial approximation and the differential operator of the orthogonal finite element method, we will 

consider a general one-dimensional polynomial. 

Let u be the dependent variable and x be the independent variable of space. Again, emphasis is on 

Weierstraß's concept of polynomial approximation, in which a function is represented by a polynomial, 

and as the degree increases, the polynomial uniformly converges to a function. Equations (7) and (8) show 

the polynomial and the polynomial approximation ui in xi, respectively. 

 

 

 

This is possible by using Lagrange’s the interpolation formula for orthogonal collocation, which is to 

express a polynomial that is a continuous function with discrete values, and to obtain a polynomial from 

discrete values. It shows that the discretization of continuous functions and polynomial representation 

(continuous functions) are equivalent. Lagrange interpolation at orthogonal collocations is used as a 

method of discretizing polynomials, and it can be seen that the differential operator (matrix) of OCFEM, 

which will be described later, is the coefficient for solving the Lagrange interpolation equation. 

In the case of OCFEM, where there is a discontinuity at a certain point, it can be handled. Suppose that 

a region is divided into m elements piecewise. At a discontinuous point, the discontinuous part can be 
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variable ui in the independent variable xi (discretization), the position of the root xi of the Nth order 

orthogonal polynomial of the element interval (e.g., the Nth order Sifted Legendre polynomial) is 

important. It is important that the differential operator is calculated by the value of this orthogonal 

collocation (the root of the orthogonal polynomial), and it is necessary to consider the meaning of the 

weight function with respect to the orthogonality of the orthogonal polynomial. The use of orthogonal 

collocations can solve the Runge phenomenon (20)(21), which were disadvantages of the equally spaced 

Lagrange interpolation equation. Although N has not been explained here, in the orthogonal collocation 

finite element method, N represents the number of internal collocations in the element, and in the case of 

one dimension, two are the boundary condition points (external collocations) at both ends of the element, 

and the number of local collocations in the element is N + 2 (x1, x2, x3, ..., xN+2) by adding the number of 

internal collocations N and the number of external collocations 2. 

Differential Operators (matrices) with Respect to Space 
(13)(16)

 

The induction of differential operators in OCFEM is described below, which is a matrix (differential 

operator) that acts on the solution vector in order to obtain the differential vector of a discrete solution. 

The method of deriving a differential operator by differentiating the orthogonal polynomial is described 

below. 

On two-dimensional polynomials and differential operators (matrices) 

If we assume that the dependent variable u changes only for the independent variables x and y in space, 

with the time t fixed, then the polynomial of the space two-dimensional is given by the following equation 

(9). 
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 The following shows the induction of a partial differential operator matrix up to the second order of the 

two dimensions, and the following equation is obtained by partial differentiating equation (9) to the 

second order. 

 

 

 

 

 

 

 

 

 

 The partial derivative at collocation p is as follows (12) from equation (11). 

 

 

 

 

 

 

 

 

 

 

In order to represent Equation (10) and Equation (12) as vectors and matrices, define vectors and matrices 

as shown below. 
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：Vector of first-order partial derivative with respect to x of u 

 

        

：Vector of first-order partial derivative with respect to y of u 

 

 

        ：Vector of second-order partial derivative with respect to x of u 

 

 

        ：Vector of second-order partial derivative with respect to y of u 

 

           

：Vector of cross-partial derivatives of the second order with respect to x and y of u. 

           

:The numbers i, j, and p are similar to Q,(N1+2)(N2+2)×(N1+2)(N2+2)matrix 

           

：The numbers i, j, and p are similar to Q,(N1+2)(N2+2)×(N1+2)(N2+2) matrix 

 

           ：The numbers i, j, and p are similar to Q, (N1+2)(N2+2)×(N1+2)(N2+2)matrix 
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                         : The numbers i, j, and p are similar to Q, (N1+2)(N2+2)×(N1+2)(N2+2)matrix 
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Here, from equation (13) 

   

Therefore, the partial derivative vector of Equation (14) is represented as follows. 
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It has been numerically verified that even if the order of the derivatives is reshuffled in cross-partial 

derivatives, they are equal and commutative. When the differential operator (matrix) defined by equation 

(18) is applied to the solution vector, each partial derivative vector is obtained. When calculated 

numerically by Equation (17), the inverse matrix is included, so when the order (internal collocation order 

N1, N2) increases, a differential operator (matrix) with poor accuracy is calculated. It can be seen that the 

differential operator (matrix) is the same as the coefficient matrix (collocation constant) derived using the 

two-dimensional Lagrange interpolation formula. In the next section, we show that differential operators 

are represented and computed using the two-dimensional Lagrange interpolation formula. 

Calculation method using the Lagrange interpolation formula for differential operators 

(matrices) (19)(4) 

The two-dimensional polynomial is expressed by the Lagrange interpolation formula, as shown in 

Equation (19), where the position of the collocation is (xi, yj) as the root of the Sifted Legendre polynomial. 

The range of the Sifted Legendre polynomial is (0,1), and the range of the Legendre polynomial (-1,1) is 

converted to (0,1). 
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 The above equation (19) is partial differentiated by x and y, and the partial derivative at the collocations 

m (number in the x direction) and n (number in the y direction) is shown below. 

  

 

 

 

 

 

 

 

 

 

From equation (21), the differential operator (matrix) is represented by equation (22), where ( ′) and ( ") 

are first-order derivatives and second-order derivatives respectively. 

 

 

 

 

 

Differential Operators (Matrices) with Respect to Time (13)(14) 

If we fix it in space q and express the dependent variable u in space q with a polynomial with respect to 

time, we get Equation (23). 

 

  

  : The value of the dependent variable for the change in time when the spatial collocation q is fixed.  

  : Coefficients of the polynomial with respect to time when the spatial collocation q is fixed. 

 The first-order derivative of equation (23) with respect to t yields Equation (24).  

 

 

  and first order derivative with respect to t at time collocation i are as follow equation. 

     

     

     

1 2

1 2

1 2

2 22

2
1 1,

2 22

2
1 1,

2 22

1 1,

,

,

,

N N

i m j n i j

i jm n

N N

i m j n i j

i jm n

N N

i m j n i j

i jm n

u
l x l y u x y

x

u
l x l y u x y

y

u
l x l y u x y

x y

 

 

 

 

 

 












 

 

 

 

 

   

   

   

   

   njmi

njmi

njmi

njmi

njmi

ylxl

ylxl

ylxl

ylxl

ylxl











xy

y

x

y

x

C

B

B

A

A

(21) 

(22) 

     

     

1 2

1 2

2 2

1 1,

2 2

1 1,

,

,

N N

i m j n i j

i jm n

N N

i m j n i j

i jm n

u
l x l y u x y

x

u
l x l y u x y

y

 

 

 

 











 

 

1
1

1

tN
q q j

j

j

u b t








qu

q

jb

1
2

1

( 1)
tNq

j q

j

j

u
j t b

t







 




(23) 

(24) 

q

iu



Basic Concept and Application of Differential Operator in Time and Space by Orthogonal 

Collocation Finite Elements Method 

48 

  

 

 

 

representation by vector and matrix are as follow  

 

  

 

First order derivative with respect to t of u is as follow 

  

 

it can be seen from the basic concept of partial derivatives that the differential operators (matrices) of the 

first order are derived by the same way of thinking as space, but this differential operator (matrix) with 

respect to time does not depend on the space q. 

Since the differential operator (matrix) of time can be created using the same concept as the differential 

operator (matrix) of one-dimensional space, it can be obtained by differentiating the one-dimensional 

Lagrange interpolation formula with orthogonal collocations. 

Coordinate Transformation Matrix Required for Unstructured Grids(12)(14)～
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In the Galerkin method, which is one of the weighted residual methods, it is expressed in the form of an 
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OCFEM (Orthogonal Collocation Finite Element Method), the partial derivative at the discrete 

collocations (orthogonal collocations) in the element must be converted from the local coordinate system 

to the global coordinate system (unstructured grids), which can be achieved by using the concept of partial 

derivative of the composite function. This transformation must be performed for a total of five partial 

derivatives (including cross-partial derivatives) for the dependent variable u, two for first-order partial 

derivatives (ξ, η) and three for second-order partial derivatives (ξ, η). The reason why it is not necessary to 

convert the higher-order partial derivatives of 3 or more orders is that it is necessary to convert the PDEs 

of the higher order to the PDEs of the second order or less. It has been shown that this makes it easier to 

 

1
1

1

1
2

1

1

t

t

N
q q j

i j i

j

Nq
j q

i j

ji

u b t

u
j t b

t














 







 

1

21

q q j

i

q
q j

i

t

u
j t

t





    

 
       

u Qb Q

Db D

1
q

q q qu

t

 
   

 
tDb DQ u A u

(25) 

(26) 

(27) 



Basic Concept and Application of Differential Operator in Time and Space by Orthogonal 

Collocation Finite Elements Method 

49 

set boundary conditions.  

Define the coordinate transformation function used for the composite function for converting the local 

coordinate system to the global coordinate system (unstructured grid) as shown in Equation (28). 

 

 

 If the dependent variable is u, the partial derivative of the composite function is calculated as shown in 

Equation (29). 

 

 

 

 

The partial derivative of the second order can be derived as follows. 

  

 

 

 

 

 

 

 

 

 

When the above equation group (29) ~ (32) is represented as a matrix, it becomes as Equation (33)． 
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and if the inverse matrix is       , differential vector of u is represented equation (35) as follow 

 

 

 

 

 

 

 

 

J represents the transformation of partial derivatives in local coordinates to partial derivatives in the 

global coordinate system, and this J is named the coordinate transformation matrix. Eliminating u from 

Equation (35), we consider the transformation of the differential operator from the local coordinates to the 

global coordinate system, and it is expressed as Equation (36). 

 

 

 

 

 

 

 

 




















































































































































































































































yxyxyyxxyx

yxyxyx

yxyxyx

yx

yx

22

22

2

2

2

2

22

2

2

2

2

2

2

000

000

T






















































































































u

u

u

u

u

yx

u

y

u
x

u

y

u
x

u

2

2

2

2

2

2

2

2

2

2

J






















































































































2

2

2

2

2

2

2

2

2

2

J

yx

y

x

y

x

















































































2

2

2

2

2

ξη

η

ξ

η

ξ

C

B

B

A

A







































































yx

y

x

y

x

xy

y

x

y

x

2

2

2

2

2

C

B

B

A

A

1J T

(34) 

(35) 

(36) (37) 



Basic Concept and Application of Differential Operator in Time and Space by Orthogonal 

Collocation Finite Elements Method 

51 

If the elements of J are Jij (i=1,2,3,4,5 j=1,2,3,4,5), the following equations (38) are obtained from 

equations (36) and (37). 

 

 

 

 

 

 

 

The following relationship that was established in the local coordinate system (ξ, η) 

 

 

 

 

is not true. (in numerical calculation) 

The coordinate transformation function is as follow specifically for quadrilateral elements. 

 

 

 

 

 

 

 

 

 

 

 

 

For a1, a2, a3, a4, b1, b2, b3, b4, equations can be derived (calculated) by correlating the four corners of 

the global coordinate system (x, y) [(x1, y1), (x2, y2), (x3, y3), (x4, y4)] to the four corner points of the local 

coordinates (ξ, η)[(0, 0), (1, 0), (1, 1), (1, 1), (0, 1)]. Using these a1, a2, a3, a4, b1, b2, b3, and b4, the partial 
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derivative values for the coordinates of Equation (40) are calculated, and the coordinate transformation 

matrix J is specifically calculated. 

First, fix the rows of the partial differential operator matrix, for example, if you fix the i rows, the 

matrix T is calculated for the i collocations (ξi, ηi) because we are focusing on the i-collocations. J is 

calculated using the inverse matrix of the matrix T with respect to the i-collocation, and from equation 

(38), the i row of the partial differential operator matrix of the global coordinate system (i collocation) is 

calculated. 

Local Numbering within an Element (13)(16) 

As a simple example, in order to represent the orthogonal collocations using the roots of the orthogonal 

polynomial in the x-direction of the Nth order and the roots of the orthogonal polynomials in the 

y-direction of the Nth order, the numbers of the roots in the x- and y-directions are i=2~N+1 and j=2~N+1 

as internal collocations. i = 1 and N+2, j = 1 and N + 2 are boundary points (element boundary points 

(nodes collocations (side collocations), node collocations (4 corner collocations)): external collocations) 

(Fig. 1). Here, N is the number of internal collocations in the x and y directions, and N = N1 = N2 for 

simplicity. Similar to (i, j), (m, n) have the same numbering.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 allocation of collocation in a element 

 

If N = 3 (Fig.1) 

Internal collocation, 3×3 (N×N)                            

Node collocations (4 corner collocations) (external collocation), 4 

Nodes collocations(side collocations)(external collocation) 4×3 (4×N） 
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Total collocations: 5×5=25    4+4×N+N×N=(N+2)(N+2) 

(i, j) corresponds to the local collocation number p=1～(N+2)(N+2), and the collocation position is 

ordered as follows. (1~25 in the example in the figure 1) 

 p=1～4  Node collocations (4 corner collocations) (external collocation)  

 p=5～4+4N Nodes collocations(side collocations)(external collocation) 

  p=5+4N～(N+2)(N+2)internal collocation 

 external collocation :r =1～4+4N（4 corner collocations:1～4） 

  internal collocation :q =5+4N～(N+2)(N+2) 

(Total collocation＝external collocation＋internal collocation) 

The global collocation number T is represented by the element k and the local collocation number p by 

the following relation. 

 

Here, IE is a function that relates p, k and T. (where k is the element number) 

Thus, if the numbering (i, j), (m, n) in the x and y directions corresponds to the local collocation number 

p in the element, the differential operator (matrix) becomes a square matrix of (N+2) (N+2) × (N+2) (N+2). 

This differential operator (matrix) is not regular, and when formulating the basic equation and the 

boundary condition equation, the differential operator (matrix Axqp) of the internal collocation q  is used 

in the basic equation (established by the internal collocation), and the differential operator (matrix Axrp) of 

the external collocation r is used in the element boundary condition expressed by partial derivatives. The 

number of all points for the element is p = q + r, where q is the number of internal points and r is the 

number of external points (number of element boundary points). If the differential operator matrix is 

divided into a matrix of qp (not a square matrix: an internal collocation differential operator matrix Axqp) 

and a matrix of rp (not a square matrix: an external collocation differential operator matrix Axrp) , the 

PDE’s is formulated by the basic equation (internal collocation) and the boundary condition equation 

(external collocation) using the differential operator, and by superposition (element connection), it 

becomes an overall regular square matrix, which results in solving a system of equations. 

 

 

 

 

),( kpIET  (42) 
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Gauss numerical integration in OCFEM (4)(15)(22)
 

Area integration of the quadrilateral element 

As a specific example, the preparation for calculating the total substrate consumption rate in a biofilm 

region (Biofilm) by the Gauss integral formula is shown below. The relationship between the global 

coordinates (x, y) and the local coordinates (ξ, η) is expressed by the following equation (43).    

  

 

 

 

 

 

 

 

 

Local coordinate system          Global coordinate system 
(no representation of orthogonal collocation) 

 

Fig.2 Local coordinate system and Global coordinate system in case of quadrilateral element 

In the case of the quadrilateral element shown in Fig.2, the conversion formula from the local coordinate 

system to the quadrilateral element of the global coordinate system is expressed by Equation (44). 

 

 

 The coefficients ai and bi are obtained from the correspondence between the four corners of the 

rectangular element, which is the local coordinate, and the four corners of the quadrilateral element, which 

is the global coordinate (Fig. 2). 
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In the x－y coordinate system, let the integrable function be f(x, y). In the ξ－η coordinate system, it is 

expressed as follows.  

  

 

Here, Jacobian for integrating conversion from a x－y coordinate system to a ξ－η coordinate system in a 

certain integral region is expressed by the following equation． 

 

 

 

 

 

Therefore, the integral is expressed by Equation (48). 

 

 

where A is the area of quadrilateral elements in the global coordinate system, and B is the region of 

rectangular elements in the local coordinate system. Here, since f(φ(ξ, η), ψ(ξ, η)) has already been 

calculated by the orthogonal point finite element method (OCFEM), it is possible to calculate the integral 

using the weights in the ξ－η coordinate system. Note that the orthogonal collocation of the Legendre 

polynomial in OCFEM and the integration point of Gauss's integral formula are the same. 

Specifically, the discrete representation is as following equation (49). Since the integrating point is the 

internal collocation of the element, the weight of i = 5 + 4. N～(N+2)(N+2) and the Jacobian use give the 

discretized integral formula (49), where the total number of elements in the global coordinate system is m. 
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W1l, W1k is weight in the one-dimensional direction, 

Wi is weight in the two-dimensional direction. 

 

Line integrals on the boundary edges of quadrilateral elements 

In order to specifically calculate the flux flowing into and out of the biofilm surface, it is necessary to 

prepare a line integral that calculates the total flux on the edge corresponding to the surface portion of the 

quadrilateral element on the biofilm surface. 

 

 

 

 

 

 

 

 

Local coordinate system       Global coordinate system 

 

Fig.3 Local coordinate system and global coordinate system in a side of quadrilateral element 

 

 As shown in Fig.3, the edges (x, y) of the global coordinate system are represented by the sides (ξ) of the 

local coordinate system. 

         

 

 

 

 

 

From the relationship of the above equation 

 

            

 

 

 

Line integration of        is represented by as following equation． 

 

 

 

Specifically, the line integration at the sides of the global coordinate system is shown as follows. 
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Representation of discrete Gauss integration is as following equation.  

 

 

 

 

 

    ：Weights at the integration point i of the Gauss integral formula 

Formulation and Numerical Calculation of Biofilm Model by Differential 

Operator of Time and Space in Orthogonal Collocation Finite Elements 

Method 

The three main tools of OCFEM are differential operators of matrix representation in space and time, 

coordinate transformation matrices for unstructured grids, and numerical integration using Gauss 

integration points that are the same as Legendre's orthogonal collocations. In this paper, we present an 

example of numerical analysis using OCFEM of an advection-diffusion-reaction equation with a nonlinear 

reaction term, which is a two-substrate limit biofilm model in two regions (biofilm region and diffusion 

layer region) (4)(12)(15)(22). Problems in these two domains with different partial differential equations suggest 

the application of OCFEM to coupled problems such as fluid-structure systems. In this paper, we use a 

biofilm model as an example, but the main purpose is to expand the application of OCFEM to partial 

differential equations (PDEs) in science and engineering.  

Biofilm model on membrane 

Regarding the problem of OCFEM accuracy (comparison with exact numerical solutions), we will leave 

it to the literature (12)(14) dealing with Laplace equations and heat conduction equations, and here, we will 

focus on the biofilm model described by the advection-diffusion reaction equation, and the concentration 

distribution (OCFEM), substrate consumption rate (area within the element), and flux on the biofilm 

surface (line integration of the element edges) are discussed. The basic equations and boundary conditions 

for the biofilm region described by the advection-diffusion reaction equation of the two-substrate limit and 

the diffusion layer region described by the advection-diffusion equation in which microorganisms are 
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absent are shown below. 

Biofilm domain： 

 

 

 

Diffusion layer domain： 

 

 

 

where specific substrate consumption rate is represented by following equation (24) 

 

 

The α is the stoichiometric ratio of substrate S and oxygen C. 

 

 

 

 

 

 

 

 

 

Fig.3 Boundary condition in example domain 

 The schematic diagram of the boundary condition is shown in Fig.3, and the boundary condition 

equation is shown in ①~ ⑤, The same is true for C. 

①         

② Boundary between biofilm and diffusion layer 

 

 

③ on membrane： 
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④  

 

 

⑤  

 

Initial condition： 

 

 

Element boundary condition(Element connection condition)： 

 

 

 

 

where, 

S: Substrate(glucose) concentration[mg/l] 

C: Oxygen concentration[mg/l] 

u,v: Advective velocity[cm/s] 

Dsf: Diffusivity of substrate within Biofilm [cm2/s] 

Dcf: Diffusivity of oxygen within Biofilm[cm2/s] 

Ds: Diffusivity of substrate in water[cm2/s] 

Dc: Diffusivity of oxygen in water[cm2/s] 

x,y: Position within Biofilm or Diffusion layer[cm] 

t: Time[s] 

f(S,C): Specific substrate consumption rate[1/s] 

νmax: Maximum specific substrate consumption rate[1/s] 

KS: Saturation coefficient for substrate[mg/l] 

KC: Saturation coefficient for oxygen[mg/l] 

α: Stoichiometric ratio between substrate(S) and oxygen(C) 
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Formulation of Biofilm model by differential operator in space and time 

Here, the formulation by OCFEM in the biofilm and diffusion layer at the internal collocation of an 

element is shown. The partial derivative of space and time is expressed as a differential operator (matrix) 

as follows. q is the internal collocation, p is the total collocation (external collocation r and internal 

collocation q), and i and s are time collocations. 

Internal collocation：Biofilm 

 

 

 

Internal collocation：Diffusion layer 

 

 

 

The formulation by OCFEM for element boundary conditions (fluxes at common collocations of adjacent 

elements is continuous) and boundary conditions can be done in the same way. Note that the same way is 

described for oxygen. 

Element boundary condition(Element connection condition)： 

 

 

Conditional expressions for the collocation of four corners within the region in the element boundary 

conditions (element connection conditions) is guided using the concept of least squares. 

 

 

 

 

m：Number of elements sharing one corner, ke, ke+1：Elements and Adjacent Elements, km：Nodal edges 

through one of the four corners, r, h：Local number of shared collocations at the nodes of one element and 

adjacent elements. 
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Boundary condition：（refer to Fig.3）the same way is described for C． 

①  

 

② Boundary condition between Biofilm and Diffusion layer： 

  

 

③ On membrane： 

  

 

④   

 

⑤  

 

Calculation of substrate consumption rate and flux by area and line integration 

① Calculation of substrate consumption rate： 

The substrate consumption rate of the biofilm can be calculated by integrating the specific substrate 

consumption rate at the collocation of each element of the biofilm (S_Consum)．Since orthogonal 

collocations which are the roots of the Legendre polynomial are used for integral point, the 

Gauss-Legendre numerical integration formula for the area can be used with high-precision. The 

following is a specific numerical integration formula. 

 

 

 The above equation is described as a quadrilateral element. 

② Calculation of inflow and outflow flux： 

 The flux of inflow and outflow on the surface of the biofilm is determined by linear integral．

Gauss-Legendre's numerical integration formula can be used, and high-precision integration is possible. 
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The above equation describes the flux on the side of the quadrilateral element. 

In the biofilm model, the substrate consumption rate and the flux balance of inflow and outflow must 

match at steady state. 

Computational conditions and biofilm model parameters 

The calculation conditions and the biofilm model parameter values in Table 1 used for numerical 

calculations are shown. Fig.5 and Fig.6 show examples of rectangular element division (Case1) and 

quadrilateral element division (Case2) in the case of 5×5 internal collocations in one element, respectively. 

Calculation condition： 

Substrate (Glucose) concentration in bulk liquid：10mg/l 

Oxygen concentration in bulk liquid     ：4mg/l 

Advection in the direction of y by membrane suction：-7μm/s 

Space internal collocation in one element：2×2，5×5，7×7 

Time internal collocation in time element：1, 2, 3, 4 

Time element DT：0.01(when time collocation is 1), 

0.1 (when time collocation is 2,3,4) 

Total time of calculation.：20sec(steady state at 20sec) 

Initial condition：Discontinuous initial conditions are given by using the initial concentration distribution 

in the diffusion layer and the biofilm as 1/2 of the concentration of the bulk liquid, and the upper boundary 

of the diffusion layer as the concentration of the bulk liquid. 

 

Table 1 Parameter of biofilm model 

 

 

 

 

 

 

 

 

 

 

 

 

 

param eter of biofilm  m odel sym bol param eter value

D iffusivity of substrate in B iofilm D sf 0.25×10-5cm 2/sec

D iffusivity of oxygen in B iofilm D cf 1.37×10-5cm 2/sec

D iffusivity of substrate in w ater D s 0.694×10-5cm 2/sec

D iffusivity of oxygen in w ater D c 3.01×10-5cm 2/sec

M axim um  specific substrate rem oval rate νsm ax 0.0002662(1/sec)

Stoichiom etric ratio of sbstrate and oxygen α 0.5

Saturation constant of substrate K s 5m g/l

Saturation constant of oxygen K c 0.15m g/l

D ensity of bacteria in B iofilm X f 25000m g/l
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Results and discussion in computation 

Fig.6 and Fig.7 show the concentration profiles of the substrate (glucose) and oxygen in the biofilm 

models of the rectangular element (Case1) and the quadrilateral element (Case2) after the calculation time 

of 20 sec, respectively.  

 Fig.8 and Fig.9 show the concentration profiles of the substrate (glucose) and oxygen in the non-steady 

state after the calculation time of 1 sec in the biofilm model of the rectangular element (Case1) and the 

quadrilateral element (Case2), respectively. Although the initial conditions were spatially discontinuous, 

the concentration distribution after 1 sec (time element 0.01, time internal collocation 1) was shown to be 

stable with respect to space. 

Fig.10 and Fig.11 show the total substrate consumption rate of the biofilm model in the unsteady state 

of the substrate (glucose) and oxygen in the biofilm model of the rectangular element (Case1), the total 

substrate flux flowing into the biofilm surface (inlet flux), and the total substrate flux flowing out of the 

membrane (outlet flux). and the change in flux balance of all substrate fluxes in and out over time. Before 

the aging time of 4 sec, the total substrate consumption rate (Consumption rate) and the flux balance (Flux 

balance) change non-stationarily and do not coincide, but after the aging change is 7 sec or more, the total 

substrate consumption rate and flux balance become a steady state, and the substrate consumption (unit 

time) consumed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substrate profile (interval 0.5mg/l) 

Fig.6   Steady profile of substrate and oxygen (after 20sec) 

[Case 1:rectangular element（interior collocation 7×7）] 

 

Fig.4  elements number:12×5 interior collocation（5×5＝25） 

(Case1) Rectangular element in diffusion and biofilm domain  

Fig.5 elements number:12×7 interior collocation（5×5＝25）

(Case2) Quadrilateral elements in diffusion and biofilm domain 

Oxygen profile (interval 0.05mg/l) Substrate profile (interval 0.5mg/l) Oxygen profile (interval 0.05mg/l) 

Fig.7   Steady profile of substrate and oxygen (after 20sec) 

[Case 2:Quadrilateral element（interior collocation 7×7）] 

 

Substrate profile (interval 0.5mg/l) Oxygen profile (interval 0.05mg/l) 

Fig.8   Unsteady profile of substrate and oxygen (after 1sec) 

[Case 1:rectangular element（interior collocation 7×7）] 

 

Substrate profile (interval 0.5mg/l) Oxygen profile (interval 0.05mg/l) 

Fig.9   Unsteady profile of substrate and oxygen (after 1sec) 

[Case 2:Quadrilateral element（interior collocation 7×7）] 
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by the biofilm and the balance of the substrate mass (unit time) flowing into and outflowing into the 

biofilm coincide. It shows that the balance of substrates in steady state is consistent. Figs.12 and 13 show 

the changes in the consumption rate and flux balance of the substrate and oxygen over time in the biofilm 

model of quadrilateral elements, and show the same behavior as the biofilm model of rectangular elements. 

Fig.6~Fig.13 shows the calculation results when the number of internal collocations selected in the spatial 

element is 7×7 and the number of internal collocations in the time element (0.01) is 1. 

Table 2 Unsteady and steady-state calculation values of substrate consumption rate and flux balance (time internal 

collocation number 1, time increment 0.01)(Unsteady calculation is the value in steady state (time 20s)) [Rectangular 

element: Case1] 

 

 

 

Fig.10   Time variation of consumption and flux balance  

of substrate (Case1: rectangular element) 

（time collocation 1）（interior collocation 7×7） 

substrate

internal collocation unsteady calculation steady calculation

2×2 8.121382663E-06 8.121382675E-06

5×5 8.121955997E-06 8.121956008E-06

7×7 8.121972148E-06 8.121972160E-06

substrate consum ption rate(m g/s・cm 2) substrate

internal collocation unsteady calculation steady calculation

2×2 8.121382702E-06 8.121382675E-06

5×5 8.121956035E-06 8.121956008E-06

7×7 8.121972187E-06 8.121972160E-06

flux balance(m g/s・cm 2)

Fig.11   Time variation of consumption and flux balance 

      of oxygen (Case1: rectangular element) 

（time collocation 1）（interior collocation 7×7） 

Fig.13   Time variation of consumption and flux balance  

of oxygen (Case2: Quadrilateral element) 

（time collocation 1）（interior collocation 7×7） 

 

Fig.12   Time variation of consumption and flux balance  

of substrate (Case2: Quadrilateral element) 

（time collocation 1）（interior collocation 7×7） 
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Table 3 Effect of the number of internal collocations in time on the convergence of substrate consumption rate and 

flux at 0.5 sec.(Number of collocations in the space: 7×7, Biofilm morphology [Rectangular element: Case1]) 

 

 

 

 

 

 

Table 4 Effect of the number of internal collocations in time on the convergence of substrate consumption rate and 

flux balance in steady state (20 seconds)[Rectangular elements: Case1] 

 

 

 

 

 

 

The effects of the space and time collocations (time element 0.01: time internal collocation 1, time element 

0.1: time internal collocation 2, 3, and 4) on the substrate consumption rate and flux convergence behavior are 

described using Table 2~Table 7.  Table 2 shows the convergence of the calculated values of the 

non-stationary PDEs and stationary PDEs of the substrate consumption rate and flux balance numerically 

calculated by the number of internal collocations in space, and the convergence to a certain value is observed. It 

is shown that the steady-state value of non-stationary PDEs (after 20 sec) and the calculated value of stationary 

PDEs match up to 7 significant digits. Table 3 shows the effect of the number of internal collocations of time on 

the convergence of substrate consumption rate and flux after 0.5 seconds in numerical calculations of 

non-stationary PDEs, and shows that the consumption rate and flux converge as the number of internal points 

of time increases. 

 Table 4 shows the effect of the number of internal collocations of time on the convergence of the substrate 

consumption rate and flux balance in the steady state (after 20 seconds) of non-stationary PDEs, and it can be 

seen that the calculated values of the substrate consumption rate and flux do not depend on the number of time 

collocations. The substrate consumption rate and flux balance in steady state are consistent up to 8 significant 

digits. 

 

 

 

tim e internal collocation substrate consum ption rate biofilm  surface flux m em brane outflow  flux

1 7.269323411E-06 1.196666138E-05 2.834574954E-06

2 7.268561257E-06 1.197539826E-05 2.832248287E-06

3 7.268569034E-06 1.197526570E-05 2.832236852E-06

4 7.268569198E-06 1.197526671E-05 2.832237129E-06

tim e internal collocation substrate consum ption rate flux balance

1 8.121972149E-06 8.121972187E-06

2 8.121972149E-06 8.121972187E-06

3 8.121972149E-06 8.121972187E-06

4 8.121972149E-06 8.121972187E-06
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Table 5 Unsteady and steady-state calculation values of substrate consumption rate and flux balance (time internal 

collocation number 1, time increment 0.01)(Unsteady calculation is the value in steady state (time 20s)) 

[Quadrilateral elements: Case2] 

 

 

 

 

 

Table 6 Effect of the number of internal collocations in time on the convergence of substrate consumption rate and 

flux at 0.5 sec.(Number of collocations in the space: 5×5, Biofilm morphology [Quadrilateral elements: Case2]) 

 

 

 

 

 

 

Table 7 Effect of the number of internal collocations in time on the convergence of substrate consumption rate and 

flux balance in steady state (20 seconds)[ Quadrilateral elements: Case2] 

 

 

 

 

 

 

Table 5~Table 7 is a model of quadrilateral elements, and in terms of content, it shows the same trend as 

the rectangular element model in Table 2~Table 4. However, Table 7 shows the case of spatial internal 

collocations 5×5, and the substrate consumption rate, which is the steady value of the non-stationary PDEs, 

and the flux balance were consistent up to 8 significant digits.  

From the above, it is considered that the meaning of Weierstrass's theorem (20)(23) of polynomial 

approximation and the approximation of partial derivatives of polynomials (extension of Weierstrass's 

theorem) is that they converge uniformly when the order of the polynomial approximation (the order of 

the internal collocations) that approximates the unknown function to be found is increased.  This cannot 

be said accurately because it has not been mathematically proven, but it is thought that it can be inferred 

substrate

internal collocation unsteady calculation steady calculation

2×2 7.945250017E-06 7.945250025E-06

5×5 7.945368876E-06 7.945368884E-06

7×7 7.945372917E-06 7.945372926E-06

substrate consum ption rate(m g/s・cm 2)

tim e internal collocation substrate consum ption rate biofilm  surface flux m em brane outflow  flux

1 7.037619540E-06 1.165297510E-05 2.794081582E-06

2 7.037597629E-06 1.165325589E-05 2.794064515E-06

3 7.037605746E-06 1.165312835E-05 2.794052791E-06

4 7.037605915E-06 1.165312908E-05 2.794053100E-06

tim e internal collocation substrate consum ption rate flux balance

1 7.945368876E-06 7.945368844E-06

2 7.945368876E-06 7.945368844E-06

3 7.945368876E-06 7.945368844E-06

4 7.945368876E-06 7.945368844E-06

substrate

internal collocation unsteady calculation steady calculation

2×2 7.945249985E-06 7.945249965E-06

5×5 7.945368844E-06 7.945368823E-06

7×7 7.945372886E-06 7.945372865E-06

flux balance(m g/s・cm 2)
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that the tendency is to converge when the order of the polynomial (the number of internal points) is 

increased. Therefore, the differential operator of the orthogonal collocation finite element method is 

considered to be one of the important analysis methods for numerical analysis because it has a 

mathematical meaning. 

Conclusions 

The following findings were obtained from the formulation of the biofilm model using OCFEM, the 

numerical calculation of the concentration distribution, and the calculation of the substrate consumption 

rate and flux balance at the boundary of the biofilm region as a numerical integration of the concentration 

distribution. 

① The formulation of the biofilm model using the differential operator (matrix) of OCFEM yielded the 

results of a reasonable concentration distribution, and the numerical integration of the concentration 

distribution of the biological region and the boundary yield yielded a reasonable substrate 

consumption rate and flux balance in the boundary region. 

② By using a higher-order differential operator (matrix) with the order of the polynomial representation 

of the concentration in space, we were able to show the convergence of the substrate consumption rate 

and flux balance, which is the integral of the concentration distribution. 

③ The consistency between the substrate consumption rate and the flux balance at the biofilm boundary, 

which is the integral of the steady-state value (concentration distribution) of the non-stationary PDEs 

and the calculation result (concentration distribution) of the stationary PDEs, was accurately 

consistent, and when the order of the time collocation in the nonstationary case (assuming that the 

time-related differential operator (matrix) was of a higher order) increase, the integral value of the 

substrate consumption rate and the flux balance converged to a certain value. 

④ Numerical calculations of OCFEM have shown that Weierstraß's theorem of polynomial approximation 

and the approximation of partial derivatives of polynomials converge at each point by increasing the 

order of the polynomial (order of internal collocations: order of differential operator (matrix)) that 

approximates the unknown function to be obtained. By making it higher order (mathematically close to 

∞), the arrangement of the orthogonal collocations becomes dense and can be expected to converge 

uniformly. 
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The above results can be inferred from the numerical calculations of OCFEM, and it goes without saying 

that they must be strictly proved mathematically, but from an engineering point of view, the practical use 

of OCFEM and potential is considered to be high. 
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