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Abstract 
This paper presents the study of unsteady flow of an incompressible electrically conducting viscous fluid in a 
rotating porous media, with a variable pressure gradient and in the presence of hall current. Here we consider 
three different cases, like impulsive change, cosine and sine oscillations of pressure gradient. Here, it is 
proved in this paper that, the rotational and Lorenz forces are having significant effect on velocity profile in 
the presence of pressure gradient and hall current. 
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Introduction 

    We assess and calculate the positions and velocities with respect to a fixed frame of reference, applying its 
magnetic field. The dynamics of geophysics as a field of study has become a vital branch of fluid dynamics 
owing to the enormous work being carried to explore the atmosphere. Hall effects have extended its influence 
even on the studies launched in the area of astrophysics, where it is used to study the celestial occurrences like 
solar storms or even the dynamics working on the stellar, solar structures and the matter present between one 
planets and the other and between one star and the other. Hide and Roberts [1], gave an explanation for the 
observed continuation and secular variation of the geomagnetic field. Also Dieke [2] discussed an important in 
the solar physics mixed up in the sunspot development. A phenomenon (It was discovered by Edwin Hall in 
1879) that occurs when an electric current moving through a conductor is exposed to an external magnetic field 
applied at a right angle, in which an electric potential develops in the conductor at a right angle to both the 
direction of current and the magnetic field. The Hall effect was a direct result of Lorentz forces acting on the 
charges in the current, and was named after American physicist Edwin Herbert Hall (1855- 1938). Hall current 
effect is also indispensable when the fluid is an ionized gas with low density or we are applying the high range 



of magnetic field. Because the electrical conductivity of the fluid will then be a tensor and a Hall current is 
provoked. Which is likely to be central in many engineering situations has been discussed by Sutton and 
Sherman [3]. The Hall effects on the flow of ionized gas between parallel plates under uniform transverse 
magnetic field have been premeditated by Sato [4]. Nanda and Mohanty [5] considered the hydromagnetic 
rotating channel flows. Datta and Jana [6] presented the Hall effects on unsteady Couette flow. 

 Hall effects on hydromagnetic convective flow through a channel with conducting walls is given by 
Datta and Jana [7], they discussed the flow nature with non-dimensional parameters. Mandal et al. [8] 
have studied the combined effects of rotation and Hall current on steady  flow. Mandal et al. [9] 
discussed the effects of Hall current on flow between thick arbitrarily conducting plates. Ghosh [10] has 
analysed the unsteady hydromagnetic flow in a rotating channel with oscillating pressure gradient. Nagy 
et al. [11] discussed the effects of Hall currents and rotational force on Hartmann flow under general 
wall conditions. Kanch et al. [12] discussed the Hall Effect on unsteady Couette flow under boundary 
layer approximations. 

Chauhan and Agrawal [13] studied the Hall effects on flow in a channel partially filled with a 
porousmedium into a rotating system. Sarkar et al. [14] have examined the combined effects of Hall 
currents and rotation on steady hydromagnetic flow. Nadeem et al. [15] discussed the numerical 
solutions of peristaltic flow of a Newtonian fluid under the effects of magnetic field and heat transfer in 
a porous concentric tubes. Nadeem and Akbar [16] discussed the influence of heat transfer and variable 
viscosity in vertical porous annulus with peristalsis. Nadeem et al. [17] have investigated the influence 
of heat and mass transfer on Newtonian bio-magnetic fluid of blood flow throughout a tapered porous 
artery with a stenosis. 

The heat generation/absorption and thermo-diffusion on an unsteady free convective flow of radiating 
and chemically reactive second grade fluid near an infinite vertical plate through a porous medium and 
taking the Hall current into account have been studied by Veera Krishna and Chamkha [19].  

Motivated from the above studies, in this paper, we have considered the unsteady flow of an 
incompressible electrically conducting viscous fluid in the course of porous medium in a rotating system 
with pressure gradient as a variable and taking hall current into account.  

 

Formulation and Solution of the Problem 

 We have consider the unsteady flow of an incompressible electrically conducting viscous fluid in the course of 
porous medium in a rotating system between two infinitely long horizontal parallel walls separated by a distance 
h with pressure gradient as a variable and taking hall current into account. We choose a Cartesian frame of 
reference with the x-axis along the channel wall at y = 0. The configuration of the problem given in Fig.2. A 
uniform transverse magnetic field H0 is applied perpendicular to the channel walls. Since the channel walls are 
infinite in extent and the flow is unsteady, the physical variables are the function of y and t only.  
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The unsteady boundary layer equations for the flow through a loosely porous medium along x and z-directions in 
a rotating frame of reference using Brinkman model are  

 𝜕𝑢
𝜕𝑡
−𝑣0

𝜕𝑢
𝜕𝑦

+ 2Ω𝑤 =  −  1
𝜌

 𝜕𝑝
𝜕𝑥

+ 𝑣 𝜕2𝑢
𝜕𝑦2

−  𝜇𝑒𝐽𝑧𝐻𝑜
𝜌

−  𝑣
𝑘
𝑢      -----(1) 

  

 𝜕𝑤
𝜕𝑡
−𝑣0

𝜕𝑤
𝜕𝑦
− 2Ω𝑤 =  𝑣 𝜕2𝑤

𝜕𝑦2
−  𝜇𝑒𝐽𝑧𝐻𝑜

𝜌
−  𝑣

𝑘
𝑢      ------ (2) 

  

  

 The initial and boundary conditions are  

 u = 0, w = 0,   t ≤ 0,   0 ≤ y ≤ h          ---------- (3) 

 u = 0, w = 0,   v = v0,  t > 0,  y = 0 and y = h        ------------(4) 

 The generalized Ohm's law comes essentially from the momentum equation of motion for the 
electron fluid. Its derivation can be found in some plasma physics books. It can be written, on taking 
Hall currents into account and neglecting ion-slip and thermo-electric effect, as (Cowling [18]) 
 

𝐽 +  𝜔𝑒𝜏𝑒
𝐻0

 (𝐽 × 𝐻 ) =  𝜎 ( 𝐸 +  𝜇𝑒𝑞 × 𝐻)     --------------- (5) 

 
The right hand side is the electric field in the moving frame, The first term on the left hand side comes 
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from the electron drag on the ions. The second term is the Hall term and has to do with the idea that 
electrons and ions can decouple and move separately, The magnetic Reynolds number assumed small, so 
that the induced magnetic field effect is negligible in comparison with applied magnetic field. The 
electron atom collision frequency is relatively high as compared to the ion collision frequency, due to 
this the electron pressure gradient is neglected but, Hall Effect remains present. The relation ∆ .𝐻 = 0  
for magnetic field implies 𝐻𝑦 =  𝐻0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , everywhere in the fluid. Further, the equation of the 

conservation of the current density is  ∇. 𝐽 = 0,𝑔𝑖𝑣𝑒𝑠 𝐽𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  This constant is zero since 𝐽𝑦 = 0 

at the places which are electrically non-conducting. Thus 𝐽𝑦 = 0 everywhere in the flow, Since the 

induced magnetic field is neglected, Maxwell’s equation becomes ∇  ⨯  𝐸 = 0  which implies 𝜕𝐸𝑥
𝜕𝑦

=

0 and 𝜕𝐸𝑧
𝜕𝑦

= 0 .  That is Ex = constant everywhere in the flow. In view of the above assumption, the 

equation (5) gives 
Jx – m Jz = - 𝜎𝜇eH0 w    ------------(6) 
Jz + m Jx = - 𝜎𝜇eH0 u   ------------(7) 

We solve the equations (6) and (7), we get 
 

 𝐽𝑥   =   𝜎𝜇𝑒𝐻0
1+𝑚2  (𝑚𝑢 − 𝑤)                ------------ (8) 

 

            𝐽𝑧   =   𝜎𝜇𝑒𝐻0
1+𝑚2  (𝑢 + 𝑚𝑤)                -------------(9) 

 
On making use of (8) and (9), the momentum equation (1) and (2) along x- and z- directions become 
 
𝜕𝑢
𝜕𝑡
− 𝑣0

𝜕𝑢
𝜕𝑦

+ 2Ω𝑤 =  −  1
𝜌

 𝜕𝜌
𝜕𝑥

+ 𝑣 𝜕2𝑤
𝜕𝑦2

+ 𝜎𝜇𝑒2𝐻02

𝜌(1+𝑚2)
(𝑢 + 𝑚𝑤) − 𝑣

𝑘
𝑢 ---  (10) 

 

           𝜕𝑤
𝜕𝑡
− 𝑣0

𝜕𝑤
𝜕𝑦
− 2Ωu =  𝑣 𝜕2𝑤

𝜕𝑦2
− 𝜎𝜇𝑒2𝐻02

𝜌(1+𝑚2)
(𝑤 −𝑚𝑢) − 𝑣

𝑘
𝑤                   ---(11) 

  
 We introduce the non-dimensional variables  
  

 x* = 𝑥
ℎ
 ,   y* = 𝑦

ℎ
,  u* = 𝑢ℎ

𝑣
 ,   w* = 𝑤ℎ

𝑣
 ,   q* = 𝑞ℎ

𝑣
 , 

 

 t* = 𝑡𝑣
ℎ2

 ,   𝜔∗ = 𝜔ℎ
2

𝑣
 ,   p* = 𝑝ℎ

2

𝜌𝑣2
 

 
making use of non-dimensional variables, the equations (10) and (11) becomes to (dropping asterisks) 
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𝜕𝑢
𝜕𝑡
− 𝑅𝑒 𝜕𝑢

𝜕𝑦
+ 2𝐾2𝑤 = 𝑓(𝑡) + 𝜕2𝑢

𝜕𝑦2
− 𝑀2

1+𝑚2 (𝑢 + 𝑚𝑤) − 𝐷𝑢     -------(12) 

 
𝜕𝑤
𝜕𝑡
− 𝑅𝑒 𝜕𝑤

𝜕𝑦
+ 2𝐾2𝑢 = 𝜕2𝑤

𝜕𝑦2
− 𝑀2

1+𝑚2 (𝑤 −𝑚𝑢) − 𝐷𝑤                 -------(13) 

 

Where, 𝑀2 =  𝜎𝜇𝑒
2𝐻02ℎ2

𝜌𝑣
  is the Hartmann number, 𝑚 =  𝜏𝑒𝜔𝑒 is the hall parameter, 𝐷 =  𝑘

ℎ2
   is the Darcy 

parameter (Permeability parameter),              𝐾2 =  Ω2ℎ2

𝑣
  the rotation parameter,  Re = 𝑣0ℎ

𝑣
 the Reynolds 

number and 𝑓(𝑡) =  − 1
𝜌
𝜕𝑝
𝜕𝑥

  is the non-dimensional pressure gradient. 

 
Corresponding non-dimensional initial and boundary conditions are  
 
u = 0,  w = 0,  t ≤ 0,  0 ≤ y ≤ 1    --------- (14) 
 
u = 0, w = 0,   t > 0,   y = 0 and y = 1   --------- (15) 
 

Combining equations (12) and (13), Let q = u + iw and i = √−1 , we get the momentum equation in 
terms of complex velocity q where, u is the velocity along the x-direction and w is the velocity along the 
z-direction, is given as –  
 
𝜕𝑞
𝜕𝑡
−  𝑅𝑒 𝜕𝑞

𝜕𝑦
= 𝑓(𝑡) +  𝜕

2𝑞
𝜕𝑦

−  � 𝑀2

1+𝑖𝑚
 2𝑖𝐾2 + 𝐷�𝑞   -------  (16) 

 
The initial and boundary conditions are -  
 
q = 0,   t ≤ 0,   0 ≤ y ≤ 1     ----------- (17) 
 
q = 0,   t > 0,   y = 0 and y = 1     ----------- (18) 
 
Taking the Laplace transform of the equation (16), we have 
 

 𝜕2𝑞�
𝜕𝑦2

−  𝑅𝑒 𝜕𝑞�
𝜕𝑦
−  � 𝑀2

1+𝑖𝑚
−  2𝑖𝐾2 + 𝐷� 𝑞 �   =  𝑓 ̅(s)   ---------- (19) 

 
 The transformed boundary conditions are  
  
 𝑞�(0,s) = 0,  and 𝑞�(1,s) = 0       --------(20) 
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The solution of the equation (19) subjected to the boundary condition (20) are given by  -  
 

𝑞�(y, s) = 𝑓
̅(𝑠)

𝜆1+𝑠
 �1 − 𝑒−

1
2𝑅𝑒𝑦

𝑠𝑖𝑛ℎ�𝜆2+𝑠(1−𝑦)
𝑠𝑖𝑛ℎ�𝜆2+𝑠

− 𝑒−
1
2𝑅𝑒(1−𝑦) 𝑠𝑖𝑛ℎ�𝜆2+𝑠(𝑦)

𝑠𝑖𝑛ℎ�𝜆2+𝑠
 � ------- (21) 

 

Where 𝜆1 =  𝑀2

1+𝑖𝑚
−  2𝑖𝐾2 + 𝐷 and 𝜆2 =  𝑅𝑒

2

4
+ 𝑀2

1+𝑖𝑚
−  2𝑖𝐾2 + 𝐷 and we assume 

 

 𝑓(𝑡) =  𝑃0 +  𝑃1𝑒𝑖𝜔𝑡 +  𝑃2𝑒−𝑖𝜔𝑡    -------------    (22) 
 
Where 𝜔 is the frequency of oscillation ; 𝑃0,𝑃1,𝑎𝑛𝑑 𝑃2 are real constants. Taking the inverse Laplace 
transforms to the equation (21), and we obtain the solution for the complex velocity q as,  
 

           𝑞(𝑦, 𝑡) =  𝑃0
𝜆1
�1 −  𝑒−

1
2𝑅𝑒 𝑦  sinh(𝑎−𝑖𝑏)(1−𝑦)

sinh (𝑎−𝑖𝑏)
− 𝑒

1
2𝑅𝑒(1− 𝑦)  sinh(𝑎−𝑖𝑏)(𝑦)

sinh (𝑎−𝑖𝑏)
� + 

 

  𝑃1
𝜆1+𝑖𝜔

�1 −  𝑒−
1
2𝑅𝑒 𝑦  sinh(𝑎1±𝑖𝑏1)(1−𝑦)

sinh(𝑎1±𝑖𝑏1) − 𝑒
1
2𝑅𝑒(1− 𝑦)  sinh(𝑎1±𝑖𝑏1)(𝑦)

sinh(𝑎1±𝑖𝑏1)
� 𝑒𝑖𝜔𝑡 + 

 

          𝑃1
𝜆1−𝑖𝜔

�1 −  𝑒−
1
2𝑅𝑒 𝑦  sinh(𝑎2−𝑖𝑏2)(1−𝑦)

sinh(𝑎2−𝑖𝑏2) − 𝑒−
1
2𝑅𝑒(1− 𝑦)  sinh(𝑎2−𝑖𝑏2)(𝑦)

sinh(𝑎2−𝑖𝑏2)
� 𝑒𝑖𝜔𝑡 − 

  

          �𝑃0
𝜆1

+ 𝑃1
𝜆1+𝑖𝜔

+   𝑃1
𝜆1−𝑖𝜔

�*�1 −  𝑒−
1
2𝑅𝑒 𝑦  sinh(1/2)(1−𝑦)

sinh(1/2)𝑅𝑒
− 𝑒

1
2𝑅𝑒(1− 𝑦)  sinh(1/2)𝑅𝑒(𝑦)

sinh(1/2)𝑅𝑒
� 𝑒−𝜆1𝑡 

 

 + 2∑ 𝑛𝜋∞
𝑛=1 �(−1)𝑛𝑒

1
2𝑅𝑒(1− 𝑦) − 𝑒−

1
2𝑅𝑒 𝑦� �𝑃0

𝑆1
+ 𝑃1

𝑆1+𝑖𝜔
+ 𝑃2

𝑆1−𝑖𝜔
� sin𝑛𝜋𝑦

𝜆1+𝑆1
𝑒𝑆1𝑡      -----(23) 

In the equation (23), the lower sign is valid for 2𝐾2 + 𝑚𝑀2

1+𝑚2 + 𝑚𝐷 >  𝜔 and the upper sign is 

valid for 2𝐾2 + 𝑚𝑀2

1+𝑚2 + 𝑚𝐷 <  𝜔. The equation (23) represents the velocity of the fluid in the general 

case. Now we shall consider the following special cases. 
 

Case – 1. Velocity distribution for impulsive pressure gradient :  
In this case 𝑃1 =  𝑃2 = 0, then the equation (23) reduces to  
 

           𝑞(𝑦, 𝑡) =  𝑃0
𝜆1
�1 −  𝑒−

1
2𝑅𝑒 𝑦  sinh(𝑎−𝑖𝑏)(1−𝑦)

sinh (𝑎−𝑖𝑏)
− 𝑒

1
2𝑅𝑒(1− 𝑦)  sinh(𝑎−𝑖𝑏)(𝑦)

sinh (𝑎−𝑖𝑏)
� + 

 

- 𝑃0
𝜆1
�1 −  𝑒−

1
2𝑅𝑒 𝑦  sinh(1/2)(1−𝑦)

sinh(1/2)𝑅𝑒
− 𝑒

1
2𝑅𝑒(1− 𝑦)  sinh(1/2)𝑅𝑒(𝑦)

sinh(1/2)𝑅𝑒
� 𝑒−𝜆1𝑡+ 
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+ 2∑ 𝑛𝜋∞
𝑛=1 �(−1)𝑛𝑒

1
2𝑅𝑒(1− 𝑦) − 𝑒−

1
2𝑅𝑒 𝑦� �𝑃0

𝑆1
� sin 𝑛𝜋𝑦

𝜆1+𝑆1
𝑒𝑆1𝑡        ------------ (24) 

 
Case – 2. Velocity distribution for cosine oscillations of pressure gradient : 

 In this case 𝑃0 = 0 𝑎𝑛𝑑  𝑃1 =  𝑃2 = 𝑃
2
 , then the equation (23) reduce to  

               𝑞(𝑦, 𝑡) =     
𝑃
2

 ��1 −  𝑒−
1
2𝑅𝑒 𝑦  

sinh(𝑎1 ± 𝑖𝑏1) (1 − 𝑦)
sinh(𝑎1 ± 𝑖𝑏1) − 𝑒

1
2𝑅𝑒(1− 𝑦)  

sinh(𝑎1 ± 𝑖𝑏1) (𝑦)
sinh(𝑎1 ± 𝑖𝑏1) �

𝑒𝑖𝜔𝑡

𝜆1 + 𝑖𝜔

+ �1 −  𝑒−
1
2𝑅𝑒 𝑦  

sinh(𝑎2 − 𝑖𝑏2) (1 − 𝑦)
sinh(𝑎2 − 𝑖𝑏2) − 𝑒−

1
2𝑅𝑒(1− 𝑦)  

sinh(𝑎2 − 𝑖𝑏2) (𝑦)
sinh(𝑎2 − 𝑖𝑏2) �

𝑒𝑖𝜔𝑡

𝜆1 − 𝑖𝜔
     � 

                                        - 

                𝑃
2
  � 1

𝜆1+𝑖𝜔
+ 1

𝜆1−𝑖𝜔
� ∗ �1 −  𝑒−

1
2𝑅𝑒 𝑦  sinh(1/2)(1−𝑦)

sinh(1/2)𝑅𝑒
− 𝑒

1
2𝑅𝑒(1− 𝑦)  sinh(1/2)𝑅𝑒(𝑦)

sinh(1/2)𝑅𝑒
� 𝑒−𝜆1𝑡 

  + 2∑ 𝑛𝜋𝑃∞
𝑛=1 �(−1)𝑛𝑒

1
2𝑅𝑒(1− 𝑦) − 𝑒−

1
2𝑅𝑒(𝑦)� � 1

𝑆1+𝑖𝜔
+ 1

𝑆1−𝑖𝜔
� sin𝑛𝜋𝑦

𝜆1+𝑆1
𝑒𝑆1𝑡 ---(25)    

 Case – 3. Velocity distribution for sine oscillations of pressure gradient :  In this case 

𝑃0 = 0 𝑎𝑛𝑑  𝑃1 =  𝑃2 = 𝑃
2𝑖

 , then the equation (23) reduce to 

 

𝑞(𝑦, 𝑡) =     
𝑃
2𝑖

 ��1 −  𝑒−
1
2𝑅𝑒 𝑦  

sinh(𝑎1 ± 𝑖𝑏1) (1 − 𝑦)
sinh(𝑎1 ± 𝑖𝑏1) − 𝑒

1
2𝑅𝑒(1− 𝑦)  

sinh(𝑎1 ± 𝑖𝑏1) (𝑦)
sinh(𝑎1 ± 𝑖𝑏1) �

𝑒𝑖𝜔𝑡

𝜆1 + 𝑖𝜔

+ �1 −  𝑒−
1
2𝑅𝑒 𝑦  

sinh(𝑎2 − 𝑖𝑏2) (1 − 𝑦)
sinh(𝑎2 − 𝑖𝑏2) − 𝑒−

1
2𝑅𝑒(1− 𝑦)  

sinh(𝑎2 − 𝑖𝑏2) (𝑦)
sinh(𝑎2 − 𝑖𝑏2) �

𝑒𝑖𝜔𝑡

𝜆1 − 𝑖𝜔
     � 

              - 

             𝑃
2𝑖

 � 1
𝜆1+𝑖𝜔

+ 1
𝜆1−𝑖𝜔

� ∗ �1 −  𝑒−
1
2𝑅𝑒 𝑦  sinh(1/2)(1−𝑦)

sinh(1/2)𝑅𝑒
− 𝑒

1
2𝑅𝑒(1− 𝑦)  sinh(1/2)𝑅𝑒(𝑦)

sinh(1/2)𝑅𝑒
� 𝑒−𝜆1𝑡 

  + 2∑ 𝑛𝜋𝑃𝑖∞
𝑛=1 �(−1)𝑛𝑒

1
2𝑅𝑒(1− 𝑦) − 𝑒−

1
2𝑅𝑒(𝑦)� � 1

𝑆1+𝑖𝜔
+ 1

𝑆1−𝑖𝜔
� sin𝑛𝜋𝑦

𝜆1+𝑆1
𝑒𝑆1𝑡---(26)      

for the impulsive change of pressure gradient, the non-dimensional shear stresses at the wall y = 0 are 
given by 

𝜏𝑥+𝑖𝜏𝑧 = �𝜕𝑞
𝜕𝑦
�y=0 =

𝑃0
𝜆1
���1

2
� 𝑅𝑒 + (𝑎 − 𝑖𝑏)� coth(𝑎 − 𝑖𝑏) +

�12�𝑅𝑒+(𝑎−𝑖𝑏)

sinh (𝑎−𝑖𝑏)
𝑒
1
2𝑅𝑒� − 

               𝑃0𝑅𝑒
𝜆1

coth𝑅𝑒
2
𝑒−𝜆1𝑡 + 2𝜋2  𝑃0 ∑ �(−1)𝑛𝑒

1
2𝑅𝑒 − 1� �𝑛

2

𝑠1
�∞

𝑛=1
1

𝜆1+𝑠1
𝑒𝑠1𝑡  ----(27) 

for the cosine oscillations of pressure gradient, the non-dimensional shear stresses at the wall  y = 0 are 
given by 
 

𝜏𝑥+𝑖𝜏𝑧 = �𝜕𝑞
𝜕𝑦
�y=0 =

𝑃
2
���1

2
� 𝑅𝑒 + (𝑎1 ± 𝑖𝑏1)� coth(𝑎1 ± 𝑖𝑏1) +

�12�𝑅𝑒+(𝑎1±𝑖𝑏1)

sinh (𝑎1±𝑖𝑏1)
𝑒
1
2𝑅𝑒� 

            𝑒
𝑖𝜔𝑡

𝜆1+𝑖𝜔
 + ���1

2
� 𝑅𝑒 + (𝑎2 − 𝑖𝑏2)� coth(𝑎2 − 𝑖𝑏2) +

�12�𝑅𝑒+(𝑎2−𝑖𝑏2)

sinh (𝑎2−𝑖𝑏2)
𝑒
1
2𝑅𝑒� 𝑒

−𝑖𝜔𝑡

𝜆1−𝑖𝜔
  

- 𝑃𝑅𝑒
2
� 1
𝜆1+𝑖𝜔

+ 1
𝜆1−𝑖𝜔

�coth�1
2
𝑅𝑒� 𝑒𝜆1𝑡 + 𝜋2𝑃∑ �(−1)𝑛𝑒

1
2𝑅𝑒 − 1�∞

𝑛=1  
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                                                                 � 1
𝑠1+𝑖𝜔

+ 1
𝑠1−𝑖𝜔

� 1
𝜆1+𝑠1

𝑒𝑠1𝑡    ----------(28) 

 
for the sine oscillation of pressure gradient, the non-dimensional shear stresses at  the wall y = 0 are 
given by  
 

𝜏𝑥+𝑖𝜏𝑧 = �𝜕𝑞
𝜕𝑦
�y=0 =

𝑃
2𝑖

{���1
2
� 𝑅𝑒 + (𝑎1 ± 𝑖𝑏1)� coth(𝑎1 ± 𝑖𝑏1) +
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2𝑅𝑒� 

            𝑒
𝑖𝜔𝑡

𝜆1+𝑖𝜔
 + ���1

2
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�coth�1
2
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                                                                 � 1
𝑠1+𝑖𝜔

+ 1
𝑠1−𝑖𝜔

� 1
𝜆1+𝑠1

𝑒𝑠1𝑡    ----------(29) 

 

Results and Discussion 
We have considered the unsteady flow of an incompressible electrically conducting viscous 

fluid in the course of porous medium in a rotating system with pressure gradient as a variable and taking 
hall current into account. We have computed three different cases based on our study of impulsive 
change, cosine and sine oscillations of pressure gradient. In this aspect, we have analytically and 
computationally solved the decisive equations by applying Laplace transform technique. It has been 
successfully established that the flow behavior is determined owing to the mutual influence of Coriolis 
force and hydro-magnetic force on each other under the purview or monitoring of pressure gradient and 
hall current. The flow governed by the non-dimensional parameters for the velocity components u and w 
with different values of magnetic parameter M, Hall parameter m, rotation parameter K, Reynolds 
number Re, D the permeability parameter, frequency parameter ω and phage angle ωt in Figures (1,12). 
Figures (1,4) represent the velocity profiles for impulsive pressure gradient; (5,8) represent the velocity 
profiles for cosine oscillations of pressure gradient, where as the Figures (9,12) represent the velocity 
profiles for sine oscillations of pressure gradient. Here we observe that, all the profiles are on negative 
sides for w. Negative velocity just means velocity in the opposite direction than what would be positive. 
This will attained only with effect pressure gradient in pertinent directions of the flow field.  

We have perceive from Figures (1, 5 & 9) that the velocity component u enhances with add to 
Hartmann number M with the impulsive change of pressure gradient, and The velocity component w less 
for the cosine oscillations of while it raises with impulsive change and sine oscillations with an augment 
in magnetic parameter M, given in Figures (2, 6 & 10).As expected due to the fact that the application of 
transverse magnetic field results to a resistive type force (called Lorentz force) similar to drag force and 
upon increasing the values of magnetic parameter, the drag force increases which leads to the 
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deceleration of the flow. It is seen from Figures (3, 7 & 11) that the primary velocity u increases with an 
increase in Hall parameter m for sine oscillations of the pressure gradient while it reduces for the 
impulsive change and cosine oscillations of the pressure gradient. Hence, we conclude that an increase in 
Hall parameter reduces the Lorentz force in x- direction and motion of the fluid particles is reinforced in 
that direction. 

 

                        Fig. 1      Fig. 2 

   

    Fig. 3      Fig. 4 
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    Fig. 5      Fig. 6 

   
  Fig. 7       Fig. 8 

 
    Fig. 9       Fig. 10 
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    Fig. 11     Fig. 12 

 

Conclusions 

We have considered the unsteady flow of an incompressible electrically conducting viscous 
fluid in the course of porous medium in a rotating system with pressure gradient as a variable and taking 
hall current into account. The conclusions are made as follows.  

1. The velocity component for primary flow enhances with increasing M, K and D, and reduces 
with m, Re for the impulsive change of pressure gradient.  

2. The velocity component for secondary flow enhances with increasing M, Re and D, and 
reduces with m and K for the impulsive change of pressure gradient.  

3. The velocity component for primary flow increases with increasing Re, D and ω, and reduces 
with M, m, K and phase angle ωt for the cosine oscillations of pressure gradient.  

4. The velocity for primary flow increases with increasing m and D, and reduces with M, K and 
phase angle ωt for the sine oscillations of pressure gradient. 

 5. The magnitude of the velocity for primary flow and for secondary flow enhances initially and 
then gradually reduces with an increase in Reynolds number Re for sine and cosine oscillations of the 
pressure gradient respectively.  

6. The velocity for secondary flow enhances with increasing M, m, K and phase angle ωt , and 
reduces with increase in Re, D and frequency of oscillation ω for the impulsive change of pressure 
gradient.  

7. The magnitude of τx due to the primary flow decreases for the impulsive change and cosine 
oscillations with increment in M, m, Re, K and D. For secondary flow it reduces for K and M and 
increases for m, Re and D.  

8. Both the stresses enhance with increase in m, K and D; and reduce with increase in M or Re 
for sine of the pressure gradient.  

9. The shear stress τx increases for petite values of M and then it reduces for cosine and sine 
oscillations of the pressure gradient with an increase in frequency parameter  ω  
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10. The stress τz enhances and then it reduces for cosine oscillations. Whereas it initially 
decreases and then boosts for sine oscillations of the pressure gradient with an increase in  ω  

11. Finally, the rotational and Lorentz forces are having significant effect on velocity profile in 
the presence of pressure gradient and hall current. 
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