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Abstract

In this paper the controllability of a stochastic impulsive second or-
der system with infinite delay is investigated. Simple Lipschitz condi-
tions are used to prove the controllability. This approach also removes
the need to construct the controllability Gramian operator and associ-
ated limit conditions used by the authors in [20], which are practically
difficult to verify and apply. An example is provided to illustrate the
presented theory.
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1 Introduction

Neutral differential equations are functional differential equations in which 
the highest order derivative of the unknown function appear both with and 
without deviations. Neutral differential equations with unbounded delay ap-
pear abundantly as mathematical models in mechanics, electrical engineering, 
medicine, biology, ecology etc. Hence it is a widely studied topic in several 
papers and monographs for instance, partial neutral differential equation 
with unbounded delay arise in the theory of heat conduction of materials 
with fading memory. For instance, one may see [7],[8],[12], [15],[16], and the 
references cited therein. Second order neutral differential equations model 
variational problems in calculus of variation and in the study of vibrating
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masses attached to an electric bar. Second order systems model various dy-
namical systems mostly by nonlinear partial differential equations of second
order in time.

Of late, much attention is paid to functional differential equation with
infinite delay. We refer [7], [9],[15],[16] for details. The literature related to
infinite delay mostly deals with functional differential equations in which the
state belongs to a finite dimensional space. As a consequence, the study of
partial functional differential equations with infinite delay is neglected. This
is one of the motivations of our paper.

Impulsive differential equations are known for their utility in simulating
processes and phenomena subject to short term perturbations during their
evolution. Discrete perturbations are negligible to the total duration of the
process. We refer[5],[10],[13],[17], [22] regarding discrete impulses.

In this paper the controllability of damped the second order stochastic
impulsive neutral differential equation with nonlocal conitions, modelled in
the following form is studied In this paper we study the existence of solution
and control for

d[x′(t) + g(t, xt,

∫ t

0

p1(t, s, xs)ds)] = [Ax(t) + f(t, xt,

∫ t

0

p2(t, s, xs)ds)

+ Bu(t)]dt+

∫ t

−∞
σ(t, s, xs)dw(s), tk 6= t ∈ J := [0, T ]

∆x(tk) = I1
k(xtk), k = {1, 2, ...,m}

∆x′(tk) = I2
k(xtk), k = {1, 2, ...,m}

x′(0) = x1 ∈ H
x0 = φ ∈ B for a.e. s ∈ J0 := (−∞, 0],

(1.1)

where 0 < t1 < t2 < ... < tn < T, n ∈ N; x(.) is a stochastic process
with values in a real separable Hilbert space H. A : D(A) ⊂ H → H is
the infinitesimal generator of a strongly continuous cosine family on H. xt :
J0 → H, xt(θ) = x(t + θ) for t ≥ 0, lies in the phase space B, defined in
preliminaries section. The functions f, g : J×B×H→ H, p : J×J×B→ L0

2,
pi : J × J ×B→ H, i = 1, 2, I1

k , I
2
k : B→ H, k = 1, ...,m, q : Bn → B are

appropriate functions to be specified later. The control function u(t) belongs
to the space of admissible control functions L2(J, U) of a separable Hilbert
space U. B is a bounded linear operator from U into H. 0 = t0 < t1 < ... <
tm < tm+1 = T are prefixed points and ∆x(tk) = x(t+k ) − x(t−k ) denotes the
jump of the function x at time tk with Ik, as the size of the jump. x(t+k )
and x(t−k ) denotes the right and left limits of x(tk) at t = tk respectively.
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Likewise x′(t+k ) and x′(t−k ) denotes the right and left limits of x′(tk) at t = tk.
Let φ(t) ∈ L2(Ω,B) and x1(t) be H valued Ft measurable random variables
independent of the Wiener process {w(t)}.

Recently, second order abstract partial neutral differential equation sim-
ilar to (1.1) is extensively studied in [2],[3],[4],[18]. As a matter of fact, in
these papers the authors assume severe conditions on the operator family
generated by A, which imply that the underlying space X has finite dimen-
sion. Thus the equations treated in these works are really ordinary and not
partial differential equations. In most of the papers the cosine family gen-
erated by the operator A is such that C(.) ∈ C([0, T ];L(X)) which implies
that A is bounded. Hence motivated by this fact their various applications
the controllability of the stochastic partial neutral differential equation of
second order with infinite delay is studied in this paper using fixed point
technique. The compactness condition of the operator families generated by
A and other restrictive conditions have been omitted. An example is given
in the last section to illustrate the result.

2 Preliminaries

In this section some basic definitions and results for stochastic equations
in infinite dimensions and strongly continuous cosine families of operators
are recalled. For more details readers can refer [23],[11], [24]. The family
{C(t) : t ∈ R} of operators in B(X) is a strongly continuous cosine family if
the following are satisfied:

(a) C(0) = I (I is the identity operator in X);

(b) C(t+ s) + C(t− s) = 2C(t)C(s) for all t, s ∈ R

(c) The map t→ C(t)x is strongly continuous for each x ∈ X.

The one parameter family of operators {S(t) : t ∈ R} is the sine family
associated to the strongly continuous cosine family {C(t) : t ∈ R} and it is
defined as S(t)x =

∫ t
0
C(s)xds, x ∈ X, t ∈ R.

The operator A is the infinitesimal generator of a strongly continuous
cosine family of bounded linear operators (C(t))t∈R and S(t) is the associated

sine function. Let N, Ñ be certain constants such that ‖C(t)‖ ≤ N and

‖S(t)‖ ≤ Ñ for every t ∈ J = [0, T ]. In this work we use the axiomatic
definition of phase space B, introduced by Hale and Kato [7].

PC([0, a], X) is the space formed by normalized piecewise continuous func-
tion from [0, a] into X. In particular it is the space PC formed by all func-
tions u : [0, a] → X such that u is continuous at t 6= ti, u(t−i ) = u(ti) and
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u(t+i ) exists for all i = 1, 2, ..., n. It is clear that PC endowed with the norm
‖x‖PC = supt∈J‖x(t)‖ is a Banach space. For any x ∈ PC

x̃i(t) =

{
x(t), t ∈ (ti, ti+1];
x(t+i ), t = ti, i = 1, 2, ..., n.

(2.1)

So, x̃ ∈ C([ti, ti+1], X).

Definition 1. [14]:The phase space B is a linear space of functions map-
ping (−∞, 0] into X endowed with seminorm ‖.‖B and satisfies the following
conditions:

(A) If x : (−∞, σ + b] → X, b > 0, such that xθ ∈ B and x|[σ,σ+b] ∈
C([σ, σ + b] : X) , then for every t ∈ [σ, σ + b) the following conditions
hold :
(i) xt is in B,
(ii) ‖x(t)‖ ≤ H‖xt‖B,
(iii) ‖xt‖B ≤ K(t− σ)sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t− σ)‖xσ‖B,
where H > 0 is a constant K,M : [0,∞) → [1,∞), K is continuous,
M is locally bounded and H,K,M are independent of x(.)

(B) The space B is complete.

Let (H, ‖.‖H, < ., . >H) and (K, ‖.‖H, < ., . >H) denote two real separable
Hilbert spaces. L(K,H) denotes the set of all linear bounded operators from
K into H, with the usual operator norm ‖.‖.

As the system (1.1) has instantaneous impulses,the phase space used by
Balasubramaniam and Ntouyas[1] is not applicable to these systems. There-
fore we use the abstract phase space B defined below.
Let l : J0 → (0,∞) be a continuous function with l0 =

∫
J0
l(t)dt <∞.

B = {ζ : J0 → H : (E‖ζ(θ)‖2)1/2 is bounded measurable on [−t, 0] ∀t > 0
and

∫
J0
l(s) supθ∈[s,0](E‖ζ(θ)‖2)1/2ds <∞}.

The phase space B, ‖.‖B with the norm ‖ζ‖B =
∫
J0
l(s) supθ∈[s,0](E‖ζ(θ)‖2)1/2ds,

∀ζ ∈ B is a Banach space.
LetJk = (tk, tk+1] and JT = (−∞, T ). BT := {x : JT → H with

x|(tk,tk+1] ∈ C(Jk,H) and ∃ x(t−k ) and x(t+k ) with x(t−k ) = x(tk), x(0) −
q(xt1 , xt2 , ...xtn) = φ ∈ B, k = 1, 2, ...,m}.

Define a seminorm ‖.‖ on BT by ‖x‖T = ‖φ‖B + sup(E‖x(s)‖2)1/2, x ∈
BT .

Lemma 2.1. ([9]) Let x ∈ BT , then ∀ t ∈ J, xt ∈ B. Also,

l0(E‖x(t)‖2)1/2 ≤ ‖xt‖B ≤ ‖x0‖B + l0 sup
s∈[0,t]

(E‖x(s)‖2)1/2
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Definition 2. A Ft adapted cadlag stochastic process x : JT → H is called
a mild solution of (1.1) on JT if x(0) − q(xt1 , xt2 , ..., xtn) = x0 = φ ∈ B
and x′(0) = x1 ∈ H, satisfying φ, x1, q ∈ L0

2(Ω,H); the functions C(t −
s)g(s, xs,

∫ s
0
p1(s, τ, xτ )dτ) and S(t−s)f(s, xs,

∫ s
0
p2(s, τ, xτ )dτ) are integrable

on [0, T ) such that

(i) {xt : t ∈ J} is a B− valued stochastic process.

(ii) ∀ t ∈ J, x(t) satisfies

x(t) = C(t)[φ(0)] + S(t)[x1 + g(0, x0, 0)]

−
∫ t

0

C(t− s)g(s, xs,

∫ s

0

p1(s, τ, xτ )dτ)ds

+

∫ t

0

S(t− s)Bu(s)ds

+

∫ t

0

S(t− s)f(s, xs,

∫ s

0

p2(s, τ, xτ )dτ)ds

+

∫ t

0

S(t− s)
∫ s

−∞
σ(s, τ, xτ )dw(τ)ds

+ Σ0<tk<tC(t− tk)I1
k(xtk) + Σ0<tk<tS(t− tk)I2

k(xtk)

(2.2)

, for a.e. t ∈ [tj, tj+1], j = 0, 1, 2, ...,m

(iii) ∆x(tk) = I1
k(xtk), ∆x′(tk) = I2

k(xtk), k = {1, 2, ...,m}

Definition 3. System (1.1) is called controllable on the interval JT , if ∀
initial stochastic process φ ∈ B defined in J0, x

′(0) = x1 ∈ H and xf ∈ H; ∃
a stochastic control u ∈ L2(J, U) which is adapted to filtration {Ft}t∈J such
that the solution x(.) of the system (1.1) satisfies x(T ) = xf where xf and T
are preassigned terminal state and time.

The following hypotheses are made to establish the main results.

(H1) ∃ MC , MS, Mp1 such that ∀ t, s,∈ J , and x, y ∈ B, ‖C(t)‖2 ≤ MC ,

‖S(t)‖2 ≤MS; E‖
∫ t

0
[p1(t, s, x)− p1(t, s, y)]ds‖2 ≤Mp1‖x− y‖2

B.

(H2) g : J × B × H → H is continuous and ∃ Mg > 0 such that ∀ t ∈
J, x, y,∈ B, z1, z2 ∈ L2(Ω,H)

E‖g(t, x, z1)− g(t, y, z2)‖2 ≤Mg(‖x− y‖2
B + E‖z1 − z2‖2).
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(H3) ∀ (t, s) ∈ J × J, p2 : J × J ×B→ H is continuous and ∃ Mp2 > 0 such
that ∀ t, s ∈ J, x, y,∈ B

E‖
∫ t

0

[p2(t, s, x)− p2(t, s, y)]ds‖2 ≤Mp2‖x− y‖2
B.

(H4) f : J × B × H → H is continuous and ∃ Mf > 0 such that ∀ t ∈
J, x, y,∈ B, z1, z2 ∈ L2(Ω,H)

E‖f(t, x, z1)− f(t, y, z2)‖2 ≤Mf (‖x− y‖2
B + E‖z1 − z2‖2).

(H5) I1
k , I

2
k ∈ C(B,H), k = 1, 2, ...,m and ∃MI1k

, M I1k
, MI2k

, M I2k
such that

∀ x, y ∈ B E‖I1
k(x)‖2 ≤ MI1k

, E‖I2
k(x)‖2 ≤ MI2k

, E‖I1
k(x) − I1

k(y)‖2 ≤
M I1k
‖x− y‖2

B, E‖I2
k(x)− I2

k(y)‖2 ≤M I2k
‖x− y‖2

B

(H6) ∀φ ∈ B, h(t) = limc→∞
∫ 0

−c σ(t, s, φ)dw(s) ∃ and is continuous. Also ∃
Mh > 0 such that E‖h(t)‖2 ≤Mh.

(H7) σ : J × J × B → L(K,H) is continuous and ∃ Mσ > 0, Mσ > 0
such that ∀s, t ∈ J and x, y,∈ B E‖σ(t, s, x)‖2

L02
≤ Mσ E‖σ(t, s, x) −

σ(t, s, y)‖2
L02
≤Mσ‖x− y‖2

B.

(H8) W : L2(J, U)→ L2(Ω,H) defined as

Wu =

∫
J

S(T − s)Bu(s)ds

is a linear operator with induced inverseW−1 taking values in L2(J, U)/KerW
[6]. ∃ positive constants MB and MW such that ‖B‖2 ≤ MB and
‖W−1‖2 ≤MW .

3 Main Results

The controllability of the distributed impulsive stochastic delay system (1.1)
in Hilbert spaces is investigated in this section.

Theorem 3.1. Let (H1) − (H9) hold. If λ < 1 and Λ < 1 then the system
(1.1) is controllable on JT , where

λ = 28(1 + 8T 2MBMSMW )[2l20T
2{MCMg(1 + 2Mp1) +MSMf (1 + 2Mp2)}

(3.1)
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and

Λ = {(12l20 + 60T 2MBMSMW )

× [T 2MCMg(1 +Mp1) + T 2MSMf (1 +Mp2)

+ T 3MSM̄σTr(Q)

+ mMC

m∑
k=1

M̄I1k
+mMS

m∑
k=1

M̄I2k
]} (3.2)

Proof. By hypothesis (H9), for any state function x(.), the control is defined
as

uTx (t) = W−1{xf − C(T )[φ(0)]− S(T )[x1 + g(0, x0, 0)]

+

∫ T

0

C(T − s)g(s, xs,

∫ s

0

p1(s, τ, xτ )dτ)ds

−
∫ T

0

S(T − s)f(s, xs,

∫ s

0

p2(s, τ, xτ )dτ)ds

−
∫ T

0

S(T − s)[h(s) +

∫ s

0

σ(s, τ, xτ )dw(τ)]ds

− Σ0<tk<tC(T − tk)I1
k(xtk)− Σ0<tk<tS(T − tk)I2

k(xtk)}
(3.3)

Let Υ : BT → BT defined by

Υx(t) = φ(t)(t), t ∈ J0

Υx(t) = C(t)[φ(0)] + S(t)[x1 + g(0, x0, 0)]

−
∫ t

0

C(t− s)g(s, xs,

∫ s

0

p1(s, τ, xτ )dτ)ds

+

∫ t

0

S(t− s)BuTx (s)ds

+

∫ t

0

S(t− s)f(s, xs,

∫ s

0

p2(s, τ, xτ )dτ)ds

+

∫ t

0

S(t− s)[h(s) +

∫ s

0

σ(s, τ, xτ )dw(τ)]ds

+ Σ0<tk<tC(t− tk)I1
k(xtk) + Σ0<tk<tS(t− tk)I2

k(xtk)

Clearly Υx(T ) = xf .

Let φ̃ be defined as φ̃(t) =

{
φ(t)(t), t ∈ J0;
C(t)[φ(0)], t ∈ J .
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∀φ ∈ B. So, φ̃ ∈ BT . Let x(t) = z(t) + φ̃, t ∈ JT . Then x satisfies (4.1)
iff z satisfies z0 = 0, x′(0) = x1 = z′(0) = z1 where

z(t) = S(t)[z1 + g(0, φ̃0, 0)] +

∫ t

0

S(t− s)BuT
z+φ̃

(s)ds

−
∫ t

0

C(t− s)g(s, zs + φ̃s,

∫ s

0

p1(s, τ, zτ + φ̃τ )dτ)ds

+

∫ t

0

S(t− s)f(s, zs + φ̃s,

∫ s

0

p2(s, τ, zτ + φ̃τ )dτ)ds

+

∫ t

0

S(t− s)[h(s) +

∫ s

0

σ(s, τ, zτ + φ̃τ )dw(τ)]ds

+ Σ0<tk<tC(t− tk)I1
k(ztk + φ̃tk) + Σ0<tk<tS(t− tk)I2

k(ztk + φ̃tk),

for a.e. t ∈ [tj, tj+1], j = 0, 1, 2, ...,m. Here uT
z+φ̃

(t) is obtained from (3.3)

by replacing xt = zt + φ̃t. Let B0
T = {y ∈ BT : y0 = 0 ∈ B}. ∀ y ∈ B0

T the
norm is defined as ‖y‖T = ‖y0‖B + sup(E‖y(s)‖2)1/2 = sups∈J(E‖y(s)‖2)1/2,
for (B0

T , ‖.‖T ) to be a Banach space. Let for some r > 0,

Br = {y ∈ B0
T : ‖y‖2

T ≤ r}.

Then Br ⊂ B0
T is uniformly bounded and by lemma (2.1)

‖zt + φ̃t‖2
B = 2(‖zt‖2

B + ‖φ̃t‖2
B)

≤ 4(l20 sup
s∈[0,t]

E‖z(s)‖2 + ‖z0‖2
B + l20 sup

s∈[0,t]

E‖φ̃(s)‖2 + ‖φ̃0‖2
B)

≤ 4l20(r +MC [E‖φ(0)‖2]) + 4‖φ̃‖2
B

:= r∗. (3.4)

Let the map Υ : B0
T → B0

T be defined by Υz(t) = 0, ∀ t ∈ J0 and

Υz(t) = S(t)[z1 + g(0, φ̃0, 0)] +

∫ t

0

S(t− s)BuT
z+φ̃

(s)ds

−
∫ t

0

C(t− s)g(s, zs + φ̃s,

∫ s

0

p1(s, τ, zτ + φ̃τ )dτ)ds

+

∫ t

0

S(t− s)f(s, zs + φ̃s,

∫ s

0

p2(s, τ, zτ + φ̃τ )dτ)ds

+

∫ t

0

S(t− s)[h(s) +

∫ s

0

σ(s, τ, zτ + φ̃τ )dw(τ)]ds

+ Σ0<tk<tC(t− tk)I1
k(ztk + φ̃tk) + Σ0<tk<tS(t− tk)I2

k(ztk + φ̃tk),
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for a.e. t ∈ [tj, tj+1], j = 0, 1, 2, ...,m. Clearly, the operator Υ has a fixed
point which is equivalent to show Υ has a fixed point. Also from the hy-
potheses Υ is continuous as all the functions involved in the operator are
continuous.

Let z, z ∈ B0
T . Then using equation (3.3), the hypotheses and lemma

(2.1) it can be derived that

E ‖uT
z+φ̃

(t)‖2

≤ 8MW{E‖y1‖2 +MC(E‖φ(0)‖2) + 2MS[E‖x1‖2 + 2(Mg‖φ̃‖2
B + C2)]

+ 2T 2MC [Mg([1 + 2Mp1 ]r
∗ + 2C1) + C2] + 2T 2MS[Mf ([1 + 2Mp2 ]r

∗ + 2C3) + C4]

+ 2T 2MS(Mh + TTr(Q)Mσ) +mMC

m∑
k=1

MI1k
+mMS

m∑
k=1

MI2k
} := bl,

(3.5)

and

E ‖uT
z+φ̃

(t)− uT
z̄+φ̃

(t)‖2

≤ 10l20MW{T 2MCMg(1 +Mp1) + T 2MSMf (1 +Mp2)

+ T 3MSM̄σTr(Q) +mMC

m∑
k=1

M̄I1k
+mMS

m∑
k=1

M̄I2k
} sup
s∈J

E‖z(t)− z̃(t)‖2

(3.6)

C1 := T sup(t,s)∈J×J p
2
1(t, s, 0), C2 := supt∈J ‖g(t, 0, 0)‖2,

C3 := T sup(t,s)∈J×J p
2
2(t, s, 0), C4 := supt∈J ‖f(t, 0, 0)‖2. Now it is to be

proved that Ῡ(Br) ⊂ B∗r Suppose on the contrary ∀r > 0, ∃ a function
zr(.) ∈ Br but Ῡ(zr) does not belong to Br, i.e. ‖Ῡ(zr)(t)‖2 > r for some
t ∈ J. Although by the hypotheses

r ≤ E‖Υ(zr)(t)‖2

≤ 7MW{2MS[E‖x1‖2 + 2(Mg‖φ̃‖2
B + C2)]

+ 2T 2MC [Mg([1 + 2Mp1 ]r
∗ + 2C1) + C2] + 2T 2MS[Mf ([1 + 2Mp2 ]r

∗ + 2C3) + C4]

+ T 2MSMBbl

+ 2T 2MS(Mh + TTr(Q)Mσ) +mMC

m∑
k=1

MI1k
+mMS

m∑
k=1

MI2k
},

≤ M∗∗ + 7(1 + 8T 2MBMSMW )[2T 2(MCMg(1 + 2Mp1) +MSMf (1 + 2Mp2))

+ 3MSNG/l
2
0 + T 2MCNG/l

2
0]r∗ (3.7)
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where

M ∗∗

:= 56(1 + 8T 2MBMSMW )[E‖y1‖2 +MC(E‖φ(0)‖2)]

+ 7(1 + 8T 2MBMSMW )× [2MS[E‖x1‖2 + 2(Mg‖φ̃‖2
B + C2)]

+ 2T 2MC(2MgC1 + C2) + 2T 2MS(2MfC3 + C4)

+ 2T 2MS(Mh + TTr(Q)Mσ) +mMC

m∑
k=1

MI1k
+mMS

m∑
k=1

MI2k
](3.8)

Now divide both sides of (3.9) by r, using (3.4) and taking limit as r → ∞
we get 1 ≤ λ which contradicts the assumption (3.1). Hence ∃ r > 0 such
that Υ(Br) ⊂ Br.

Then it is proved that Υ : B0
T → B0

T is a contraction mapping. Suppose
z, z̄ ∈ B0

T , then

E‖Υ(z)(t)−Υz̄(t)‖2

≤ 12l20MW{T 2MCMg(1 +Mp1) + T 2MSMf (1 +Mp2)

+ T 3MSM̄σTr(Q)

+ mMC

m∑
k=1

M̄I1k
+mMS

m∑
k=1

M̄I2k
} sup
s∈J

E‖z(t)− z̃(t)‖2

+ 6T 2MSMBE‖uTz+φ̃(t)− uT
z̄+φ̃

(t)‖2

≤ {(12l20 + 6× 10T 2MBMSMW )

× [T 2MCMg(1 +Mp1) + T 2MSMf (1 +Mp2)

+ T 3MSM̄σTr(Q)

+ mMC

m∑
k=1

M̄I1k
+mMS

m∑
k=1

M̄I2k
]} sup

s∈J
E‖z(t)− z̃(t)‖2

(3.9)

Now by taking supremum over t and using (3.2), it is found that

‖Υ(z)(t) − Υz̄(t)‖2
T ≤ Λ‖z − z̄‖2

T .

Hence Υ is a contraction mapping on B0
T . Thus by Banach fixed point the-

orem, ∃ x(.) ∈ B0
T such that Υ(x)(t) = x(t) with x(T ) = Υ(x)(T ) = xf . 

Therefore the system (1.1) is controllable on JT .

4 Example

In this section a partial differential equation applying the abstract results of 
this paper is discussed.
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Example 1 : Consider the second order neutral differential equation with
instantaneous impulses

∂

∂t
[
∂

∂t
x(t, ε) +

∫ t

−∞
ξ1(t, ε, s− t)δ1(x(s, ε))ds+

∫ t

0

∫ s

−∞
p1(s− τ)δ2(x(τ, ε))dτds]

= [
∂2

∂ε2
x(t, ε) +

∫ t

−∞
ξ2(t, ε, s− t)%1(x(s, ε))ds+

∫ t

0

∫ s

−∞
p2(s− τ)%2(x(τ, ε))dτds

+b(ε)u(t) +

∫ t

−∞
c(s− t)x(t, ε)dω(s),

+ tk 6= t ∈ J, ε ∈ [0, π],

x(t, 0) = x(t, π) = 0, t ∈ J,
x(t, ε) = q(t, ε), t ∈ J0, 0 ≤ ε ≤ π,

∂

∂t
x(0, ε) = x1(ε), 0 ≤ ε ≤ π,

∆x(ti)(ε) =

∫ ti

−∞
n1
i (ti − s)x(s, ε)ds, i = 1, ...,m

∆x′(ti)(ε) =

∫ ti

−∞
n2
i (ti − s)x(s, ε)ds, i = 1, ...,m, ε ∈ [0, π] (4.1)

where x1 ∈ X = L2([0, π]), X = K = U = L2([0, π]). ω(t) is a standard
one dimensional Wiener process in X, on a stochastic basis (Ω,F , P ), q ∈ B
B = PC0 × L2(ρ,X), A ⊂ D(A) ⊂ X → X is the map defined by A = ∂2

∂σ2

with domain D(A) = H2([0, π]) ∩H1
0 ([0, π]). where

H1
0 ([0, π]) = {w ∈ L2([0, π]) :

∂w

∂z
∈ L2([0, π]), w(0) = w(π) = 0}

H2([0, π]) = {w ∈ L2([0, π]) :
∂w

∂z
,
∂2w

∂z2
∈ L2([0, π])}

It is well known that A is the infinitesimal generator of a strongly contin-
uous cosine function (C(t))t∈R on X. Also, A has a discrete spectrum, and
the following properties hold

(C1) Aφ = −
∑∞

n=1 λ
2
n < φ, zn > zn where φ ∈ D(A), λn, zn, n ∈ N are

eigenvalues and eigenvectors of A.

(C2) C(t)φ =
∑∞

n=1 cos(λnt) < φ, zn > zn and S(t)φ =
∑∞

n=1
sin(λnt)

n
<

φ, zn > zn, for φ ∈ X.

Clearly ∀ x ∈ X, t ∈ R, C(.)x, S(.)x are periodic functions and ‖C(t)‖ ≤
1, ‖S(t)x‖ ≤ 1. Hence (H1) is true. Let l(s) = e2s, s ≤ 0, so l0 =

∫
J0
l(s)ds =
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1/2. Define ‖ψ‖B =
∫
J0
l(s) sup(E‖ψ(θ)‖2)1/2ds, ∀ψ ∈ B. Thus for (t, ψ) ∈

J × B, ψ(θ)x = ψ(θ, x), (θ, x) ∈ J0 × [0, π]. Denote x(t, ε) as x(t)(ε) The
result of this paper is applied to the system (4.1), by assuming the following

1. Suppose B ∈ L(R, X), be defined by Bu(ε) = b(ε)u, 0 ≤ ε ≤ π, u ∈
R, b(ε) ∈ L2([0, π]).

2. The linear operator W : L2(J, U) → X be defined as Wu =
∫
J
S(T −

s)b(ε)u(s)ds is a bounded linear operator but need not be injective.
Let Ker W = {u ∈ L2(J, U) : Wu = 0} denote null space of W and
[Ker W ]⊥ denote its orthogonal complement in L2(J, U). Consider the
restriction of W to W ∗ : [Ker W ]⊥ → Range(W ), which is neces-
sarily one-to-one. By inverse mapping theorem (W ∗)−1 is bounded as
[Ker W ]⊥ and Range(W ) are Banach spaces. As W−1 is bounded and
takes values in L2(J, U)/Ker W, the hypothesis (H8) is satisfied.

3. n1
i , n

2
i ∈ C(R,R) such that for = 1, 2, ...,m M I1i

=
∫
J0
l(s)n1

i (s)ds ≤ ∞,
M I2i

=
∫
J0
l(s)n2

i (s)ds ≤ ∞.

Now define the functions g, f : J ×B ×X → X, ε : J × J ×B → L0
2, and

I1
i , I

2
i : B→ X, i = 1, 2, ...,m as

g(t, ψ, η1ψ)(ε) =

∫
J0

ξ1(t, ε, θ)δ1(ψ(θ)(ε))dθ + η1ψ(ε),

f(t, ψ, η2ψ)(ε) =

∫
J0

ξ2(t, ε, θ)%1(ψ(θ)(ε))dθ + η2ψ(ε),

σ(t, s, ψ)(ε) = (

∫
J0

c(θ)ψ(θ)(ε)dθ

I1
k(t, ψ)(ε) =

∫
J0

n1
i (−s)ψ(θ)(ε)ds, k = i = 1, ...,m

I2
k(t, ψ)(ε) =

∫
J0

n2
i (−s)ψ(θ)(ε)ds, k = i = 1, ...,m

Here η1ψ(ε) =
∫ t

0

∫
J0
p1(s−θ)δ2(ψ(θ))(ε))dθds, η1ψ(ε) =

∫ t
0

∫
J0
p1(s−θ)δ2(ψ(θ))(ε))dθds,

Thus the system (4.1) can be writtten in the abstract form as system (1.1). 
Then imposing suitable conditions on the above functions as per hypothe-

ses (H1) − (H8) and using theorem (3.1) we get that the system (4.1) is 
controllable on JT .
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