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Abstract 

 
We study an ordinary differential equation as an iteration with a constant fixed path when the number of 
iterations goes to infinite. In such conditions, very different from these of classical analysis, we greatly increase 
the spectrum of the solutions. First, we treat this iteration in a probabilistic framework. Curves where the 
probability of presence is invariant are shown. There are also critical frequencies but their interpretation remains 
difficult. 
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Introduction 

 
Let an ordinary differential equation  

da/dt= F(a)  
where 𝑎 ∈ 𝐶 ⊂ ℝ𝑑or  ℂ𝑑, 𝑡 ∈ ℝ+, F(a) is a polynomial application of a∈C in C. The domain 𝐶 is supposed 
bounded.  
The classical problem is to find function a(t) verifying this equation with an initial condition a(t0) = a0.   

On another point of view, we associate a differential iteration f(a) supposed belonging in the bounded set C: 
f (a)= a +𝛿F(a)  

where 𝛿 = 𝑡/𝑘 is a constant fixed path. This path remains constant whereas the number of iterations goes 
to infinite. Iterating f(a) a very long number n of times with this fixed path 𝛿,. we will see that we obtain 
other solutions. 
 
Before to examine this question, we must recall some probabilistic methods for analyze iterations. In order 
to simplify the presentation, we take a bounded polynomial iteration f in ℝ𝑑 and we study the invariant 
measure under this application. Many paragraphs of this approach are presented in our book: « Les 
itérations polynomiales bornées dans ℝ𝑑». Here we correct some points. 
 
First, we recall some results and methods: the invariant Perron-Frobénius ‘s measure is the correct frame 
for this purpose and the steepest descent method allow us to approximate what happens when the number 
of iterations goes to infinite. In this case, the initial condition a(t0 ) = a0 doesn’t play an important role. 

 



Recalls about the transform of the invariant measure of Perron Frobenius 
 
Perron-Frobenius’s measure  
Let 𝑓 a bounded polynomial function which applies a bounded set 𝐶 ⊂ ℝ𝑑 in itself. Let 𝑃 a measure on 
𝐶 ⊂ ℝ𝑑 and 𝑃𝑓 = 𝑃°𝑓

−1 the transform of 𝑃 by the function  𝑓. We say that 𝑃 is invariant under 𝑓 if, for all 

borelian set 𝐵, 𝑃  verifies the Perron-Frobenius’s equation (PF): 
     𝑃𝑓(𝐵) = 𝑃°𝑓

−1(𝐵) = 𝑃(𝐵)  
Under general conditions, the solution of this equation is unique. But, we will see that a PF-solution can be 
associated to each fixed point 𝑓(0) = 0 and to each point of a cycle. So, we have local solutions. All these 
distributions can be masked or dominated in various situations and may overlap. Our purpose is to establish 
an inventory of these invariant curves. 
 
Lemma of Perron-Frobenius (known) 
Let 𝑃 be the invariant measure under 𝑓. 𝑋 is the random vector of ℝ𝑑 with the law 𝑃 . For every positive 
measurable function 𝑔, we have: 

 ∫𝑔°𝑓(𝑥)𝑑𝑃(𝑥) = ∫𝑔(𝑥)𝑑𝑃(𝑥) 
 
We use this formula and the Laplace-Fourier’s transform to define the resolving equation and the 
resolving gap. 
 
1 - Hypothesis H  
𝑓 is a polynomial function and applies bounded set 𝐶 ⊂ ℝ𝑑 in itself. It is defined at the fixed point 𝑓(0) =
0  or at a point of a cycle. The solution of the PF-equation needs a non-resonance condition at this point: 

 𝜆𝑘 ≠ 1,∀𝑘 ∈ 𝑁𝑑 
 
2 - Definition of the Laplace-Fourier’s transform ∅(𝑦) and ∅𝑓(𝑦) 
Notations: 
- Let  ∅(𝑦)  be the Laplace-Fourier’s transform of the measure 𝑃  and ∅𝑓(𝑦)  the Laplace-Fourier’s 
transform of the measure 𝑃𝑓. 

- 𝑥 is the realization of the random vector 𝑋. 𝑥 ∈ 𝐶 ⊂ ℝ𝑑, 𝑦 ∈ ℝ𝑑or ℂ𝑑 and 𝑥𝑦 is the scalar product . As 
the support of 𝑃  is contained in bounded 𝐶 , we can use indifferently the Laplace’s or the Fourier’s 
transform which is noted: 

∅(𝑦) = 𝐸(𝑒𝑦𝑋) = ∫ 𝑒𝑦𝑥 𝑑𝑃(𝑥) 
- The corresponding series is convergent on the bounded domain 𝐶 and we write a priori for ∀𝑛 ∈ 𝑁𝑑: 
     ∅(𝑦) = 𝛴𝑛𝑏𝑛𝑦𝑛 
- We note : 𝜕()/𝜕a=𝜕𝑑  ()/𝜕𝑎1,.., 𝜕𝑎ℓ,.., 𝜕𝑎𝑑 and for  ∀𝑛 ∈ 𝑁𝑑: 𝜕𝑛()/𝜕𝑎𝑛. 
- The PF-equation becomes the resolving equation:  

∅(𝑦) = 𝐸(𝑒𝑦𝑋) =  ∅𝑓(𝑦) = 𝐸�𝑒𝑦𝑓(𝑋)� 

And, for all little translation 𝑎 ∈ 𝐶 ⊂ 𝑅𝑑  of the random vector 𝑋,   the resolving equation Ra of PF 

becomes: 
 𝜃𝑓(𝑦,𝑎) = ∅(𝑦,𝑎) − ∅𝑓(𝑦,𝑎) = 0  

Where:    ∅(𝑦,𝑎) = 𝐸�𝑒𝑦(𝑋+𝑎)� and  ∅𝑓(𝑦,𝑎) = 𝐸�𝑒𝑦𝑓(𝑋+𝑎)� 
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Lemma 
The resolving equation Ra of PF is: 𝜃𝑓(𝑦,𝑎) = ∅(𝑦,𝑎) − ∅𝑓(𝑦,𝑎) = 0 . It means:    

     𝜃𝑓(𝑦,𝑎) = 𝛴𝑛𝑏𝑛𝜕𝑛(𝑒𝑦𝑎 − 𝑒𝑦𝑓(𝑎) )/𝜕𝑎𝑛 = 0 for ∀𝑎 ∈ 𝐶 et ∀𝑦 
 
■ Using the convergent series: ∅(𝑦) = Σ𝑛𝑏𝑛𝑦𝑛, then, we obtain for all little translation 𝑎 ∈ 𝐶 ⊂ 𝑅𝑑 of the 
random vector 𝑋, the translated resolving equation  
     ∅(𝑦,𝑎) = 𝐸�𝑒𝑦(𝑋+𝑎)� = Σ𝑛𝑏𝑛𝑦𝑛𝑒𝑦𝑎 = Σ𝑛𝑏𝑛𝜕𝑛𝑒𝑦𝑎/𝜕𝑎𝑛 

And:     ∅𝑓(𝑦,𝑎) = 𝐸�𝑒𝑦𝑓(𝑋+𝑎)� = Σ𝑛𝑏𝑛𝜕𝑛𝑒𝑦𝑓(𝑎)/𝜕𝑎𝑛 ■ 
 
Remark 1:  
All solutions 𝜑 of 𝜃𝑓(𝑦,𝑎) = 0 are defined with an arbitrary constant c: 𝑐𝜑 is also solution. We can write 

  𝜕𝑛𝑒𝑦𝑓(𝑎)/𝜕𝑎𝑛 = 𝐻𝑛(𝑦,𝑎)𝑒𝑦𝑓(𝑎)  where 𝐻𝑛(𝑦,𝑎) is the polynomial of Bell of the successive derivatives 
of 𝑓 . But, for a=0, we have a polynomial in y and we prefer to note: Hn(y)=Bn(y,0) because of its 

resemblance with the Hermite’s polynomial.  
So, we note the resolving gap:  𝑒𝑛(y, a) = 𝜕𝑛(𝑒𝑦𝑎 − 𝑒𝑦𝑓(𝑎) )/𝜕𝑎𝑛= 𝑦𝑛( 𝑒𝑦𝑎- Hn(y, a) 𝑒𝑦𝑓(𝑎)  

for a=0:     𝑒𝑛(y) = 𝑒𝑛(y, a) =  𝑦𝑛 - Hn(y)  

Equation Ra becomes R0:  

 𝜃𝑓(𝑦) = Σ𝑛𝑏𝑛𝑒𝑛(𝑦) = 0 

Polynomials 𝑒𝑛(y) are a basis if their highest degree’s term doesn’t be null, i.e., if the non-resonance 
condition is respected:  𝜆𝑛 ≠ 1,∀𝑛 ∈ 𝑁𝑑. ■ 
 
Remark 2  
The Perron-Frobenius’s measure is the solution 𝜑(𝑦) of Ra which verifies   𝜃𝑓(𝑦,𝑎) = 0, ∀𝑦, ∀𝑎; so, if 

∅(𝑦,𝑎)is any solution of Ra, Then  𝜑(𝑦) = 𝜕2∅(𝑦,𝑎)/𝜕𝑎𝜕𝑦|𝑎=0= 𝜕𝑦∅(𝑦, 0)/𝜕𝑦. 

 
3 – Effect of an iteration on the resolving equation 𝜃𝑓(𝑦) and on 𝑒𝑛(y,0) 

It is interesting to understand the effect of an iteration on the resolving equation 𝜃𝑓(𝑦,𝑎). When we iterate f, 
we replace successively and respectively: 𝑎1,... 𝑎ℓ,.., 𝑎𝑑 by 𝑓1(a),…, 𝑓ℓ(a),…, 𝑓𝑑 (a), for ℓ = 1, 2, … ,𝑑. Let 
𝑎 = (𝑎ℓ���,𝑎ℓ)  where 𝑎ℓ��� is the set of all the coordinates of a distinct of  𝑎ℓ. We study the unidimensional 
transformation 𝑎ℓ ⟼ 𝑓ℓ(𝑎) leaving the other components 𝑎ℓ��� of a unchanged and we note:  

 𝐷= 𝜃𝑓�𝑦,𝑎ℓ,���� 𝑓ℓ(𝑎)� = ∅�𝑦,𝑎ℓ,���� 𝑓ℓ(𝑎)� − ∅𝑓�𝑦,𝑎ℓ,���� 𝑓ℓ(𝑎)� ,  
where 𝑓ℓ(𝑎) take the place of  𝑎ℓ in  𝜃𝑓(𝑦,𝑎).  
 
Proposition 
Iteration𝑎ℓ  ⟼ 𝑓ℓ(𝑎) acts as a derivation on 𝜃𝑓(𝑦,𝑂)  and on 𝑒𝑛(y,0)= 0 in the sense that :  

𝜃𝑓(𝑦,𝑂) ⟼ 𝜕𝜃𝑓(𝑦, 0)/𝜕𝑎ℓ|𝑎=0   and 𝑒𝑛(y,0) ⟼ 𝑒𝑛+1ℓ(y,0). 
 
■ We study the impact of  𝑎ℓ  ⟼ 𝑓ℓ(𝑎) on  𝐷 = 𝜃𝑓�𝑦,𝑎ℓ,���� 𝑓ℓ(𝑎)�.   
As 𝜃𝑓(𝑦,𝑎ℓ,���� 𝑎ℓ) = 0 :  
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      𝐷 = 𝜃𝑓�𝑦,𝑎ℓ,���� 𝑓ℓ(𝑎)�-𝜃𝑓(𝑦,𝑎ℓ,���� 𝑎ℓ) 

So:    𝐷 = (𝑓ℓ(𝑎) − 𝑎ℓ)�𝜕𝜃𝑓�𝑦,𝑎ℓ���,𝑎ℓ + 𝑟((𝑓ℓ(𝑎) − 𝑎ℓ)�)/𝜕𝑎ℓ� 
When 𝑎 → 0    𝑓ℓ(𝑎) − 𝑎ℓ~𝑎ℓ(𝜆ℓ − 1). 

 𝐷~ 𝑎ℓ(𝜆ℓ − 1)�𝜕𝜃𝑓(𝑦, 0)/𝜕𝑎ℓ� 
For similar raisons, if 𝑒𝑛(y, a) = 0, then: 𝑒𝑛(y, 𝑓ℓ(𝑎))~ 𝑎ℓ(𝜆ℓ − 1)𝜕𝑒𝑛(𝑦, 0))/𝜕𝑎ℓ. 
More, if we iterate 𝑓  , that means 𝑎 ⟼ 𝑓(𝑎) in 𝑒𝑛(y, a), we obtain: 
     𝐷~ Σℓ=1

ℓ=𝑑𝑎ℓ(𝜆ℓ − 1)�𝜕𝜃𝑓(𝑦, 0)/𝜕𝑎ℓ� 
If this quantity is null for all 𝑎, we must have d equations independent null. 
We have the same result for 𝑒𝑛(y,0). ■ 
 
In other words, when 𝑓 is iterated n times (the d-tuple (i.e. 𝑓1(a),… 𝑓ℓ(a),…, 𝑓𝑑(a)) is iterated n times), this 
operation is equivalent to derivate n times 𝜃𝑓(𝑦,𝑎) with respect to each component (𝑎1,  𝑎ℓ,…, 𝑎𝑑) at 𝑎 = 0.  
Now, as an iteration is corresponding to a derivation, unless otherwise expressly stated, all the indices of 
derivation are equal. 
 
4- Solution de R0 (recalls) 

We choose a sufficiently large index 𝑛 ∈ 𝑁𝑑 , with 𝑛 = 𝑛1=...=𝑛ℓ,…= 𝑛𝑑 
Lemma 
For a fixed 𝑏𝑛 ≠ 0, under non-resonance conditions, we can find a unique series  𝑏 ∗𝑚 , ∀𝑚 ≤ 𝑛 ∈ 𝑁𝑑 , 
depending only on the coefficients ℎ𝑚𝑘 of the polynomials 𝐻𝑚(𝑦) ,  such as: 

 𝜃 ∗𝑛 (𝑦) = Σ𝑚≤𝑛𝑏 ∗𝑚 𝑒𝑚(𝑦) = 0 
■ The solution of this equation is obtained as the following: 
- We choose a sufficiently large index 𝑛 ∈ 𝑁𝑑 , such as:  
 1-  𝑏𝑛 ≠ 0  
 2- and  𝜃𝑛𝑓(𝑦) = Σ𝑚≤𝑛𝑏𝑚𝑒𝑚(𝑦) verifies uniformly �𝜃𝑛𝑓(𝑦) − 𝜃𝑓(𝑦)� < 𝜖 

- As 𝜃𝑓(𝑦) = 0, we search an approximation 𝜃 ∗𝑛𝑓 (𝑦) =  𝜃 ∗𝑛 (𝑦) = 0,  and estimators 𝑏 ∗𝑚 such as, for 

𝑏 ∗𝑛= 𝑏𝑛 ≠ 0 arbitrarily fixed, we have: 
 𝜃 ∗𝑛 (𝑦) = Σ𝑚≤𝑛𝑏 ∗𝑚 𝑒𝑚(𝑦) = 0 

We note the polynomials ∅ ∗𝑚 (𝑦) = 1 + Σ0<𝑚≤𝑛𝑏 ∗𝑚 𝑦𝑚  and  ∅𝑓 ∗𝑛 (𝑦) = 1 + Σ0<𝑚≤𝑛 𝐻𝑚(𝑦)   
So :    𝜃 ∗𝑛 (𝑦) = ∅ ∗𝑛 (𝑦) − ∅𝑓 ∗𝑛 (𝑦) 

- As   𝜃 ∗𝑛 (𝑦) = 0 : 
1- It is easy to verify for all 𝑦 verifying   𝜃 ∗𝑛 (𝑦) = 0 : 
    𝜃 ∗𝑛−1 (𝑦) = Σ𝑚<𝑛𝑏 ∗𝑚 𝑒𝑚(𝑦) = 𝜃 ∗𝑛 (𝑦) − 𝑏𝑛𝑒𝑛(𝑦). 
    𝜃 ∗𝑛−1 (𝑦) = −𝑏𝑛𝑒𝑛(𝑦) 
But, all the coefficients of 𝑒𝑚(𝑦) = 𝑦𝑚 − 𝐻𝑚(𝑦)  are known: 𝐻𝑚(𝑦)=Σ0<𝑘≤𝑚ℎ𝑚𝑘 𝑦𝑘 , so : 

𝜃 ∗𝑛−1 (𝑦) = Σ𝑚<𝑛𝑏 ∗𝑚 (𝑦𝑚 − Σ0<𝑘≤𝑚ℎ𝑚𝑘 𝑦𝑘) = −𝑏𝑛(𝑦𝑛 − Σ0<𝑘≤𝑛ℎ𝑛𝑘 𝑦𝑘 
2 – We obtain a finite triangular system of linear equations which can be solved step by step, and we can 
identify in a unique way all the unknown coefficients 𝑏 ∗𝑚  with  𝑏𝑛  and the coefficients hmk of 

Hm(y)= Σ𝑘≤𝑚ℎ𝑚𝑘𝑦𝑘 with m≤ 𝑛 ∈ 𝑁𝑑 . 

3- This solution is unique for 𝑏 ∗𝑛= 𝑏𝑛 ≠ 0 arbitrarily fixed, near to the solution of  𝜃𝑓(𝑦) = 0, as the  
𝑏 ∗𝑚 converge to the 𝑏𝑚. So, we can construct the polynomials ∅ ∗𝑛 (𝑦) − 1  and  ∅𝑓 ∗𝑛 (𝑦) − 1.■ 
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We will see in the next paragraph, that, under hypothesis H’, all the zeros of  𝐻𝑛(𝑦) are distinct with 
multiplicity 1(all the d equations 𝜕𝑒𝑛(𝑦,𝑎)/𝜕𝑎ℓ =0 gives n+1 points. 
Theorem 
Under H’ and under the non-resonance condition∅ ∗𝑛 (𝑦) and 𝑒𝑛(𝑦)are null simultaneously. 
If all the zeros of  𝐻𝑛(𝑦) are distinct with multiplicity 1   
    ∅ ∗𝑛 (𝑦) = 1 + 𝑐𝑒𝑛(𝑦) 
Where the distribution of the real zeros of the polynomials 𝑒𝑛(𝑦) gets the distribution of the Perron-
Frobenius’s measure when n→ ∞. 
If 𝜆𝑛 ≫ 1, real zeros of the polynomials 𝐻𝑛(𝑦) gets the distribution of the Perron-Frobenius’s measure. 
 
■ By construction, polynomials ∅ ∗𝑛 (𝑦) − 1  and  ∅𝑓 ∗𝑛 (𝑦) − 1 have proportional coefficients. They 
cancel simultaneously, and also for every linear non-resonant combinations. 
As 𝜆𝑛 ≠ 1, the highest degree’s term of the polynomial 𝜃 ∗𝑛 (𝑦) is:  𝑏𝑛(𝜆𝑛 − 1)𝑦𝑛 ≠ 0 for ∀𝑦 . Then, 
  𝜃 ∗𝑛 (𝑦) = 0  needs 𝑒𝑛(𝑦) = 0, because all the other gaps 𝑒𝑚(𝑦) have a lower degree. 
The polynomials 𝑒𝑛(𝑦) , 𝜃 ∗𝑛 (𝑦) , ∅ ∗𝑛 (𝑦) − 1  and  ∅𝑓 ∗𝑛 (𝑦) −  1  are simultaneously null. This result 
is generally sufficient for our purpose, but it can be interesting to have a formula. As they have the same 
highest degree’s term 𝑦𝑛, we apply the Hilbert’s theorem of the zeros with the fact that all the roots of 
𝐻𝑛(𝑦) have a multiplicity one. So, they are all proportional and 𝜃 ∗𝑛 (𝑦) = 𝑐 𝑒𝑛(𝑦) =∅ ∗𝑛 (𝑦) − 1  . Then:
    ∅ ∗𝑛 (𝑦) − 1 = c𝑒𝑛(𝑦) 

But, if : 𝜆𝑛 ≫ 1 , then : 𝑦𝑛𝜆𝑛 ≫ 𝑦𝑛 : 
     ∅ ∗ 𝑛(𝑦) = 1 − 𝑐′𝐻𝑛(𝑦). ■ 
 
Remarque 3 (see general reference) 
We deduce, under general conditions, that, if q(y) is the density of real zeros of 𝐻𝑛(𝑦) when n→ ∞, then 
the invariant density p(x) of the Perron-Frobenius’s measure is: 
    p(x) = (- x)𝜕q(x)/𝜕𝑥 
 

Recalls about the steepest descent applied to 𝑯𝒏(𝒚)  
 
Now, we get an estimation of the asymptotic distribution of the real zeros of 𝐻𝑛(𝑦). For this, we use the 
steepest descent’s method as Plancherel and Rotach use. We recall that the polynomial: 
 𝐻𝑛(y) =𝑒−𝑦𝑓(𝑎)𝜕𝑛𝑒𝑦𝑓(𝑎)/𝜕𝑎𝑛|𝑎=0 = 𝜕𝑛𝑒𝑦𝑓(𝑎)/𝜕𝑎𝑛|𝑎=0  
can be represented by the Cauchy’s integral: 

    𝐻𝑛−1 (y)=K∮ Γ 𝑒
𝑦𝑓(𝑎)

𝑎𝑛
da 

where Γ is a closed polydisk around the fixed point 0 of f, 𝑎 ∈ ℂ𝑑, K can be taken as some finite non-null 
function, for all n = (𝑛1,..., 𝑛ℓ,…, 𝑛𝑑 ).  
 
1- The steepest descent’s method 
In order to apply the steepest descent’s method to 𝐻𝑛−1(y) when n→ ∞, we must write the integrand of: 

 ∮ Γ 𝑒µ𝛾(𝑎)da 
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µ𝛾(𝑎), where µ → ∞ and the function 𝛾(𝑎) doesn’t depend on µ.  
Now, the integrand, that we call the Plancherel-Rotach’s function, is written here: 

  𝑦𝑓(𝑎) − 𝑛 ln 𝑎 = Σℓ (𝑦ℓ𝑎𝑓ℓ(𝑎) − 𝑛ℓ ln𝑎ℓ),  
We meet two difficulties: the 𝑦ℓ can vary arbitrarily in such manner that makes the method impossible; we 
must find a common µ → ∞ such as   𝛾(𝑎) doesn’t depend on µ.  
- So, in our case, we choose: 
    μ=  𝑛1+...+ 𝑛ℓ…+ 𝑛𝑑 ),  and we fix: 𝑧ℓ = 𝑛ℓ/µ.  
We put: 𝑦ℓ = 𝑛ℓ𝑠ℓ = µ𝑧ℓ𝑠ℓ and 𝑛ℓ ln 𝑎ℓ = µ𝑧ℓ ln 𝑎ℓ, the Plancherel-Rotach’s function is: 
     µ𝛾(𝑎) = µΣℓ (𝑧ℓ𝑠ℓ𝑓ℓ(𝑎) − 𝑧ℓ ln𝑎ℓ) 
 with:    𝛾(𝑎) = Σℓ (𝑧ℓ𝑠ℓ𝑓ℓ(𝑎) − 𝑧ℓ ln𝑎ℓ)  
which doesn’t depend on µ because the 𝑦ℓ, thus 𝑠ℓ, can be taken arbitrarily. 
- But, according to the previous paragraph 4, we take in general all the 𝑛ℓ equal: 𝑛ℓ=n, and we have μ=nd 
with 𝑧ℓ = 1/𝑑 . So, we can simplify the notation and we take μ= n instead of nd and 𝑧ℓ = 1 to get a 
simplified formula:  
      𝑛𝛾(𝑎) = 𝑛 Σℓ(𝑠ℓ𝑓ℓ(𝑎) − ln 𝑎ℓ)  
The wealth and the variety of the situations is so large that we see here only the most common and simple. 
We consider:  
                 𝐻𝑛−1(y)=K ∮ Γ  exp (𝑛 𝛾(𝑎))da 
 
The method consists to search the critical points a𝑐 of 𝛾(𝑎) : 𝜕𝛾(𝑎)/𝜕𝑎 = 0. We recall the conditions: 
 
Hypothesis H’: The general position  
The critical point 𝑎𝑐 maximizing 𝑒  𝑛 𝛾(𝑎)  is supposed be in general position if:  
- The critical point is isolated from the other critical points and at a finite distance.  
- A sufficient condition to get this maximum is that the hessian matrix (which is hermitian) of 𝛾(𝑎) is 
definite negative at 𝑎𝑐 .  
- ℜ𝑒(𝜇𝛾 (a)) → - ∞ when 𝜇 → ∞ to make sure the convergence of the Laplace’s integral. In the bounded 
set 𝐶 ⊂ ℝ𝑑, it is not important. The critical point is called point of Morse. 
 
Here, the critical point 𝑎𝑐 is supposed a Morse’s point defined by the equation:  

      𝑦𝜕𝑓(𝑎)
𝜕𝑎

− 𝑛
𝑎

= 0 

Which is written explicitly with n equations with real coefficients:  
      𝜕𝛾(𝑎)/(𝜕𝑎ℓ ) = 𝑦𝜕𝑓(𝑎)/(𝜕𝑎ℓ ) − 𝑛ℓ/𝑎ℓ   
      = Σ𝑖𝑧𝑖(𝑠𝑖𝜕𝑓𝑖(𝑎)/𝜕𝑎ℓ) − 𝑧ℓ/𝑎ℓ = 0     ℓ = 1, 2, … ,𝑑 
And, if 𝑛ℓ=n, ∀ℓ:   = Σ𝑖(𝑠𝑖𝜕𝑓𝑖(𝑎)/𝜕𝑎ℓ) − 1/𝑎ℓ = 0   
Comments 
As we have many problems to solve, here we don’t be interested by all questions about the deformation of 
the contour of the integral, topics treated in detail by many authors. It is also unnecessary to speak about 
the depth of the critical point.  
If there are many critical points, the approximation is the sum of the contributions neglecting those when 
the real part is negligible.  
Finally, even if the critical point maximizing 𝑒  𝑛 𝛾(𝑎) is unique, the Plancherel-Rotach’s function may have 
many determinations in relation with the complex log a. 
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Besides the inherent difficulties of the method, the critical point depends on the arbitrary vector 𝑦 or 𝑠.  
 
But here, we are only especially interested by the real values of y which give 𝐻𝑛−1(y) = 0 because they get 
the invariant measure. As the real part of the contributions cannot vanish, except perhaps if y becomes 
infinite, only imaginary part can cancel 𝐻𝑛−1(y).  
 
If 𝑓 is a polynomial with real coefficients, every complex critical point ac has a conjugate 𝑎𝑐 ���� solution. So 

integrands of  𝑒  𝑛 𝛾(𝑎𝑐) et  𝑒  𝑛 𝛾(𝑎𝑐 ����) are imaginary conjugated and the sum of their contributions is null only 
if the imaginary part of 𝛾(𝑎) is k𝜋.  
      𝐼𝑚�𝛾(𝑎)� = 𝐼𝑚�𝑠𝑓(𝑎)� − Σℓ𝜃ℓ = 𝑘𝜋/n 
where Σℓ𝜃ℓ is the sum of the arguments of the d components of the complex ac. 
We observe that, for fixed n, we have n distinct equations with 𝑘 = 1, 2, …,n. 
 
2 - Encoding the solution 
But, what happens when the number 𝑛ℓ  of derivations of the ℓ-th coordinate 𝑎ℓ of ac becomes 𝑛ℓ +m. 
 
Theorem 
Under the previous hypothesis, if the critical point ac is in general position, real zeros of Hn−1 (y) are 

reciprocals images of the p complex coordinates of ac : with 𝑘ℓ ∈ (1,..., 𝑛ℓ  ;∀ ℓ  ) encoding these zeros by 

uniform independent 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝜅ℓ on (0,1).  
    𝐼𝑚�𝑠ℓ𝑓ℓ(𝑎)� − 𝜃ℓ = 𝜋𝜅ℓ     ℓ = 1, 2, … ,𝑑 
 
■ If the number 𝑛ℓ=n of derivations of the ℓ-th coordinate 𝑎ℓ of ac becomes n +m, we cannot simplify the 
notation because μ=nd becomes μ=nd+m.  
- All the equations defining the coordinates of ac remain unchanged when ni=n becomes n+m, except the 

one of the ℓ-th component of ac which becomes µ 𝜕𝛾(𝑎)/𝜕𝑎ℓ − 𝑚/𝑎ℓ = 0.  

We suppose ac known at time μ and we keep its value at time μ+m. The equations defining the coordinates 
of ac are linear in y: 

    𝑦𝜕𝑓(𝑎)/𝜕𝑎 = 𝑛/𝑎 
If 𝜕𝑓(𝑎)/𝜕𝑎 is invertible, at μ;   𝑦 = (𝜕𝑓(𝑎)/𝜕𝑎)−1(𝑛/𝑎) 
And at μ+m:     𝑦 = (𝜕𝑓(𝑎)/𝜕𝑎)−1((𝑛/𝑎) + (𝑚/𝑎ℓ))   
Where (𝑚/𝑎ℓ) is the vector of coordinates all null except the ℓ -th valued 𝑚/𝑎ℓ.  
Is 𝑦ℓ is the ℓ-th coordinate of 𝑦 at μ, 𝑦ℓ + (𝑚/𝑛)𝑦ℓ will be the ℓ -th coordinate of 𝑦 at μ+m. 
We observe that, if n→ ∞, ac being bounded and m being fixed, 𝑚/𝑛𝑎ℓ → 0, then, the equations defining 

ac in function of y remain asymptotically unchanged. We put: 

 𝑠𝑖 = 𝑦𝑖/n , so 𝑧𝑖 = 𝑛/µ   if 𝑖 ≠ ℓ 
and     𝑠ℓ = 𝑦ℓ/(𝑛 + 𝑚), so: 𝑧ℓ = (𝑛 + 𝑚)/µ   if 𝑖 = ℓ 
Then:  
- We distinguish the Plancherel-Rotach’s function at time µ from the one at time µ + 𝑚 , 𝛾 is noted 𝛾µ at 

time µ and 𝛾µ+𝑚at time µ + 𝑚: 

at time µ:   µ𝛾µ(𝑎) = 𝑦𝑓(𝑎) − 𝑛 ln 𝑎 = µΣ𝑖 (𝑧ℓ𝑠𝑖𝑓𝑖(𝑎) − 𝑧ℓ ln𝑎ℓ)  
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becomes at time µ + 𝑚:  (µ + 𝑚)𝛾µ+𝑚(𝑎) = µ𝛾µ(𝑎) + 𝑚𝑠ℓ𝑓ℓ(𝑎) −𝑚ln𝑎ℓ 

- its imaginary part:  Im �µ𝛾µ(𝑎)� − 𝑘0𝜋  

becomes at time µ + 𝑚:  Im �µ𝛾µ(𝑎) + 𝑚𝑠ℓ𝑓ℓ(𝑎)� − 𝑚𝜃ℓ − 𝑘ℓ𝜋 

with: 𝑘0 = 1, 2, ..,n , if 𝑖 ≠ ℓ, but  𝑘ℓ =1,2,.., n+𝑚. 
The imaginary part of the Plancherel-Rotach’s function must be null at n and at 𝑛+ 𝑚: 

𝐼𝑚 �µ𝛾µ(𝑎)� =  𝑘𝜋     and  Im �µ𝛾µ(𝑎) + 𝑚𝑠ℓ𝑓ℓ(𝑎)� − 𝑚𝜃ℓ −𝑘ℓ′𝜋=0 

Then, by subtraction, we have for all ∀𝑘ℓ′ = 1, 2, .., m and ∀ℓ = 1, 2, …,d: 
 Im�𝑠ℓ𝑓ℓ(𝑎)� − 𝜃ℓ = 𝑘ℓ′𝜋/𝑚    
For any fixed m. For instance, we can take n=𝑒𝑚and m→ ∞. 
In other words, for all n→ ∞, we get a uniform coding with 𝑘ℓ′/m→ 𝜅ℓ of the coordinates of the zeros. For 
each coordinate of 𝑎𝑐, the distribution asymptotic is uniform 𝜅ℓ on (0,1). The 𝜅ℓ are random independent 
and uniform variables. ■ 
 
Example 1 
- If 𝑓(𝑥 ) is unidimensional, then, at the critical point 𝑥, the density of zeros between (s, s+ds) is:  
    q(s)ds =Prob (1 zero between s, s+ds)=|𝐼𝑚𝑓(𝑥(𝑠))|ds/ 𝜋 
- Let the iteration 𝑓(𝑥) = 𝑥(𝑏 − 𝑐𝑥/2). Then: n𝛾(𝑥) = 𝑛(𝑠𝑓(𝑥) − ln 𝑥). the critical point is: 

    x(s)= b/2c±𝑖� 1
𝑠𝑐
− 𝑏2/4𝑐2 

According to the remarks 1 and 2, and the previous theorem, the density of the invariant PF-measure is: 

  q(s) =|𝐼𝑚𝑓(𝑥(𝑠))|/ 𝜋 = b|𝐼𝑚𝑥(𝑠)|/2𝜋=𝑏�4𝑐/𝑠 − 𝑏2 /4 𝜋𝑐 
and the invariant measure 𝑃 has a density 𝑝(𝑥) generalizing the low of Ulam-Von Neuman. 

    𝑝(𝑥) = −𝑥𝑑𝑞(𝑥)/𝑑𝑥 = 1/(𝜋�4𝑐𝑥
𝑏2
− 𝑥2).  

If we write: 𝑥𝑏/ √2𝑐 = 𝛽, then 𝛽 follows a low 𝛽(1/2,1/2). 
 
Remark 4 
The distribution of the zeros of 𝐻𝑛(y) is the reciprocal image of uniform by |𝐼𝑚𝑓(𝑥(𝑠))| / 𝜋. So, if this 
function is injective, we recognize a generalization of a known situation that the zeros of 𝐻𝑛(y) are all 
distinct and distinct of those of 𝐻𝑛−1(y). 
Some very curious situations can happen when the distribution at a fixed point is dominating an another. Or 
when the hessian degenerates. 
 

Analysis of an ordinary differential equation  
 
1 - A differential equation as an iteration (Recalls) 
We consider ordinary differential equation: 

 da/dt= F(a)  
where 𝑎 ∈ 𝐶 ⊂ ℝ𝑑𝑜𝑟  ℂ𝑑 , 𝑡 ∈ ℝ+ , F(a) is a polynomial application of a∈C in C. The domain 𝐶  is 
supposed bounded. We associate the differential iteration f(a) supposed belonging in the bounded domain 𝐶: 

 f(a)= a +𝛿 F(a)  
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where 𝛿 = 𝑡/𝑘 is the path. The problem is to find a function a(t) verifying this equation with an initial 
condition a(t0 ) = a0.  

With the invariant measure of Perron-Frobénius, we obtain limit cycles: 
So, the resolving equation is for each fixed point: 

 𝜃𝑓(𝑦,𝑎) = ∅(𝑦,𝑎) − ∅𝑓(𝑦,𝑎) = 0 

∅(𝑦) = 𝐸(𝑒𝑦𝑋) =  ∅𝑓(𝑦) = 𝐸�𝑒𝑦𝑓(𝑋)� 

With f(x)= x +𝛿 F(x) ; and: 𝐸(𝑒𝑦𝑋) =  ∅𝑓(𝑦) = 𝐸�𝑒𝑦𝑋+𝛿𝐹(𝑋)�  

So:    𝐸�𝑒𝑦𝑋(1 − 𝑒𝛿𝑦𝐹(𝑋))�~𝐸(𝛿𝑦𝐹(𝑋)𝑒𝑦𝑋) =  0 
This implies generally 𝐹(𝑋) = 0 and determines the fixed points of the differential equation. We verify the 
same behaviour for the cycles (which are dependent on 𝛿). 
The classical method gives the solution a(t) by iterating k times f(a) from a starting point a0 with the path 
𝛿 = 𝑡/𝑘: 

 a(t)= f (k) (a0) 

then, k→ ∞. This solution is theoretically: 

     a(t)= a(0)+∫ 𝐹�𝑎(𝑢)�𝑑𝑢𝑡
0  

 
2- Invariant measure of the differential equation 
We examine now another situation taking 𝛿 = 𝑡/𝑘 very small, but fixed for every number of iterations; on 
iterate now f a number of times n very great before k: n≫ 𝑘,  and tending to infinite.  
 
Justification  
We can view da / dt= F(a) as the realization of the family of equations da / dt= 𝑐F(a) with 𝑐 = 1, or as the 
study of the equation: da / d(𝑡)=da / d(𝑐t’)=  F(a)  with ct’=t  at the neighbourhood of the infinite, when  𝑐 
is very great. In term of iteration, it is like if we subdivide the path. 
 
Lemma 
The invariant measure of the differential iteration f(a)= a+𝛿F(a) is defined by real zeros of the derivative 

with respect to ∀ 𝑡 ≤ 𝛿 𝑜𝑓 𝐻𝑛(𝑦) = 𝜕𝑛𝑒𝑦𝑓(𝑎)/𝜕𝑎𝑛|𝑎=0 : 
 𝜕(𝜕𝑛(𝑒𝑦𝑓(𝑎))/𝜕𝑎𝑛)𝜕𝛿|𝑎=0 = 0 

■ the resolving equation of the differential iteration becomes: 
𝜃𝑓(𝑦,𝑎) = Σ𝑛𝑏𝑛𝜕𝑛(𝑒𝑦𝑎 − 𝑒𝑦𝑓(𝑎) )/𝜕𝑎𝑛 = 0  

for ∀𝑎 ∈ 𝐶 and ∀𝑦 where f(a)= a +𝛿 F(a), the resolving gaps must be null: 
 𝑒𝑛(𝑦,𝑎) = 𝜕𝑛(𝑒𝑦𝑎(1 − 𝑒𝛿𝑦𝐹(𝑎)))/𝜕𝑎𝑛|𝑎=0 = 0 

but:    1 − 𝑒𝛿𝑦𝐹(𝑎) = −∫ (𝑑𝑒𝑡𝑦𝐹(𝑎)/𝑑𝑡)𝛿
0 𝑑𝑡  

As𝛿 doesn’t depend on a, we can invert integration and derivations: 

 𝜕𝑒𝑛(𝑦,𝑎) = −𝜕𝑛(𝑒𝑦𝑎 ∫ 𝑒𝑡𝑦𝐹(𝑎)𝛿
0 d𝑡)/𝜕𝑎𝑛 = 0 

      𝑒𝑛(𝑦,𝑎) = −∫ (𝑑(𝜕
𝑛�𝑒𝑦𝑎+𝑡𝑦𝐹(𝑎)�

𝜕𝑎𝑛 )/𝑑𝑡)𝛿
0 d𝑡 = ∫ (𝜕

𝑛�𝑦𝐹(𝑎)𝑒𝑦𝑎+𝑡𝑦𝐹(𝑎)�
𝜕𝑎𝑛

)𝛿
0 d𝑡 = 0 

 

If 𝜕
𝑛�𝑦𝐹(𝑎)𝑒𝑦𝑎+𝑡𝑦𝐹(𝑎)�

𝜕𝑎𝑛
= 0 is true for ∀ 𝑡 ≤ 𝛿, the resolving equation will be verified for ∀𝑎.  
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We see now that the resolving gap can be null, not only if the critical point 𝑎 has complex coordinates, but 
also if  𝑎 get  𝑦𝐹(𝑎) = 0. ■ 
 
Proposition 
When the number of iterations n→ ∞ and if the la hessian of y𝐹 is definite negative, the approximation 
with the steepest descent’s method defines 𝑠 = 𝑦/𝑛 in function of the critical point a: 

𝑠 + 𝑡𝑠𝜕𝐹(𝑎)/𝜕𝑎 − 1/𝑎 = 0   
where     1/𝑎 = (1/𝑎ℓ , ℓ = 1, 2, …, d). 

If 𝑠0 is a particular solution and if  𝑠 is an eigenvector of −𝜕𝐹(𝑎)/𝜕𝑎 for the eigenvalue 1/𝑡, the general 
solution is: 
     𝑠 =𝑠𝑎 +𝑠 
The eigenvalue 1/𝑡 can be interpreted as a critical asymptotic frequency. 
 
■ We search an approximation of 𝑒𝑛(𝑦, 0)=Hn(y)= 𝜕𝑛𝑦𝐹(𝑎)𝑒𝑦𝑓(𝑎)/𝜕𝑎𝑛|𝑎=0  for 𝛿 = 𝑡 arbitrary with the 

steepest descent’s method to: f(a)= a +𝑡 F(a).  
The hessian of y𝐹 has to be definite negative: 

 𝐻𝑛−1(y)=K ∮ Γ 𝑦𝐹(𝑎)𝑒𝑦𝑓(𝑎)

𝑎𝑛
  da 

y𝐹(𝑎) is not exponential, so the Plancherel-Rotach’s function is unchanged: 
 𝑛𝛾(𝑎) = 𝑦𝑓(𝑎) − 𝑛 ln 𝑎 = 𝑦𝑎 + 𝑡𝑦𝐹(𝑎) − 𝑛 ln 𝑎 
Let 𝑠 = 𝑦/𝑛, then:   𝑦𝑓(𝑎) − 𝑛 ln𝑎 = 𝑛(𝑠𝑎 + 𝑡𝑠𝐹(𝑎) − ln 𝑎) 
The critical point is defined by: 
      𝑠 + 𝑡𝑠𝜕𝐹(𝑎)/𝜕𝑎 − 1/𝑎 = 0   
where:   1/𝑎 = (1/𝑎ℓ , ℓ = 1, 2, …,d). 
If 𝑡 =0, the critical point a𝑐 is real.  
We note that the probabilistic distribution is defined by the imaginary part of the complex critical point a𝑐. 
Theoretically, 𝑡 ≤ 𝛿, but, as the imaginary part of 𝛾(𝑎) gets 𝐻𝑛−1(y)=0, we have to choose the real part of 
𝛾(𝑎) maximal as the steepest descent’s method needs to have the best approximation of 𝐻𝑛−1(y). Then, 
𝑡 can be arbitrary to this purpose. As a𝑐 is complex, we note 𝑎 the real part of the critical point.  
 
Contrary to the previous chapter, we don’t write the real part of critical point 𝑎 as a function of 𝑠, but 𝑠 as a 
function of 𝑎. For fixed 𝑎, we recognize a linear affine equation of 𝑠 depending on the parameter t. We 

have to find a particular solution 𝑠𝑎 : 
    𝑠𝑎 + 𝑡𝑠𝑎𝜕𝐹(𝑎)/𝜕𝑎 − 1/𝑎 = 0 
 
Formally:   𝑠𝑎 = (𝐼𝑑 + 𝑡𝜕𝐹(𝑎)/𝜕𝑎)−11/𝑎 
The equation of 𝑠𝑎 is now an elementary Fredholm’s equation and has a unique solution for all t≠-1/𝜆𝑎 
where 𝜆𝑎  is eigenvalue of 𝜕𝐹(𝑎)/𝜕𝑎 at the fixed critical point 𝑎, 

Let the general solution be  𝑠 =𝑠𝑎 +𝑠 , where 𝑠𝑎 is a particular solution of the general equation: 
As:      𝑠𝑎 +𝑠 + 𝑡(𝑠𝑎 +𝑠)𝜕𝐹(𝑎)/𝜕𝑎 − 1/𝑎 = 0 
then :     𝑠 = −𝑡𝑠𝜕𝐹(𝑎)/𝜕𝑎 
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𝑠 is eigenvector of  𝜕𝐹(𝑎)/𝜕𝑎 for the eigenvalue 𝜆𝑎 and giving t=-1/𝜆𝑎 maximal positive  ; 𝑠  is defined 
with a multiplicative constant arbitrary. The general solution is: 𝑠 =𝑠𝑎 +𝑠 and shows a discontinuity at the 
eigenvalues 𝜆𝑎.■ 
 
Remark 5: calculation of 𝑠𝑎 

𝑠𝑎 is obtained with (𝐼𝑑 + 𝑡𝜕𝐹(𝑎)/𝜕𝑎)−1  for all t≠-1/𝜆𝑎which doesn’t belong to the spectrum of -𝜕𝐹(𝑎)/
𝜕𝑎 with the series development of t. 
 
3 - Encoding the solution 
As previously, if the number 𝑛ℓ of derivations of the ℓ-th coordinate 𝑎ℓ of a becomes 𝑛ℓ +1, we cannot use 
the simplified formula because μ=nd+1. We find a condition on the ℓ-th coordinate 𝑎ℓ of a. 
 
Theorem 
For each fixed point of F, we have d asymptotic curves verifying the Perron-Frobenius’s equation and 
solutions of the the differential equation da/dt= F(a). These curves are defined by 2d equations under the 
condition that the hessian of F be definite negative : 
- 𝑎 is critical point of the Plancherel-Rotach’s function: 

 𝑠 + 𝑡𝑠𝜕𝐹(𝑎)/𝜕𝑎 = 1/𝑎 
Where the vector 1/𝑎 = (1/𝑎ℓ , ℓ = 1, 2, …,d) and the vector  s is d-dimensional. 
If the critical point 𝑎  is known and if 𝑠𝑎 is particular solution of 𝑠𝑎 + 𝑡𝑠𝑎𝜕𝐹(𝑎)/𝜕𝑎 − 1/𝑎 = 0.  s is 
solution of this linear affine equation: 

 𝑠 =𝑠𝑎+𝑠,  
where 𝑠 is eigenvector of the matrix 𝜕𝐹(𝑎)/𝜕𝑎 at the critical point 𝑎 for the eigenvalue  𝜆𝑎  and for  t=-
1/𝜆𝑎 > 0. The eigenvalue 1/𝑡 can be seen as critical asymptotic frequency. 
 
■ The theorem takes the previous proposition, and adds the coding of the coordinates.  Demonstration of 
this encoding is the same that the one of the coding before but with f(a)= a +𝑡 F(a) where we take two 
times μ=nd and μ=nd+1ℓ  with one further derivation of the coordinate 𝑎ℓ : 
at μ:      𝑦 + 𝑡𝑦𝜕𝐹(𝑎)/𝜕𝑎 = 𝑛/𝑎 
at μ +m for 𝑎ℓ:   𝑦ℓ + 𝑡𝑦𝜕𝐹(𝑎)/𝜕𝑎ℓ = 𝑛/𝑎ℓ+ (1/𝑎ℓ) 
with (1/𝑎ℓ) = (0, … ,1/𝑎ℓ, 0. . .0). Only the particular solution changes with 𝑦ℓ  = (𝑛 + 1)/𝑎ℓ , instead of 
𝑦ℓ = 𝑛/𝑎ℓ  ,  solution of the homogenous equation is unchanged, that means, 𝑠  doesn’t change. The 
equations of the critical point give with summation at μ+1ℓ=nd+1ℓ : 
 𝑦𝑎 = (µ + 1) − 𝑡𝑦𝑎𝜕𝐹(𝑎)/𝜕𝑎 − (1/𝑛)𝑡𝑎ℓ𝑦𝜕𝐹(𝑎)/𝜕𝑎ℓ  
Substituting 𝑦𝑎 by this expression in the Plancherel-Rotach’s function, we have at µ + 1ℓ :  
(µ + 1)𝛾µ+1(𝑎) = 

 = (µ + 1) + 𝑡𝑦𝐹(𝑎) − 𝑡𝑦𝑎𝜕𝐹(𝑎)
𝜕𝑎

− 𝑛 ln 𝑎 + (1/𝑛)(𝑡𝑦ℓ𝐹ℓ(𝑎) − 𝑎ℓ𝑡𝑦𝜕𝐹(𝑎)/𝜕𝑎ℓ)– ln 𝑎ℓ 

 =  µ𝜕(𝛾µ(𝑎) + 1 + (1/𝑛)(𝑡𝑦ℓ𝐹ℓ(𝑎) − 𝑎ℓ𝑡𝑦𝜕𝐹(𝑎)/𝜕𝑎ℓ)  −  ln 𝑎ℓ 
 
The resolving gap:  𝜕(𝜕𝑛(𝑒𝑦𝑓(𝑎))/𝜕𝑎𝑛)𝜕𝑡|𝑎=0,  

must be null at µ and at µ+1ℓ : 𝜕(𝜕1𝜕𝑛(𝑒𝑦𝑓(𝑎))/𝜕𝑎𝑛 𝜕𝑎ℓ)𝜕𝑡|𝑎=0 = 0 
After approximation of the Cauchy’s representation, we obtain from the difference, if 𝑡 ≠ 0 : 
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 𝑦ℓ𝐹ℓ(𝑎) − 𝑎ℓ𝑦𝜕𝐹(𝑎)/𝜕𝑎ℓ = 0   ℓ = 1, 2, …,d 
Putting: 𝑠 =𝑠𝑎+𝑠:   (𝑠𝑎ℓ+𝑠ℓ)𝐹ℓ(𝑎) − 𝑎ℓ(𝑠𝑎+𝑠)𝜕𝐹(𝑎)/𝜕𝑎ℓ = 0 
We recall that we have 2d equations with 2d+1 unknown variable. ■ 
 
Remark 6: 
If we can take 𝛿 so small such as: 0≤ 𝑡 ≤ 𝛿 < inf (𝜆𝑎, ∀𝑎 ∈ 𝐶), solution is unique and gives the classical 
solution; if not inf  (𝜆𝑎) = 0 , we must have a relation de compatibility. 
Finally, we don’t forget that this study is valid in the neighbourhood of each fixed point of F. Some curious 
situations happen when the distribution around a fixed point dominates an another of the same fixed point 
(phenomenon of Stokes) or at the frontier of fixed point. Or when the hessian degenerate. 
 
Some questions remain pending: 
Are the curves solutions be closed? 
In physics, Can we reach the critical limit frequencies for certain phenomenon? ` 
Remark 7: 
In this paper, we have insisted about the real coordinates of the critical point 𝑎 . But, the complex 
coordinates of 𝑎 give the probability of presence of the solution of differential equation. 
Remark 8: 
We note that the resolving equation of the differential iteration is: 

    𝐸�𝑒𝑦𝑋(1 − 𝑒𝛿𝑦𝐹(𝑋))� = −E(∫ �𝑑𝑒
𝑡𝑦𝐹(𝑋)

𝑑𝑡
�𝛿

0 d𝑡) =  0 

As an iteration acts as a derivation, we obtain after n derivations: 

    E �∫  𝜕
𝑛

𝜕𝑋𝑛
�𝑑𝑒

𝑡𝑦𝐹(𝑋)

𝑑𝑡
�𝛿

0 d𝑡� = E �−∫ (𝜕
𝑛�𝑦𝐹(𝑋)𝑒𝑦𝑋+𝑡𝑦𝐹(𝑋)�

𝜕𝑋𝑛
)𝛿

0 d𝑡� =  0 

That is coherent with our calculations. 
 
 
 

Case where the hessian is degenerate: equation of Lorenz 
 
Generally, the hessian is not definite negative. The Lorenz’s equation is an example particularly important 
because it can be broken down into three independent iterations which have a remarkable feature: a partial 
linearity; an iteration with a negative hessian which induces a probabilistic solution and another with a 
positive hessian. It is an ideal example to clarify the previous results.  
However, as there is an interpenetration of the distributions related to each fixed point, the connection 
between the various results remains delicate. The probabilistic presentation seems to be the least bad: it 
gives the probability of presence except at the places where the domination changes; in this case, we go 
from a basin of iteration to an another.  
 
- Presentation of the differential iteration at its fixed points. These equations are written in our notations: 
 da / dt = F(a) where a = (a, b, c):  

da/dt =𝜎(b-a) 
db/dt = 𝜌𝑎– b-ac 
dc/dt = -𝛽c + ab  
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the differential iteration 𝒂1 = f(a) associated with a given path 𝛿= t / n is the following: 
𝑎1=a+ 𝛿𝜎(b-a) 
𝑏1=b+ 𝛿(𝜌𝑎– b-ac)  
𝑐1=c+ 𝛿(-𝛽c + ab)  

We recall the known results concerning the fixed points:  

The fixed points are zeros of F(a)=0. If 𝜌 >1 and 𝛼 = �𝛽(𝜌 − 1)  , it exists three fixed points: 
The point 0= (0,0,0), and two others symmetric to the axis of c: 

𝛼+ = (𝛼, 𝛼, 𝛼2/𝛽) et 𝛼− = (-𝛼, -𝛼, 𝛼2/𝛽).  
At 0, the eigenvalue’s equation 𝜆 of the linear part is: 

(𝛽+ 𝜆) [(𝜎 + 𝜆) (1+ 𝜆)- 𝜎𝜌] =0,  
But, at 𝛼+ or at 𝛼−:  

𝜆(𝛽+ 𝜆)(1+𝜎 + 𝜆)- 𝛼2(2𝜎 +  𝜆) =0, 
Coefficients 𝛽,𝜎,𝜌  are such as these three repellent fixed points, that means we have to study the 
distributions around each fixed point. We don’t speak here about attractive cycles, resonances, and some 
particular values of the parameters, etc. It remains many things to clarify.  
The iteration applies a compact set C in itself for 𝛿 > t > 0 (the phenomenon occurring between a cold 
sphere at -50° and hot sphere, the earth, at +15° as the terrestrial atmosphere is modelled).  
This iteration is quadratic, but has a linearity in a.  
 
Analysis of the hessian 
Projecting f(a) onto an axis y = (x, y, z), we write:  

yf(a)= L(a) + 𝛿Q(a) 
where L(a) is linear for a: L(a)=x(a+ 𝛿𝜎(b-a))+y(b+ 𝛿(𝜌𝑎– b))+zc(1- 𝛿𝛽) 

  L(a)=a𝐿1 + 𝑏𝐿2+c𝐿3  
with :     𝐿1= x(1- 𝛿𝜎) + 𝛿𝜌𝑦  
     𝐿2= 𝛿𝜎𝑥+ y(1- 𝛿) 

𝐿3 = z (1-𝛿𝛽) 
and Q(a) is quadratic:   𝛿Q(a) =𝛿(zb-yc)a  
The hessian is degenerated and not definite negative. We cannot apply the previous results. On the other 
hand, we can always use the lemma which requires: 𝜕(𝜕𝑛(𝑒𝑦𝑓(𝑎))/𝜕𝑎𝑛)𝜕𝛿|𝑎=0 = 0. 
 
A- Before to study this equation, we examine the quadratic application and its matrix Q(a) : 
 

     Q=�
0 𝑧 −𝑦
𝑧 0 0

_ − 𝑦 0 0
� 

If 𝜇 =�𝑦2 + 𝑧2 is the positive eigenvalue of the characteristic equation of Q : 𝜇 (𝜇2 − 𝑦2 − 𝑧2)=0 
The matrix of the eigenvectors T is orthogonal and constant for all a. 

    T= 1
𝜇√2

�
0 𝜇 𝜇
𝑦√2 −𝑧 𝑧
_𝑧√2 𝑦 −𝑦

� 

Corresponding to the diagonal matrix of the eigenvectors. 
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      Λ=�
0 0 0
0 −𝜇 0
_0 0 𝜇

� 

 
- Changing of basis 
We calculate directly with the Hermite’s polynomials. 
The application u = Ta with u = (u, v, w) is orthogonal and transforms yf(a) in 𝐺 (u) = yf(T’u)   :  
- Q(a) in:   Q(u)=𝛿𝜇(𝑤2 − 𝑣2) 
- L(a) in:    LT’u 
Where T’ means the transposed of the orthogonal matrix T, which is also its inverse: T’=𝑇−1. 
Now, in the new basis u, the function 𝒚𝑓(𝒂)  is factorized: 𝑦𝑓(𝑇′𝒖) = 𝐺 (u) into three 
independent functions: 

𝐺(u)= 𝑔1(u)+ 𝑔2(v)+ 𝑔3(w) 
with: 

 𝑔1(u) = 𝑙1u  
      𝑔2(v)= 𝑙2v-𝛿𝜇 𝑣2 

 𝑔3(w)= 𝑙3w +𝛿 𝜇 𝑤2  
We get 3 independent iterations:  
- the first is linear; 
- the second is a random iteration; 
- the third remains positive, except if 𝑙3 = 0. 
To calculate 𝑙1, 𝑙2 et 𝑙3, we form  L(a)=a(x- 𝛿𝜎𝑥 + 𝛿𝜌𝑦) + 𝑏(𝛿𝜎𝑥+ y(1- 𝛿))+zc(1-𝛿𝛽)  
With:      𝐿1= x(1- 𝛿𝜎) + 𝛿𝜌𝑦 ;  𝐿2= 𝛿𝜎𝑥+ y(1- 𝛿) ; 𝐿3= z(1-𝛿𝛽) 

Then:    lu=(𝑙1, 𝑙2, 𝑙3)𝒖 =LT’u=(𝐿1, 𝐿2, 𝐿3) 1
𝜇√2

�
0 𝑦√2 𝑧√2
𝜇 −𝑧 𝑦
𝜇 𝑧 −𝑦

� 

 𝑙1= (𝛿𝜎𝑥+ y(1- 𝛿)+z(1-𝛿𝛽))/ √2 
 𝑙2 = (x- 𝛿𝜎𝑥 + 𝛿𝜌𝑦)𝑦/ 𝜇 − (𝛿𝜎𝑥+ y(1- 𝛿))-z(1-𝛿𝛽))z/𝜇 √2 
𝑙3 = (x- 𝛿𝜎𝑥 + 𝛿𝜌𝑦)𝑧/ 𝜇 + (𝛿𝜎𝑥+ y(1- 𝛿))-z(1-𝛿𝛽))y/𝜇 √2 

 
B- Let the resolving gap   𝑒𝑛 = 𝜕(𝜕𝑛(𝑒𝑦𝑓(𝒂))/𝜕𝒂𝑛)𝜕𝛿|𝑎=0 = 0  
For ∀ 𝑡 ≤ 𝛿. Putting 𝒂 = 𝑇’𝒖, we have: 
    𝑒𝑛 = 𝑇𝑛𝜕(𝜕𝑛(𝑒𝑦𝑓(𝑇′𝒖))/𝜕𝒖𝑛)𝜕𝛿|𝒖=0 = 0 
𝜕𝑛(𝑒𝑦𝑓(𝑇′𝒖))/𝜕𝒖𝑛 = 𝜕𝑛(𝑒𝑔1(𝑢))/𝜕𝑢𝑛 .  𝜕𝑛(𝑒𝑔2(𝑣))/𝜕𝑣𝑛.  𝜕𝑛(𝑒𝑔3(𝑤))/𝜕𝑤𝑛   

This gives:    𝜕𝑛(𝑒𝑔1(𝑢))/𝜕𝑢𝑛= 𝑙1
𝑛𝑒𝑔1(𝑢) ; 

 𝜕𝑛(𝑒𝑔2(𝑣))/𝜕𝑣𝑛 = 𝐻𝑛(𝑔2(𝑣))𝑒𝑔2(𝑣) ; 
      𝜕𝑛(𝑒𝑔3(𝑤))/𝜕𝑤𝑛 = 𝐻𝑛(𝑔3(𝑤))𝑒𝑔3(𝑤) 
And:     𝑒𝑛 = 𝜕 𝑙1

𝑛𝐻𝑛(𝑔2(𝑣))𝐻𝑛(𝑔3(𝑤))(𝑒𝑦𝑓(𝑻′𝒖))𝜕𝛿|𝑢=0 = 0 
The main results 
With the same calculations of encodings and interchanging the derivations, we have: 
𝜕 𝑙1

𝑛/𝜕𝛿=0; 𝜕 𝐻𝑛(𝑔2(𝑣))/𝜕𝛿=0; 𝜕 𝐻𝑛(𝑔3(𝑤))/𝜕𝛿=0 
We study separately the three expressions: 

 - First: 𝜕 𝑙1
𝑛/𝜕𝛿=n(𝜕𝑙1 /𝜕𝛿)𝑙1

𝑛−1 =0: Either  𝜕𝑙1 /𝜕𝛿= 𝜎𝑥 − 𝑦-z𝛽 =0, or: 𝑙1~(𝑦 + 𝑧)/√2 = 0 
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- Second: the polynomial 𝐻𝑛(𝑔3(𝑤)) when 𝑤 = 0 is a Hermite’s polynomial 𝐻𝑛(𝑥) where x is x=𝑖𝑙3/

(�2𝛿𝜇 . this polynomial 𝑖𝑛𝐻𝑛(𝑖𝑙3/(�2𝛿𝜇) is always positive whatever n. In a general way :  

𝜕 𝐻𝑛(𝑥)/𝜕𝛿=n𝐻𝑛−1(𝑥) 𝜕 𝑥/𝜕𝛿=0. So: 𝑑(𝑙3/�2𝛿𝜇 )/𝑑𝛿 = 0, and 𝑙3~ (x𝑧√2 + (y-z)y)/𝜇 √2=0 
- Third: in the case of 𝐻𝑛(𝑔2(𝑤)), in addition to the solution 𝑙2 = 0, we have to find the possible invariant 

distribution of 𝐻𝑛(𝑙2/�2𝛿𝜇) = 0. 
Let the integrand of 𝑛𝛾(𝑤) = 𝑔2(𝑤) − 𝑛ln 𝑤 

When 𝛿 → 0, 𝑙2~ (x 𝑦√2 +(y-z) z)/ √2𝜇 with 𝜇 =�𝑦2 + 𝑧2. 
By normalization of the coordinates x = (x, y, z)= 𝛿ns = (𝛿nr, 𝛿ns, 𝛿nt), we obtain: 

 𝑙2~𝑛𝛿(𝑟𝑠√2 + (𝑠 − 𝑡)𝑡 )/ 2(𝑠2 + 𝑡2)
1
2 = 𝑛𝛿𝑙2(𝒔)  

    𝛿𝜇= 𝑛𝛿2(𝑠2 + 𝑡2)1/2 = 𝑛𝛿2 𝜇(𝒔)  
 𝑛𝛾(𝑣) = n(𝛿𝑙2(𝒔)𝑣 − 𝜇(𝒔)(𝛿𝑣)2 − ln 𝛿𝑣 + ln 𝛿) 
Putting 𝛿𝑣 = v, we have:   𝑛𝛾(v) = n(𝑙2(𝒔)v − 𝜇(𝒔)v2 − ln v) 
We search the critical point:  𝑑𝛾(v)/𝑑v = 𝑙2(𝒔) − 2𝜇(𝒔)v − 1/v = 0 

The imaginary roots are:   v(𝒔) = 𝑙2(𝒔)/4𝜇(𝒔) ± 𝑖�1/2𝜇(𝒔) − 𝑙2(𝒔)2/16𝜇(𝒔)2 
Under the condition: 𝑙2(𝒔)2 < 8𝜇(𝒔): 

𝑙3~(x𝑧√2 + (y-z)y)/𝜇 √2=0 
Implies:    𝑙2(𝒔) = −(𝑠 − 𝑡)2 / √2(𝑠2 + 𝑡2)1/2 
The condition becomes; (𝑠 − 𝑡)4 / (𝑠2 + 𝑡2)3/2 < 16 
𝑙1 = 0  implies 𝑠 + 𝑡 = 0, then: 𝑠 < 8 

In any case, we observe that the conditions  𝑙3 = 𝑙1 = 0  allow us to express r et t depending on s and we 
can write that the density of zeros of s is now:  

 q(s)ds =Prob (1 zero between s, s+ds) = |𝐼𝑚𝑓(v(𝑠))|ds/ 𝜋 

    q(s)ds =𝑙2(𝒔)�8𝜇(𝒔) − 𝑙2(𝒔)2/8𝜋𝜇(𝒔)  = d𝜅 

𝜅 follows a uniform low on (0,1) with: 𝑠 + 𝑡 = 0 (or 𝜎𝑥 − 𝑦-z𝛽 =0) and: x 𝑦√2 +(y-z) z+0 
We also remark that the normalization doesn’t affect the coefficients of the orthogonal matrix: 
 T(x, y, z)= 𝑇(𝛿𝑛r, 𝑛𝛿s, 𝑛𝛿 t)= 𝑇(r, s, t)  
 
Proposition 
The solution around the fixed point 0 consists of the intersection of  
the familly of random surfaces defined by: 𝑙2/2√𝜇 ⟼ 𝑙𝑜𝑤 𝛽(1/2,1/2)  with  
The surfaces 𝜎𝑥 − 𝑦-z𝛽 =0 et (- 𝜎𝑥 + 𝜌𝑦)𝑧 + (𝜎𝑥- y+z𝛽)y/√2 =0. 
 
We now verify similar results the two other fixed points 𝜶+ et 𝜶−. 
 
C - Calculation for the two other fixed points  
We search the distributions around the two other fixed points. To pass from the fixed point 0 to the fixed 
point  𝛼+ or 𝛼− , it is sufficient to put in the differential iteration instead of a =(a,b,c) 
a’+𝜶+ = (a’+𝛼, b’+𝛼, c’+𝛼2/𝛽) and a’+𝜶− = (a’-𝛼, b’-𝛼, c’+𝛼2/𝛽) : 
So, for a’+𝜶+ :   𝒂1 =f(a) where 𝒂1 = (𝑎1, 𝑏1 𝑐1) becomes 𝒂1 =𝒂′1 +𝛼+=f(a) =f(a’+𝛼+) ;  
then :     𝒂′1 = a’+𝛿F(a’+𝛼+)  
And 𝒂1 =f(a):    𝑎1 =a+ 𝛿𝜎(b-a) 
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𝑏1=b+ 𝛿(𝜌𝑎– b-ac)  
𝑐1=c+ 𝛿(-𝛽c + ab)  

Becomes for a+𝛼+ (we remove apostrophe of a’ to make the notation less cluttered): 
    𝑎′1=a + 𝛿𝜎(b-a) = 𝑎1 

𝑏′1=b + 𝛿(𝜌𝑎– b -ac) +𝛿(- 𝛼𝑐-𝑎𝛼2/𝛽)= 𝑏1 + 𝛿(- 𝛼𝑐-𝑎𝛼2/𝛽) 
𝑐′1=c + 𝛿(-𝛽c+ab) + 𝛿𝛼 (a+𝑏)= 𝑐1+ 𝛿𝛼 (a+𝑏) 

The projection of f(a) on an axis y = (x, y, z) can be written:  
yf(a’) = 𝑥𝑎1+𝑦𝑏1 + 𝛿𝑦(- 𝛼𝑐-𝑎𝛼2/𝛽)+z𝑐1+ 𝑧𝛿𝛼(a+𝑏) 
yf(a’) = yf(a)+ 𝛿(a (𝑧𝛼-𝑦𝛼2/𝛽) +𝑧𝛼𝑏- 𝑦𝛼𝑐) 

and Q(a) is invariant:   yf(a’) = L’(a) + 𝛿Q(a) 
L(a) is linear for a:  L’(a)= L(a)+ 𝛿(𝑎 (𝑧𝛼-𝑦𝛼2/𝛽) +𝑧𝛼𝑏- 𝑦𝛼𝑐) 

  L’(a)=a𝐿′1 + 𝑏𝐿′2+c𝐿′3  
with:    𝐿′1= 𝐿1+ 𝛿(𝑧𝛼-𝑦𝛼2/𝛽)   
     𝐿′2= 𝐿2 + 𝛿𝑧𝛼 

𝐿′3 = 𝐿3 − 𝛿𝑦𝛼 
Q(a), then T and Λ remain invariant.  
 

We calculate 𝑙′1, 𝑙′2 et 𝑙′3, with  L(a) = a(x- 𝛿𝜎𝑥 + 𝛿𝜌𝑦) + 𝑏(𝛿𝜎𝑥+ y(1- 𝛿))+zc(1-𝛿𝛽) : 
Where   𝐿1 = x(1- 𝛿𝜎) + 𝛿𝜌𝑦 ;  𝐿2= 𝛿𝜎𝑥+ y(1- 𝛿) ; 𝐿3= z(1-𝛿𝛽) 
 And:    l’u = ( 𝑙′1,  𝑙′2 et 𝑙′3)𝒖  = LT’u=  (𝐿1 + 𝛿(𝑧𝛼 -𝑦𝛼2 /𝛽), 𝐿2 + 𝛿𝑧𝛼,  𝐿3 −

                                                          𝛿𝑦𝛼) 1
𝜇√2

�
0 𝑦√2 𝑧√2
𝜇 −𝑧 𝑦
𝜇 𝑧 −𝑦

� 

The results are modified: 
    𝑙′1 = 𝑙′1 +  𝛿𝛼(𝑧 −𝑦)/√2 

    𝑙′2 = 𝑙′2 +  𝛿𝛼((𝑧-𝑦𝛼/𝛽)𝑦√2-z(𝑧 + 𝑦) )/ 𝜇√2 
    𝑙′3 = 𝑙3 +  𝛿𝛼((𝑧-𝑦𝛼/𝛽)𝑧√2+y(𝑧 + 𝑦) )/ 𝜇√2 
The following calculations remains the same. 
When a becomes a+𝛼−  𝑎"1= a + 𝛿𝜎(b-a) = 𝑎1 

𝑏"1= b + 𝛿(𝜌𝑎– b -ac) +𝛿(𝛼𝑐-𝑎𝛼2/𝛽) = 𝑏1 + 𝛿(𝛼𝑐-𝑎𝛼2/𝛽) 
𝑐"1= c + 𝛿(-𝛽c+ab) - 𝛿𝛼 (a+𝑏) = 𝑐1- 𝛿𝛼 (a+𝑏) 

 
It remains the problems of domination and frontiers between the various distributions attached at each fixed 
point. 
 
Remark. 9  
We have to go back to the original coordinates. And the solution gives only probabilities of presence... 
 

Conclusion 
 
It is difficult to review all the perspectives of this first study, whether it’s for mathematics or physics. But 
we can develop the theory without difficulties for all the ordinary differential equations quadratic, as it has 
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been done for the Lorenz’s equations. This will allow to accumulate experience useful to continue. We can 
also apply these methods to the partial derivatives equations. 
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