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Abstract. In this paper, we have presented computational methods for solv-
ing stochastic di¤erential equations (SDDEs) with distuributed delay term in
the drift and di¤usion co¢ cient. Our purpose is comparatively investigates
some numerical methods to solve stochastic delay di¤erential equations. We
indicate the nature of the methods of interest and examine convergence of
them. By presenting some numerical experiments we illustrate the theorical
results and �nally the results numerical methods are supported with graphs
and error tables and discussed about which method is useful and superior and
in which cases these methods can be used.

1. Introduction

In this paper we will study the problem of the numerical solution of SDDEs of
Itô form

dX(t) = f(t;X(t); X(t� �))dt+ g(t;X(t); X(t� �))dW (t); t 2 [0; T ]
X(t) =  (t); t 2 [�� ; 0](1.1)

with given f; g drift and di¤usion co¢ cient, Wiener noise W and given delay
parameter � > 0, with a prescribed initial function  (t).
In recent years there has been interest in stochastic di¤erential equatins and ap-

plied �elds such as population dynamics, population growth with incubation/gestation
period, logistic growth, advertising models, �nancial mathematics, computational
biology, epidemiology, physiology, optics and mechanics. In many areas of science
we need to construct mathematical models to understand the structure and behav-
ior of systems. Because of the noise, we do not have enough information about
the parameters of the system. So, we construct SDEs with the addition of that
noise term into the deterministic models. A careful study of SDEs is a clear under-
standing of the behavoir and e¤ects of randomness on change and stability. A basic
stochastic concepts are considered in [1]. For the theoretical analysis on SDEs refer
to ([2], [3]) and for applications of numerical methods for SDEs, see ([6]-[13]).
In many applications of SDEs, it is assumed that behavior of the system does

not depend on the past. However, in many applications of science phenomena do
not show their e¤ect at the moment of their occurrence ([16]- [17]). So, we use
new terms that, namely, time delay that is obtained from the past states of the
system could be added in the model to create a more realistic one. SDDEs give
a mathematical formulation for such a system and in many areas of science, there
is an increasing interest in the investigation of SDDEs. The analysis of numerical
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methods for SDDEs is based on the numerical analysis of delay di¤erential equatins
and the numerical analysis of SDEs. For the theory of SDDEs, see ([4], [5]) and
for other aspects of the qualitative theory of it refer to ([5], [14]) and the refer-
ences therein. For the application of SDDEs, one could refer to ([15]-[25]). For
the SDDEs, explicit solutions cannot easlly be obtained. So, we need numerical
techniques to approximate solution process and understand behavior of numerical
solution. The numerical analysis methods for SDDEs are similar to the numeri-
cal methods for DDEs but it is not a straight forward generalization of numerical
analysis of DDEs and SDEs. For the numerical treatment of DDEs, one can see
([26]-[32]).
Although SDDEs can be a special class of SDEs, but delay parameter in SDDEs

may intrigue instabilities in the underlying SDDEs while the corresponding SDEs
are stable ([29], [33]). The formulation of numerical methods requires a slightly
di¤erent calculus because of the delay nature of SDDEs or anticipative calculus
([18], [34]-[35]). The research on numerical methods for SDDEs is still new. The
convergence of Euler method for SDDEs in mean-square sense was studied by Baker
and Buckwar ([52]). Improving the rate of convergence for numerical methods in
SDDEs by introducing a way of expanding the Stratonovich Taylor expansion of
SDDEs and then proposed a Milstein scheme with the rate of convergence of 1.0
was done by Kloeden & Platen ([12]). Introduced Itô formula with tame function
in order to derive the same order of convergence but with di¤erent scheme was
introduced by Hu et al. ([34]). Modi�cation of Milstein scheme was contributed
by Hofmann & Muller ([53]). Strong discrete time approximations of SDDEs
are derived by Kühler and Platen ([38]). Convergence analysis for explicit one-
step methods and a number of numerical stability results have been derived by
Baker and Buckwar ([37]-[38]). Some de�nitions and Euler Maruyama scheme for
SDDEs with detailed information and proofs, one can see ([33], [39], [40]-[43]).
Most numerical methods for SDDEs have been investigated the convergence and
stability of time-discretization schemes ([20], [22]-[44]). The Euler-type schemes
are stated in ([36], [40], [45]-[48]), the split-step schemes ([47]-[49]), the Milstein
schemes in ([4], [10], [12], [54]-[60], ), the Runge-Kutta Method ([61]-[76], [22], [42]),
the Heun Method ([86]-[93]), and also some multistep schemes ([29], [37], [39]-[40]).
Numerical stability plays an important role in numerical analysis. Stability theory
for numerical simulations of SDDEs typically deals with mean-square behavior. The
delay dependent stability of the stochastic theta method was studied by Huang et al.
([69]). The mean-square stability of the stochastic theta method for a linear scalar
SDDE was studied by Liu et al. ([60]). Developed A pth mean stability analysis
of the Euler-Maruyama type methods for a linear SDDE was developed by Baker
and Buckwar ([65]). The mean-square exponential stability of a split-step Euler
method was investigated by Wang and Gan ([47]). Some stability conditions for
the Milstein method was obtained by Wang and Zhang ([67]). Nonlinear stability of
numerical methods, including Euler-type and the theta methods, has also received
attention ([83]-[87]).
In this paper we shall be interested in obtaining numerical solutions of an SDDE

by several numerical methods and comprasin results of methods. We indicate the
nature of numerical methods of the stochastic delay di¤erential equation and give
convergence for the methods. A illustrative numerical example using a strong Euler-
Maruyama scheme, Milstein method, Heun Method and Runge-Kutta Method are
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provided and comprasion with together. We give a comparison study between
some numerical methods for SDDEs. Then, some numerical methods for �nding
approximate solution of SDDEs are introduced and the properties of these methods
are studied.

2. Discrete time approximation

In this section, we note de�nation and property of a discrete time approxima-
tion, and increment of time and standard Brownian motion for SDDEs. Then, we
will construct discrete time approximations to establish of the discrete stochastic
di¤erential equation with time delay for numerical methods.
Let us consider the SDDE that is given in (1.1), where we have a constant �nite

time delay � > 0. We formulate Lipschitz and growth conditions to ensure the
existence of a unique solution of (1.1). We are going to consider our general SDDE
in equation (2.5) in the autonomous form for simplicity, i.e., functions f and g do
not depend explicitly on t in (1.1). Suppose the delay time � > 0 is �xed and the
observation time T is greater than � . Consider a partition of the interval [0; T ],
0 = t0 < t1 < ::: < tN = T with uniform step size h then h = T=N and tn = nh
where n = 0; 1; :::; N . Moreover, we de�ne a positive integer number N� such that
N�h = � . We de�ne the increment of time and standard Brownian motion with a
uniform step size h :

�tn+1 = tn+1 � tn = h;

�Wn+1 = W (tn+1)�W (tn) =W (h) =
p
hZn+1;

for some random variable Zn+1 2 N(0; 1), where 0 � n � N � 1. Suppose that ~Xn

is an approximation of the strong solution to equation

dX(t) = f(X(t); X(t� �))dt+ g(X(t); X(t� �))dW (t); t 2 [0; T ]
X(t) =  (t); t 2 [�� ; 0](2.1)

using a stochastic explicit one step method with an increment function �;

~Xn+1 = ~Xn + �(h; ~Xn; ~Xn�N�
;4Wn+1); 0 � n � N � 1

~Xn�N�
=  (tn � �); 0 � n � N� ;(2.2)

where

�(h; ~Xn; ~Xn�N�
;�Wn+1) = f( ~Xn; ~Xn�N�

)�tn+1 + g( ~Xn; ~Xn�N�
)�Wn+1:

We will assume that for any x;x0; y; y0 2 R, the increment function � ful�lls the
following conditions:

jE (�(h; x; y;�Wn+1)� �(h; x0; y0;�Wn+1))j � C1h(jx� x0j+ jy � y0j);

E
�
j�(h; x; y;�Wn+1)� �(h; x0; y0;�Wn+1)j2

�
� C2h(jx� x0j2 + jy � y0j2);(2.3)

where C1 and C2 are some positive constant numbers. ~X(tn+1) denotes the locally
approximate value obtained after just one step of equation (2.2) i.e.,

~X (tn+1) = X (tn) + �(h;X (tn) ; X (tn�N�
) ;�Wn+1);
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where X(tn+1) and ~Xn+1denotes the values of the exact solution of equation
(2.1) at the point tn+1 and the value of approximate solution using equation (2.2),
respectively.
Now, we are going to provide some de�nitions that are related to the way of

measuring the accuracy of a numerical approximate solution to SDDE.

De�nition 1. The local error of
n
~X (tn)

o
between two consecutive time is the

sequence of random variables:

�n = X (tn)� ~X (tn) ; n = 1; 2; :::; N:

The local error measures the di¤erence between the approximation and the exact
solution on a subinterval of the integration.

De�nition 2. The global error of
n
~Xn

o
from the beginning point to the end point

is the sequence of random variables:

�n = X (tn)� ~Xn; n = 1; 2; :::; N:

The global error measures the di¤erence between the approximation and the exact
solution over the entire integration range.

De�nition 3. If the explicit one step method de�ned in equation (2.2) satis�es the
following conditions:

max
1�n�N

jE(�n)j � Chp1 as h �! 0;

max
1�n�N

�
E j�nj2

� 1
2 � Chp2 as h �! 0;

for some positive constants p2 � 1
2 , p1 � p2+

1
2and C which does not depend on

h but may depend on the initial condition  and T then it is called consistent with
order p1in the mean and with order p2 in the mean square sense.

De�nition 4. The method in equation (2.2) is convergent in the mean with order
p1 and in the mean square with order p2 if the following conditions are satis�ed

max
1�n�N

jE(�n)j � Chp1 as h �! 0;

max
1�n�N

�
E j�nj2

� 1
2 � Chp2 as h �! 0;

again the constant C is independent of h, but may depends on the initial function
and T .

Theorem 1. Assume that drift and di¤usion terms namely functions f and g ful-
�ll local Lipschitz condition and linear growth condition. Moreover, suppose the
increment function in equation (2.2) satis�es conditions in equation (2.3) and the
method in equation (2.2) is consistent with order p1 in the mean and order p2 in the
mean square sense. Then approximation in equation (2.2) for the equation (2.1) is
convergent in L2 with order p = p2 � 1

2which means that convergence occurs in the
mean square sense and we can write

max
1�n�N

�
E j�nj2

� 1
2 � Chp as h �! 0;

Proof. The detailed proof can be found in ([59]). �
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Suitably appropriate numerical methods for SDDE�s should take into account a
detailed analysis of the order of convergence as well as stability of the numerical
scheme and the behavior of the errors. Now, we give some de�nitions about conver-
gence and consistency of discrete time approximations of a numerical approximate
solution to SDDE.

2.1. Convergence and consistency of discrete time approximations. The
strong order of convergence gives the rate at which the mean of the errors decreases
as the time step tends to zero and it is very demanding to implement, as it requires
that the whole path is known. However, we do not always need that much infor-
mation, in just knowing the probability distribution of the solution X(t). So, it
would su¢ ce to know the rate the at which error of the means decreases, as the
time step tends to zero. Now, we can consider the way of measuring the accuracy
of a numerical solution of the SDDE. The most used ones are strong convergence
and weak convergence.

De�nition 5. The time discretized approximation ~X with step size h converges
strongly to X at time T if

lim
h�!0

E
h���X(T )� ~X(T )

���i = 0
~X is said to converge strongly to X with (global) order p if we have

E
h���X(T )� ~X(T )

���i � Chp;

for some C > 0 which does not depend on h. We denote the error at �nal time
T in the strong sense as

eStrongh = E
h���X(T )� ~X(T )

���i :
De�nition 6. The approximation ~X with uniform step size h converges weakly to
X at time T if the following condition is satis�ed for any continuously di¤erentiable
function f

lim
h�!0

E(f(X(T )))� E(f( ~X(T ))) = 0:

~X converges weakly to X with order p means���E(f(X(T )))� E(f( ~X(T ))��� � Chp;

for some positive constant number C which is independent of h. We de�ne the
error at the �nal time T as

eWeak
h =

���E [X(T )]� E h ~X(T )i��� :
Strong convergence measures mean of the error while weak convergence measures

error of the means of solution and approximation with given any continuously dif-
ferentiable function g.
We wish to study the consistency of the schemes, that is, we want to know if

the truncation errors vanish as the time step goes to zero. Let us introduce the
concept of consistency for the SDDE (1.1). As with ODEs numerical schemes, the
concept of consistency of a discrete time approximation is closely related to that
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of convergence, but, is easier to verify. Our analysis will be based on a �ltered
probability space �


; F ; F = (Ft)t2[0;T ] ; P
�

that ful�ls the usual conditions, see ([10]). We shall say that a discrete time ap-
proximation ~Xn+1 corresponding to a time discretisation

rh = frj : j = �j;�j + 1; :::; 0; 1; :::; Ng

constant step size h is strongly consistent if there exists a non-negative function
c = c(h) with

lim
h�!0

c(h) = 0;

such that

E

24�����E ~Xj+1 � ~Xj

h

����� Frj)� f(rj ; ~Xj+1(rj); ~Xj+1(rj�T ))

�����
2
35 � c(h)

and

E

�
1

h

��� ~Xj+1 � ~Xj � E
�
~Xj+1 � ~Xj jFrj

�
�g(rn; ~Xj(rj); ~Xj+1(rj�T ))�W

���2� � c(h)

of the time interval [�� ;T ] with
rj = jh;

where h = T=N , j = 0; 1; ::: and where fFr; r � 0g is a preassigned increasing
family of &-�elds.
Let us suppose that the assumptions including Lipschitz and growth conditions

of the existence and uniqueness theorem in the previous section are satis�ed. In
particular, we assume that the coe¢ cients a and b satisfy a uniform Lipschitz
condition and a growth bound with respect to X(t) and X(t � �). Then, the
following theorem allows us to conclude strong convergence from strong consistency.

Theorem 2. Under the assumptions of Theorem 2.1, every strongly consistent
discrete time approximation ~Xn+1 of the solution of a one-dimensional, autonomous
SDDE with time delay and initial condition ~Xn+1(t) for t 2 [�� ; 0] converges
strongly to X for T �!1 that is h �! 0.

Proof. The detailed proof can be found in ([5]). �

3. Numerical Methods for SDDEs

In practice we use implicit schemes to obtain numerically stable approximate
solutions for SDDEs. In the following, we will give introduce several speci�c discrete
schemes for the SDDE (1.1) with time delay.
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3.1. Euler Maruyama Method. Consider approximation with uniform step size
h on the interval [0; T ], i.e., h = T=N and tn = nh where n = 0; 1; :::; N . We de�ne
a positive integer number N� such that N�h = � . The increment function � in
equation (2.2) for the Euler Maruyama method is de�ned as

�(h; ~Xn; ~Xn�N�
;�Wn+1) = f( ~Xn; ~Xn�N�

)�tn+1 + g( ~Xn; ~Xn�N�
)�Wn+1;

n = 0; 1; :::; N � 1:
Then, equation (2.2) becomes

~Xn+1 = ~Xn + f( ~Xn; ~Xn�N� )�tn+1 + g(
~Xn; ~Xn�N� )�Wn+1

= ~Xn + f( ~Xn; ~Xn�N�
)�tn+1 + g( ~Xn; ~Xn�N�

)
p
hZn+1;(3.1)

for all n�N� � 0; where Zn+1 corresponds to normally distributed random variable
with mean 0 and variance 1, and for all indices n � N� � 0 we de�ne ~Xn�N�

=
 (tn � �) :
From the practical and theoretical point of view it is of interest to obtain an

order of strong convergence for the Euler Maruyama Method. It can be shown that
the Euler Maruyama approximation converges under rather general assumption.

Theorem 3. Assume that the coe¢ cient functions f and g in equation (2.1) satisfy
the conditions of existence and uniqueness theorem, namely local Lipschitz and lin-
ear growth conditions. Then the Euler Maruyama scheme is consistent with order
p1 = 2 in the mean and order p2 = 1 in the mean square sense.

Proof. The complete proof can be found in ([52]). �

Lemma 1. If equation (2.1) has a unique strong solution, then the increment
function in equation (3.1) satis�es the conditions in equation (2.3).

Proof. Assume that we have a unique strong solution which means the coe¢ cient
functions f and g satisfy the local Lipschitz and linear growth conditions. We show
that, there exists constant numbers C1 and C2 so that the conditions in equation
(2.3) hold. We know that E(W (t) = 0);so:

jE (�(h; x; y;�Wn+1)� �(h; x0; y0;�Wn+1))j
= jE(f (x; y)h+ g(x; y)�Wn+1 � f(x0; y0)h� g(x0; y0)�Wn+1)j
� h jf (x; y)� f(x0; y0)j
� C1h(jx� x0j+ jy � y0j);

and

E
�
j�(h; x; y;�Wn+1)� �(h; x0; y0;�Wn+1)j2

�
= E

�
jf (x; y)h� g(x; y)�Wn+1 � f(x0; y0)h� g(x0; y0)�Wn+1j2

�
� E

�
(jf ((x; y)� f(x0; y0))hj+ j(g(x; y)� g(x0; y0))�Wn+1j)2

�
� 2h2 jf (x; y)� f(x0; y0)j2 + 2 jg(x; y)� g(x0; y0)j2E(�W 2

n+1)

� 2h2 (2 jx� x0j+ 2 jy � y0j)2 + 2h (2 jx� x0j+ 2 jy � y0j)2

� C2h(jx� x0j2 + jy � y0j2):
�
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for any x; x0; y; y0 2 R: According to Theorem 1 and Lemma 1, the Euler
Maruyama method ful�lls Theorem 1 with order of convergence p = 1=2 in the
mean square sense, so:

max
1�n�N

�
E j�nj2

� 1
2 � Ch

1
2 as h �! 0:

If in equation 2.1 function g does not depend on X, the Euler Maruyama method
is consistent with order p1 = 2 in the mean and order p2 = 3=2 in the mean square
sense. In this case, method is converge with order p = 1 in the mean square sense
and we get:

max
1�n�N

(E j�nj) � Ch as h �! 0:

It was easy to shown that, autonomous case that the Euler approximation
strongly converges. Thus, it represents a stochastic numerical method that can
be used to simulate solutions of SDDEs.

3.2. Milstein method. The Milstein method was �rst derived by Milstein, who
used the Itô formula to expand an integrand involving the solution in one of the error
terms of the Euler-Maruyama scheme. It is the numerical scheme that achieves a
strong order of convergence higher than the Euler-Maruyama scheme. The method
is the scheme for SDEs with a strong order of convergence one. The systematic
derivation of stochastic Taylor expansions and numerical schemes of high strong
and weak orders expounded in Kloeden and Platen ([12]), see also Milstein ([13]).
In this paper, we develop a strong Milstein approximation scheme for solving

SDDEs. The scheme has convergence order one. Because of the nonanticipating
nature of the SDDE, the use of predicting calculus methods in the strong approx-
imation schemes appears to be newfound. The Milstein schemes for SDEs and
SDDEs have the same complexity. Although the solution of the SDDE is adapted
to the �ltration of the driving noise, methods from anticipating stochastic analysis
and the Malliavin calculus are necessary in order to derive an Itô formula for the
segment of the solution process.
Consider the same SDDE and time interval partition. The increment function �

in equation (2.2) for the Milstein method is de�ned as

�(h; ~Xn; ~Xn�N� ;�Wn+1) = f( ~Xn; ~Xn�N� )�tn+1 + g(
~Xn; ~Xn�N� )�Wn+1

+
1

2
g( ~Xn; ~Xn�N�

)g0( ~Xn; ~Xn�N�
)
�
�W 2

n+1 ��tn+1
�
;

for n = 0; 1; :::; N � 1. Then for mesh with uniform step h on the interval [0; T ],
the equation (3.1) can be rewritten while using this increment function as:

~Xn+1 = ~Xn + f( ~Xn; ~Xn�N�
)�tn+1 + g( ~Xn; ~Xn�N�

)�Wn+1

+
1

2
g( ~Xn; ~Xn�N�

)g0( ~Xn; ~Xn�N�
)
�
�W 2

n+1 ��tn+1
�

= ~Xn + f( ~Xn; ~Xn�N� )�tn+1 + g(
~Xn; ~Xn�N� )

p
hZn

+
1

2
g( ~Xn; ~Xn�N�

)g0( ~Xn; ~Xn�N�
)h (Zn � 1) :

Note that Milstein Method and Euler Maruyama Method give same result whenever
the derivative of g with respect to X namely g0( ~Xn; ~Xn�N�

) is 0 .
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3.3. Runge-Kutta Method. This paper proposes 2-stage stochastic Runge-Kutta
(SRK2) to SDDEs with a constant time delay, � > 0. This method has 1.0 order
of convergence and does not require the computation of high level partial deriva-
tives. In general, formulation of stochastic Runge-Kutta for SDDEs is introduced
and high order Stratonovich Taylor series expansion of SDDEs for numerical so-
lution of SRK2 is presented by Rosli et al. ([35]). By adding stochastic integral
terms from Stratonovich Taylor series expansion, more accurate method can be
obtained. With order increases, the complexity of implementing those numerical
methods can become more complicated. This is at the cost of requiring more partial
derivatives of drift function, f and di¤usion function, g. So, To overcome this prob-
lem, it is natural to consider a derivative-free method for solving SDDEs. There
is no derivative-free method to facilitate the approximation of SDDEs. Here, we
implementing a derivative-free method, that is 2-stage method for solving SDDEs.
In general, 2-stage SRK method developed in this paper has better performance

than the Euler method and Milstein scheme. Moreover, it is a derivative-free
method which does not require the computation of partial derivative for drift and
di¤usion functions of SDDEs. The Runge-Kutta method for SDDEs is rarely men-
tioned in the literature. In deterministic case, we can improve the convergence rate
by increasing the stage number of a Runge-Kutta type method, while, discretiza-
tion of the stochastic integrals ([73]-[74], [90]-[93]). An approach for simulating the
multiple stochastic integrals with time-delay was proposed, but it is unfeasible to
achieve �rst order because one needs a great many terms in the Karhunen-Loéve
expansion for a small time step-size ([34]).
This paper is devoted to present a generalization of SRK2 to approximate the

solution of SDDE (1.1).

Xi+1 = X(ti) + F (X(ti); X(ti�N�
))�t+G(X(ti); X(ti�N�

))�Wi

+
1

2
p
�t

�
G( ~X(ti); X(ti�N�

))�G(X(ti); X(ti�N�
))
�n
(�Wi)

2 ��t
o
;

where ti+1 = ti + h and 0 � i � N � 1. Then, we obtain ~X(ti) as

~X(ti) = X(ti) + F (X(ti); X(ti�N�
))�t+G(X(ti); X(ti�N�

))
p
�t;

where, X(ti�N�
) =  (ti � �):

Local truncation error of SRK2 is measured by comparing the Stratonovich Tay-
lor expansion of the exact solution with the computed solution. Numerical exper-
iment is performed to assure the validity of the method in simulating the strong
solution of SDDEs.

3.4. Heun Method. Heun�s method that is called modi�ed Euler�s method pro-
vides an early account for constructing a numerical method for solving SDEs ([90],
[85]). One of the simplest discretization schemes for solving SDDEs is the Heun
method. Numerical methods for SDDE�s constructed by representing a determin-
istic numerical method like the Heun�s method applying it to a SDDE. However,
translating a deterministic numerical method and applying it to an SDDE will not
provide accurate methods. The Heun�s method for SDDE�s is the simplest method
which is a direct express of the deterministic Heun�s method, but this method is
not very accurate. However, this method is useful in that it provides a starting
point for more advanced numerical methods for SDDE�s ([2], [12], [54], [77]-[78],
[80]).
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In this paper our work is solving SDDE with time delay, by using Heun�s method.
This is a predictor-corrector method that given the value of X at a time tn of the
discretization, we �rst obtain the predictors, or supporting values, with the Euler
integration scheme,

Xi+1 = X̂(ti) + F (X̂(ti); X̂(ti�N�
))�t+G(X̂(ti); X̂(ti�N�

))�Wi; 0 � i � N � 1

where ti+1 = ti + h. Then, we obtain X̂(ti+1) as

X̂(ti+1) = X̂(ti) +
1

2

n
F (X̂(ti); X̂(ti�N�

)) + F (X̂(ti+1); X̂(ti+1�N�
))
o
�t

+
1

2

n
G(X̂(ti); X̂(ti�N� )) +G(X̂(ti+1); X̂(ti+1�N� ))

o
�Wi;

where, X̂(ti�N�
) =  (ti � �):

4. Numerical Results

Let us consider the SDDE,

dX(t) = 0:5X(t� �)dt+ 0:1X(t� �)dW (t); 0 � t � T;

X(t) = (t); t 2 [�� ; 0]:

Since the calculation of exact solution is not easy, we simulate the solutions
process using Euler Maruyama, Milstein, Runge-Kutta and Heun methods on SDDE.
In order to see the e¤ect of the initial value on SDDE, we provide our simulations
while setting  (t) = 1 + t and  (t) = e�t.
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Figure 4.1. Sample path with di¤erent initial functions

The Figure 4.1 shows two sample path for the di¤erent choice of initial values
with N = 29; � = 1; T = 2, � = 0:1 and � = 0:5. Up to time 0, the path with initial
data  (t) = e�t decreases while path with initial data  (t) = 1 + t increases. At
time equal to 0, it is seen that both graphs take the same value, 1. After time 0, we
observe that both graphs have the same structure and their values is always near
to each other.
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Figure 4.2. Sample path with di¤erent coe¢ cients � and �.

Figure 4.2 provides the information about the e¤ects of coe¢ cients for the choice
of initial function  (t) = e�t. From the �rst and second graphs, it is seen that
increasing the di¤usion term increases the volatility. From the third and fourth
graphs, we realize that change in the drift term only a¤ects the value of the solution
process and structure is preserved.
In this section, we consider Euler Maruyama, Milstein, Runge-Kutta and Heun

methods for SDDEs and its convergence analysis. With the help of methods, sim-
ulations of the example is done. In that simulations, the e¤ect of initial function
is considered. It is observed that they have an important e¤ect on the evolution of
the solution process and corresponding expected value in the future states.

5. Conclusion

Stochastic delay di¤erential equations (SDDEs) are become really important in
many areas of science to understand the real world phenomena as well as to under-
stand future behaviors of systems. They include both historical information and
randomness. SDDEs are actually a generalization of deterministic delay di¤eren-
tial equations and stochastic di¤erential equations. SDDEs provide a more realistic
model for many systems than deterministic delay di¤erential equations (DDEs) and
stochastic di¤erential equations (SDEs). In this article, stochastic delay di¤eren-
tial equations (SDDEs) are handled together with de�nitions and their numerical
approaches. The properties of SDEs are provided to make easy to follow concept
for SDDEs because of the complicated characteristic of them. The existence and
properties of the solution process for SDDEs are discussed. In order to solve them,
iteration is used and the time interval is divided into pieces with a length of the
delay term. Numerical methods for the solution of stochastic di¤erential equations
are essential for the analysis of random phenomena. Several approaches exist for
strong solvers. Independent of the choice of stochastic di¤erential equation solver,
methods of variance reduction exist that may increase computational e¢ ciency.
The replacement of pseudorandom numbers with quasi random analogues from
low-discrepancy sequences is applicable as long as statistical independence along
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trajectories is maintained. In addition, control variates o¤er an alternate means
of variance reduction and increases ine¢ ciency simulation of stochastic di¤erential
equations trajectories Heun. Since, in general, �nding closed form solution is not
easy for a model with delay, numerical treatments are handled in article. We con-
sider Several Methoods for SDDEs and its convergence analysis. With the help
of method, simulations of the example is done. In these simulations, the e¤ect of
initial function and length of delay term are considered. It is observed that they
have an important e¤ect on the evolution of the solution process and corresponding
expected value in the future states. In general, the dynamics and the coe¢ cients
of the SDDEs are adapted, in fact, driven by Itô integrals and the formulation and
implementation of the Methods do not require anticipating calculus ideas. Heun
method is much more accurate than other methods.
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