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Abstract

We study the assortment of autoregressive random processes via a transmuted Gamma distributed noise. We consider
a transmuted re-parameterization of the Gamma parameters in terms of zz and o, afterwards ascertained that the

transmuted Gamma is a proper probability density function, then proceeded to spelt-out the structural form and traits
of the Gamma Mixture Autoregressive generalization in its k-components. The mean and variance of the Gamma
Autoregressive model were ascertained coupled with its first and second-order stationarity. The ingrained
k-components’ autoregressive coefficients, re-parameterization Gamma coefficients, k-regime transitional weights
were estimated via Expectation-Maximization (EM) algorithm. However, some step ahead predictions were derived

as well as the model sub-setting estimation via Levinson-Durbin recursive technique.
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1. Introduction

This novel paper aims at developing, extending and discussing mixture conditional of

autoregressive processes to a transmuted Gamma mixture autoregressive processes, denoted by

GAMMAR(K; p,, P,,---, P,) Wwith k-components states (regimes). The build-up will start from



specifying the mixture autoregressive model denoted by MAR(K; p,, P,,..., P,) . This will be

extended to GAMMAR(K; p,, P,,-.., P,) with k-regimes mixture of k-stationary or non-stationary

shifting autoregressive processes per component. Firstly, the conventional two-parameter Gamma

distribution will be transmuted via its location and shape parameters of « and [ respectively in terms

of u & o?. The transmuted two-parameter distribution would be sized-up to ascertain if it is a proper
probability density function, that is, if If(xt) =1 before incorporating and substituting it as the white

noise for MAR(K; p,, Pp,,..., p,) model. The mean and variance of the multimodal conditional random

process and transitional model will be determined coupled with the first and second-order stationary.
According to Kalliovirta et al. (2016) and Olanrewaju et al. (2021), one of the unique property of the
MAR model is that a mixture o f one or more stationary AR component(s) with non-stationary AR

component(s) will surely result in an overall stationary process. This would also be extended to

GAMMAR(K; p,, p,,..., P,) Viaa necessary and sufficient condition for the process to be stationary

in the mean root of its equation.

In addition, the transmuted Gamma distributed noise would make it possible for the stochastic model
to handle and include some steps ahead prediction (forward forecast using the immediate or
previous estimation(s) and cycles in a positive series contaminated with excess skewness and kurtosis.
The Expectation-Maximization (EM) estimation technique will be adopted via E-step and M-step that
would lead to a system of equation and Newton-Raphon iterative technique for estimating AR coefficients;

transitional weights, transmuted Gamma coefficients per each regime with their associated standard error.

Furthermore, sub-setting of the GAMMAR(K; p,, P, ..., p,) model will be carried-out to check the

optimality combinations of the mixing model. The sub-setting estimation will be via Levinson-Durbin

recursive technique.

2. 0 Preliminary

2.1 Specification of Gamma Mixture Autoregressive Model
Le et al. (1996) introduced a Gaussian mixture transition distribution (GMTD) models of conditional

Gaussian distribution as:
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where g(x) is whole mixture regime-switching probability density function and f,(x)(i=1,...,n) are
the probability density functions of the random noise such that the Markov transitional weight is given by

A+A,++A4=134>0.

Extending Wong & Li (2000); Boshnakov (2006); and Nastic (2014)’s definition of k-component of

Mixture Autoregressive (MAR) model to Gamma related random noise via transformed parameters gives:
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> the transmuted Gamma location and shape parameters are defined in terms of x and o for a

transmuted and unconventional Gamma distribution as defined below in equation (4) with «¢ and fof
the conventional defined below as.

1
02

The model is denoted by GAMMA-MAR(K; p,, P,,.--, P,) ,where (x(t)/f ) is the

a=—5; B=uc’ 4)

conditional cumulative distribution function of X, given the previous past information evaluated at X, ,

K
$o €(0,1), 0<g, <1 Vk=1---,K with Markov transitional probabilities of Zi, =1, ®() is

i=1

the cumulative distribution function of the standard Gamma.
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such that settmga:—z,ﬂ:,uaz. Hence u=afi, o° =" gives back the conventional gamma
o lo4

distribution of

f(x) =(5J x % € (0,) (6)

B
where I'(a) =Jet t“ ot
0

with scale parameter >0 and shape parameter & > 0. The scale parameter influences the spread (center
of location) of the distribution while the shape parameter controls the skewness parameter of the
distribution such that as the shape parameter increases the distribution symmetric expands, for a Gamma

distribution for positively skew data.
2.2 Investigation of the Proper P.D.F of the Transmuted Gamma Distribution.

Verifying whether the transmuted Gamma distribution is a proper P.D.F,
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Changing of varaiable technique gives,
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This connotes and confirms that the transmuted Gamma distribution is a proper P.D.F
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2.3The r"™ Moment of Transmuted Gamma distribution
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E(Xf)=ﬂ1=ﬂ=0ﬁ=?><ﬂ02=ﬂ (13)
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E(X)=af* +ap =ap(B+1)=p'c" + 1’ = pi* (0" +1) (14)
so,  Var(X)=af’+af—(ap)
off’ =o'y’ (15)

For x>0 where #>0 and o>0. E(X,)=u &Var(X,)=oc"u*

2.4 The Conditional mean and variance for the Transmuted Gamma Mixture

Autoregressive Model.

XI /GA\—l Z(ﬂk 2 rﬂkUk (¢ko +¢k1xt-1+"'+¢kpkxt—pk) Z(ﬂ’k 2 Uuko-k)/ukt (16)
BUt' /uk,t Z(¢ Zﬁlxt pk] =¢k0+¢klxt—l+'”+¢kpkxt—pk (17)
E(Xt IGA ;)= Z(ﬂ’k 2 » i Oy )Uk +Z(ﬂ’k 2 1 H Oy )/ukt (18)
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So, Var(x /GA_) = Z(ﬂk z’luko-k)o-k +Z(ﬂk zuukak):ukt (Z(/iy 21:uk6k):ukt]

Oy

(19)

Otherwise,

Var(x /GA ) = Z(ﬂwak’ﬂk)akz +Z(ﬂk’ak'ﬂk)/uk2,t _(Z(ﬂ“k’awﬁk):uk,tj (20)

The minus of the last two components are positive functions (that is, non-negative), which makes the

conditional variance strictly greater than the expected mean () . This makes it desirable for the Gamma

Mixture time series model to possibly exhibit and capture thicker tails (Mesokurtic, plytokurtic and

K
lesokurtic) that might over-whelmed the Gaussian distribution. Where Z(ﬁk,of,iz,,ukof) is the
k=L Oy

specific value for conditional variance (volatility) for each regime, and means
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2.5 Stationary Process for the GAMMAR (k; p,, p,.- .., Py)

From equation (2)

F(x/GA,)= Z(ﬂk z’luk k)q) (21)

Oy

{Xt _¢ko _¢k1X171 _“'_¢kpkxt—pk }

Oy

Its conditional expectation (1% order stationary) is
P P
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(22)
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1 -
Where, g, (x) = (?aﬂko-kz)q)(—XI ¢k1Xt1]

S0, E(%) = 1t = E(% / %_;) =[ XGA(x | FGA ;)X where FGA is CDF of GA

=jxtkz(zk,§,ﬂkaf>gk(xt>axt

K (A 21/uk6k)
=2 (x—dax) 2%

Oy

G p0)
:é ka ¢k0+2(

k i=1

Z(Ay 2 » MO )%1}# (24)

k=1
4, satisfied the necessary and sufficient 1* order condition of being finite and independent of "t at first

moment. Hence, iy, = Ly, os Loy = Ly~ M IS that the root of equation of the AR, say S,----- 'S, 18
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That is, all the equations (that is the Autoregressive coefficients at each regime) lies outside the unit circle
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The second-order stationary via variance of Var(x, / FGA_, )
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The covariance of X, &X, ;

cov(X . % 1) =, =E[x.,%,]= E[E(x/FGA)x.] (30)
Z ) ’/uko-k )¢k1 04-1 K
= = % pu +Z(ﬂk z’lukak)¢k2 0.t-1 (31)
k

The process is second-order stationary €, =Q,

Z(/lk 2 Uukak)/gk:|Q0,t—1
So, Q=

(32)
1- Z(ﬂk z ’/uko-k)

This implies that X, follows a GAMMAR(k;l,l,---,l) model first-order stationary for a requisite and

adequate imposition for the process to be second-order stationary.

‘/11¢121 +ﬂz¢221 +"'+/11<¢k21 ‘ <1

So, the m™moment of the GAMMAR (K; p,, P,,--, Py ) for the finite regime an order p, .

K
Z( 2 ,,ukak (¢k1+Qpkt ) <1 for p=p,-, Py (33)

k=1

2.6. Regimes (Transitions) Probabilities 4, of each Multimodality Estimates via

Autocorrelation
Different techniques can be used to carve-out the weights (probabilities) of each regime. Forrest et al.
(2015) define transition between regimes via proportional odds model, however the technique can be

translated to time series via the autocorrelation idea of regime estimates;
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i=1 \ k=1 k

2.7. GAMMAR (k; p,, p,, ..., p,) Parameter Estimation via EM-Algorithm

The estimation procedure to be adopted is the Expectation-Maximization (EM) algorithm proposed

by Dempster et al. (1997); Wong (1998) and Christou & Fokianos (2014) for non-linear, complex and
complicated for conditional Maximum Likelihood (ML).

)
1 f11 1

Let X ={X;, X, X, }'; ?:{a = ?} ={a a0 =a,
k 0 1 k

T
10t = {105, 107 e = {Bos B B =By
T
b ={hobarbon) A=A A
Let “7 ” be the latent variable such that

1 provided X, emaanted from i" state
My = .
0,  otherwise

.
Let V¥ = {qﬁk A 2,,ukak} be the universal space.

Given 7,, then the complete Gamma distribution for the latent and random variables of (Xt,nt)
gives,
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Maximizing the conditional log-likelihood function of L(W) gives

K 17, X
L(‘I’)—Z{ZUKJOQ(%HZUH( 7 ]'09 th—zmt; ktZF( )|09(ﬂk0k)}

t=L+1| k=1 Oy HO  a KOy

t=L+1| k=1 k=1 Ok ka k=1 A O] k k=1

L(¥) = Z|:Z77kt |09(%)+[22t Ukt]k)g 7% T ZF( )|09(/1k0k)'7kt:|
k=1

n K l
L(¥) =D {th log(4,) +log X, (Z ; Jlog —log X [th log—— -
t=L+1| k=L k=1 O ko-k =1 H Oy
X z i ant log 140 r(iz)_ (36)
k=1 ﬂkUk k=1 O |

Pk
Where X, =@ +@aXy + -+ X p = Z¢kixt—ki
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1% derivatives of L(¥) w.r.t each of the parameter in the universal space gives,

[ e Tk
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-
4 1 1 1 1 Tkt
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Vk=12K: i=0,-,p

Second derivatives of L(W) w.r.t each of the parameter in the universal space shall be calculated via

a function of the function of a random variable X, attime

h ')—{1
P

So,
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Vﬁk I—(KP)Vﬁk L(‘P) = V,,kgkz I—(lP)VWTk2 L(‘P) = Zn: %(nkt +X,) (50)

t=L+1 (:uko-k )

V, (P, L(P)=V, (P)V, (P)=- ( )i (0 X )Yk = ] (5
t= '-*1 /Uka Mo

Letting, H,, = E[—kaL(LP)J Zn: £T7Kt nkt] (52)

Hnm (k,]) t:|_+ /Ik

Where H,, isthe m-square Hessian matrix

K
Ykt
Hon (k.J) — gz

H,, =E| -V? L(W)/Y, X |=H,, (K, ]) (53)
[@01¢ki'o_i§’/"ko-k2r‘7k]

Ho (41, j+1) = Y 200 D006, D) o

2
k=1 H Oy

Employing the EM-algorithm procedure for estimating'V', the universal parameter space via the
L(W) in equation (35).

The E-step, assuming the universal parameter space Y is available, then the neglected values for

the latent data (UL,t)iS then substituted by the means of the observed values (Yr) their parameters.

Then y, . can be calculated by the procedure of Bayes’ theorem as stated below:

X

e (o)
A 5 Ty
(c?1)”' T(=)
Vit = 1 O; (55)
i ?‘18_(02;:)
k=1 l
(o?u)” T( 2)
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Vk=1--K; t=L+1--,n; 7, =%,

The M-step can be obtained via equation (55) below:
A
A=) (56)

> that the embedded individual parameters in the universal space can be estimated via a system of

equations or via Newton-Raphson iterative procedure.

-1

Pt =W, +|E|-nvi L(P)/ XV, L(P)/ ] (57)

1 1
[‘/ﬁko"/jki 'yvﬂkdﬁﬂk] [¢k0'¢ki O O

The estimate of ¥ is then iterate by these two steps until convergence is reached.

3.8. Standard Errors for the Associated Parameters

Adopting the method of estimating the dispersion matrix of any parameter space as defined by Louis

1982) and Ghosh et al. (2006). Let the ¥ estimate of the inverse observed information be H ™, then,
(1982)

H=H,-H, =E[-nViL(¥) ], -o* [nV, L(¥)]

7 ¥

(58)
Where, H could be obtain from the information matrix, Hn , and the missing information matrix

H,, such the complete information matrix is
H, = . (59)

an

Where H, isa block diagonal matrix , a square matrix of (k-1) dimension. Also,
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Hy = ™ (60)
Hmkk
is a symmetric diagonal matrix
where,
H, ..=0 L—ﬁL(\P) =V, L(¥) Y, X‘j (61)
Oy
H i =o’ 20 ) =V L(¥); V¥, X, (62)

1
(W()v(/’ki ,?,ﬂkaf ok

1
(%o,m,?,ﬂkaka)

2.9 Some Steps Ahead Prediction for the GAMMAR (k; p;, p,,-*, P, ) Model

From equation (17), a step a-head prediction could be obtained. Assuming an horizon of "t"
different from the conventional series counter of "t"is needed to generalized starting one-step ahead,

two-step ahead etc.. Assuming further also that the highest lag in the combined regimes is three, then,

Xt+ut = E [Xt+1 [ Xt, Xt-1, Xt-2, Xt—3,"':| (63)

Using equation (1)
Xtvat = A [¢11Xt + ¢y, Xt—1:| +4, [¢21Xt + @, xt_lJ +, |:¢31Xt + @3 Xt—1:| (64)
In a similar vein, the two-step ideal foretelling of the estimated series Xt+2/t11

Xeson = E {E (/)Zt+2/t //)Zt-rl,/)Zt,S(\t—l,/)Zt—Z,' . ')//)Zt,/)Zt—l,/)Zt—Z,' . } (65)

Using evaluation from equation (62) to simplify
Xir2it = |:ﬂ1¢11 + A Pp + ﬂ3¢31} X+t + [/11¢12 + 401+ 405 + j3¢32} Xt (66)

For three-step ahead

= {E (/)Zt+3 //)Zt+2,/)2t+1,/)(\t ,/)Zt—l,' . )//)Zt , ,)Zt—l,S(\t—Z,' . } (67)
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This gives,

Xuraft = [/114311 + 22@21 + @831} Xesart + [/11@12 + 22@12 +4 (Aézz + %@32 } X (68)

In a general form,

Xein = E [E (Xt+i / Xt+i-1, Xt+i-2, Xt+i-3, Xt+i-4,*" ) [ Xt y Xt-1y Xt—2,° } (69)

Xesift = [41@11 t+ Ay Por + 2o Ba +'~+ﬂ,i$i1:|/)2t+i—1/t +
Ao+ Fohio + g+ Aafhsa - iy [ R o+

|+ Aol + 2B+ A+ by X (70
Where 6 = X — Xt

€1 =X~ X1
€ = X — X

2.10 Levinson-Durbin Method of Sub-setting of Coefficients of GAMMAR (K : p,, ..., p,) Model
The Recursion method of the Levinson-Durbin will be adopted in carrying out the sub-setting of the
GAMMAR(K : p,,..., p,) if peradventure there exist problem of parsimony or the need arises to verify

the selected order in each regime are the optimal to the fitted components of the k-regimes.  According to
McLeod & Zhang (2008), Hannan & Quinn (1979), the recursion of the Levinson-Durbin is an ordered

recursion of M-steps, which can either be a forward or a backward step of combining the coefficients via a

linear complexity. Incorporating into the GAMMAR(K: p,,..., p,) , since each of the regime is a linear

of individual AR, it implies each of the regime has mean s,dk written as

¢k(Bk)=(thk_:ul;):(xt‘k_(aﬂ)lk):btk (71)

3 ¢(Bk) :1_¢lkB_¢2kB_"”’¢pkB
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For "t" which ranges from 1,---,n,
! ! 2\ _ ! 2 __2y
> Xy ~ (@) (@) ) = ()i (WPo?), ) (72)
Such that the sub-setting via the Levinson-Durbin recursion is defined as
¢mi,pm+1 = ¢mi,pm _¢mi+1,pm+1¢mi+1—i,pm for i=1--,m
With a changeover of  1-1 mapping of
B: (A s Ao ) = (s o+ 8o ) (73)

With log-likelihood from the Gamma distribution a defined in equation (36)

n K K 1 b x K 77 bl X K 1 '
L©) = > n, Iog(m@zkt(——l}log L TR e TG ) log(E
t=L+1| k=1 k=1 btk Hy k=1 My o b btk

(74)

According to McLeod & Zhang (2016) and Hossain (2015). the technique of selection will solely lie
on the modified BIC gotten from [-2L(®)+ (pm xm)log(n)] where "n"is the length of the whole

regime series, (omxm) is the number of the AR parameters of the combined

A2

GAMMAR(K: p,,..., p,)  with ARi(ml,mz,---,mp) and ov  approximately  equals,
b, (1—(}5%%)---(1—&3pm'pm) for "I, " the sample variation. So, the modified BIC equals
BIC,(m,,..., pm)=nlog L(®) + (om xm)log(n) (75)

Such that the below algorithm could use in obtaining minimum BIC, model:

1. Choose the pm, the highest order for each of the AR in each of the regime via autocorrelation.
Count the number of parameters estimated initially.
2. Distinguished the absolute values of AR coefficients that are less than one, which are stationary

coefficients of AR in a descending order of magnitude.
3. Evaluate the BICA(ml,...,pm) for pm=1---,pm, and choose the minimum BIC,

model for the betterment of forecasting evaluation and performance.
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3. Conclusion

We have seen above that the transmuted Gamma distribution was a proper probability

density function for its to substantially drive the Gamma mixture autoregressive model with

k-components. The first and second-order stationarity process of the GAMMAR(K: p,,..., p,) fall

within the unit circle to confirm some of it k-components stationarity. Mixture of any stationary

k-component(s) with any non-stationary component(s) makes the whole process stationary. The

Levinson-Durbin M-steps recursion via a forward or a backward step was incorporated into the

GAMMAR(K : p,,..., p,) model to enable carve-out some derivations for some steps ahead

prediction.
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