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Abstract

The lifting of the facet is a technique used to generate polyhedral facet
for the integer optimization problem. For groups, semigroups, and abelian
additive systems master problems, homomorphism and sub-morphism can
be used for lifting the facets. Another known methodology is the sequential
lifting, which provides a new facet from a facet an element which not consid-
ered by facet, thus considering a new element. For abelian groups, there ex-
ist results for the sequential lifting of facets to consider the algebraic aspect
and not the geometric aspect of the polyhedron. In this case of semigroups
or additive systems master problems, the subadditive cone is important to
the lifting facet. These results do not use the polyhedron polarity to lifting
facet, in this paper we used the polarity polyhedra results to define sequen-
tial lifting facets of non-master associative, abelian, and b-complementary.
The results presented here extend the known theorems of the sequential lift-
ing for groups and semigroups. The sequential lifting of facets theorems
for non-master problems doesn’t consider the polarity of the polyhedron to
characterize facets, as far as we know, this is the first result that establishes
sequential lifting for associative, abelian and b-complementary additive sys-
tem non-master problems.

Keywords: additive system, polyhedra-polarity, sequential lifting.
AMS: 90C10,90C27



1 Introduction

In general, for master additive system polyhedra (see [5]) there are results
of lifting facets, but these cannot be used for non-master since when projecting a
facet of a master polyhedra onto non-master polyhedra we do not necessarily ob-
tain a facet of the non-master polyhedra. But, in the case where the algebraic struc-
ture associated with the polyhedra is an abelian group, Gastou (see [7]) showed
how to lift facets in a sequential way. Gastou’s results (see [7]) for sequential
liftings of facets could be considered from an algebraic point of view but he does
not consider the polarity of the polyhedron to characterize the facets. The central
motivation of this work is that the polarity of polyhedra considers the polyhedron
from a geometric point of view.

The main objective of this article is to define the sequential lift for the polyhe-
dra of the associative, abelian, and b-complementary additive system. We extend
the result of the sequential lift the semigroups (see [10]) for multivalued additive
systems. The work is structured as follows: In section 2, we present the additive
system and the optimization problem associated with this algebraic structure. The
polarity results are presented in section 3. In the main part of the article, presented
in Section 4, we show the sequential survey theorem for non-master polyhedra of
the associative, abelian, and b-complementary additive system.

2 Associative, Abelian and b-complementary Addi-
tive System

Additive System. An additive system is defined to be a non-empty finite set A
together with a function + such that :

(i) {g}+{h} C A, forall gand hinA;
(ii) STT = Usesser({s} T {t}), forall §,T C A.

In this paper we denoted an additive system by the pair (A, 7).
Usually, we consider closed functions T and we use
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s+t by {s}F {t}. On the other hand, an additive system (A, F) is associative
if it satisfies

(S¥T)FU = SF(TFU)
forall $,7,U C A, and an abelian additive system if

SIT =T3S

forall §,7 C A.
___ We assume, without loss of generality, that there exists a zero 0 € A such that
0+g = g+0 = g, for all g € A. If there were no such element in A we could adjoin
one to A without changing (A, F). The zero is clearly unique.
Subsystem. Define a sub-system (T,+) of (A,F) to be a subset T of A, with
the same function F from (A, F), such that (7, F) is itself an additive system.
Expressions. An expression E of an additive system (A, F) is defined recur-
sively by

(i) The empty string & is an expression called the empty expression.
(ii) (g) is an expression, for all g € A, called a primitive expression.

(iii) £ = (E) —/FEZ) is an expression, whenever E| and E; are non-empty expres-
sions, and E| and E; are subexpressions of E.

A primitive subexpression of E is any subexpression of £ which is a primitive
expression.

Evaluation. The evaluation of an expression E is a function y from expres-
sions to subsets of A defined by

@ (&) =0;
i) y((g)) ={g}:
(i) Y((E1)+(E2)) = Y((E1))+Y((E2))

To evaluate E means to find y(E), which can be done recursively using the
definition.

Solution vector. Let (A, T) be an additive system. A vector (¢(g);g € A) is
the incidence vector of an expression E if t(g) is equal to the number of times (g)
appears as a primitive subexpression of E. Now, let g € A. A vector t represents g
if there is some expression E for which ¢ is the incidence vector of E, and g € y(E).
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Let b be one fixed element in A, we call b the right-hand side. An expression
E is a solution expression for b if b € y(E). And, the incidence vector ¢ of an
expression E is a solution vector for b, if E is a solution expression. That is, 7 is a
solution vector if it represents b.

We denote by P(A,b) the convex hull of solutions vector, that is:

P(A,b) = convexhull {(t(g),g € A : t is a solution vector}

Aradz and Johnson [5] described the characterization for vertices and facets of the
P(A,D).

Let (A, F) be an abelian associativity additive system. For any positive integer
k and any g € A, we define kg by

kxg=1y(g+.+g)

where g+..Fg is taken k times.
The elements of the subsystem generated by g are the 4 € A such that h € kg,
for some k£ > 0. Clearly

0g=7(&) = {0} and 1g = 7(e) = {g}.

Now, since there are only a finite number of subsets of A in the sequence of sets
Og,1g,2g,...,kg,... there are sets which appear infinitely many times, such sets
are called loop sets of g.

The loop of g is the union of all the loop sets of g. We define g goes to ¢ and
write g — ¢ when the loop of g is empty, otherwise we write g not — ¢.

Let s = mg be the first occurrence of any set appearing for the second time in
the sequence (kg | k > 0). Since s appears the second time in the sequence, s = pg
for some p < m, and the sequence of distinct sets (kg | p <k <m—1) is the same
as (kg |m <k<2m—p—1).Infact we have (p+k—+il)g= (p+kg) (where [ =
m—p)for0<k<I—1andi>O0,since (m+k)g=mgtkg = pg+kg= (p+k)g.

The loop order of g is defined to be this [. Clearly & € A is in loop of g if and
only if there exists k > 0 such that & € (k+il)g for all i > 0, where [ is the loop
order of g.

Let (A, F) be an additive system and b, g € A. We define b ~ g by

b~g={xe€A:bextg}

A definition previous to this indicates a partial order in A, that is, we say h>g
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when b ~ g C b ~ h. When the set b ~ g has a minimum element, this minimum
element is called the b — complement of g. We denote by g the b — complement
of g, and, A is b-complementary when every element has a b — complement.

An element g € A is infeasible if b ~ g = (. We can assume, without loss of
generality, that the additive system has at most one infeasible element denoted by

oo

In this paper we denote by: A, = A — {0,&} the set of proper elements. Let
(A,+) be an abelian, associate and b-complementary additive system. Given b € A
and M CA,,avectort € INM is a solution vector if

be Z t(g)*g.
geEM

We denoted the set solution vectors by

T(A,M,b) = {t ceN":pbc /Z\t(g) *g}

gEM

and P(A,M,b) is the convex hull of T(A,M,b).
We are interested in the optimization problem

min 'y c(g)t(g)

geM
subject to: b € T(A,M,b).

where ¢ € RM.

The optimization problem is called the Master Problem if M = A, and when
M £ A, it’s called the Non-Master Problem. We are interested in lifting facets of
the P(A,M,b) where M # A .

3 Lifting Polarity

The polarity of polyhedra given by general bilinear relations have been described
in Araéz, Edmonds and Griffin [3]. There they showed that there are six different
polarity relations, four of which have been extensively studied: The Cone Polarity,
The Minkowski Polarity, The Reverse Minkowski Polarity, and the Polarity of
Convex Sets.
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Let N and H be finite sets. Given W € RV, e RN, v € RH and o € R, the
generalized bilinear inequality (see [9]) Q C RN x R¥ is defined by

xQy if and only if xWy +xu+vy < «. (D)

For any set P C RY the Q -polar of P is P? = {y € R : xQy for all x € P}, and,
P is Q-closed when P = P},

A polyhedron is defined to be the solution set of a finite system of linear
inequalities, that is P C RY is a polyhedron if and only if there exist matrix
A € RV and b € R¥ such that P = {x € RN : Ax < b}. On this definition
of polyhedron in this work, we will use the following notation. For any system of
linear inequalities LI = Ax < b, P(LI) denote the polyhedron {x € RV : Ax < b}.
For any finite sets S and T we denote the convex hull of S by CONV (S), the con-
ical hull of T by CONE(T) and CONV (S) +CONE(T) by C(S,T). dim(P) will
denote the dimension of P.

Let P be the polyhedron C(S,T). Then the following theorem characterizes
P2,

Theorem 3.1 (3.12 [2]) P equals P(LI), where LI is the system of linear in-
equalities defined by

Il sWy+su+vy < aforallsecS;
| tWy+tu<O0forallt€T.

Corollary 3.1 (2.4 [3]) The Q-polar of a polyhedron is a polyhedron.

In general Q defines two sets which provide the different polarity types (see
[2]), they are

Xo={xeR":xW+v=0}; Yo={yeR" : Wy+u=0}. )
For these sets, we have the following results

Lemma 3.1 (3.20 [2]) Xq # 0 and Yo # 0 implies for all x € Xq, xu is a constant
value denoted by O = xu.

Lemma 3.2 (3.21 [2]) Xq # 0 and Yo = O implies for all B there exists x € Xq
such that xu = f.
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The Lifting Polarity is an example for Xo # @ and Yo =0, when N = HUL
and Q is given byxgy+xpu; < oo+ ry. In [2] Ardoz, Edmond and Griffin give the
relation between the vertices and extreme rays, that is, the generators, of a pointed
Q-closed polyhedron P and the facets of P* for the two cases of polarity.

In this paper we will use the following result.

Theorem 3.2 (2.14 [3]) Let P = P({xA < b}) be full dimensional and Q be a
bilinear inequality relation expressed in the form 1 such that dim(PNXq) =
dim(Xq) > 0, xu < a is a facet of PN Xq and 0 is the only solution to Wz = 0.
Then P& =C (S,T) and is pointed with S being the set of vertices of P2 and T the
set of the extreme rays of the recessional cone of P, where

S={seR¥ : xWs+xu+vs < is a facet of P} ; 3)
T = {t eRM : xWt+vt <O0is afacetofP}.

Let P be a polyhedron in R¥/}YF and r, o € R such that P, = {x; € RL: (r,x) € P}
1s full dimensional and xzu;, < « is a facet of the P;.

Any facet of P of the form

Xjy+xpup < ¢ +ry 4)

is called a lifting of x u; < .

For (xj,x) € RUIVUL and y € R, let x +y if and only if xjy+xpup < o +ry,
where u;, # 0, and a,r € R. The corresponds general bilinear polarity from x is
defined by x * y if and only if

o) | g, || ) [y <a 5

OLx s}

From 3.2 we have, X, = {(xj,xz) € RV x; = r} #£ @ and dim(X,) =|L|>
0, since (r,x7) € X, for all x; € R such that xu; < o, Y, = 0, since uy # 0,
and {y € RUIVL . { o ! } y =0} = {0}. Then, * is of type 6 defined in [3],

Lx{j}
therefore for any polyhedra P satisfying dim(P NX,) = dim(X,) =| L |> 0 and

xrup < o 1s a facet to PN X, for the relation *, the theorem 3.5 specializes to

S={seR:xjs+xyupm < a+rs,is a facet of P},and

T ={t € R:x;t <rt,is a facet of P} ©)

So using theorems 2.14 and 3.4 of [3] we have the following results.
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Theorem 3.3 Let P be a full dimensional polyhedron such that dim(P NX,) =
dim(Xy.), and xpyupr < o is a facet of PN X.. Then we have that the set S and T of
(3.6) are: S is the set of vertices of P*, T is the set of extreme rays of the recession
cone of P*.

The theorem 3.6 gives a bijection between the facet extensions of the facet
xpur, < o of PN X, and the vertices of the x-polar of P. However, the theorem
also relates other facets of P to the extreme rays of the recessional cone of P* and
suggests the following generalization of the definition of the extension of facet.

Given P, r,u; and o such that verity the hypotheses of theorem 3.6, an facet
extension of xpuy, < a is a facet of P of the form x;s + pxpupy < pa + rs where
p > 0. So, we can restate theorem 3.6 in terms of this definition as

Theorem 3.4 Given the hypotheses of theorem 3.6, xjs + pxpyuy < pot+rsis a
facet extension of xyuy < @ if and only if p > 0 and s/p is a vertex of P*; or
p = 0 and s is an extreme ray of the recession cone of P*

4 Sequential Lifting

In this section we consider (A, F) to be an abelian, associate and b-complementary
additive system, b € A, M C A, P(A,M,b) is full dimensional and 7 is a facet of
P(A,M,b) such that:

i. m(g) >0, forall g €A;
ii. m(g)=0,forall ;g€ A\ M.
Given j € A\M and m € {1,...,lj} where [; € IN* is the loop order of j, we
define V(m) by
V(m)={teR”: (m,t) e P(A,MU{j},b)}

If V(m) # 0 then the problem max{—nt :t € V(m)} has a finite solution, in this
case, we denoted by Z(m) the max{—mnt:t € V(m)}.

In order to lift a facet for the P(A,M U{;j},b), we define the function oy :
A — R by

~ min{Y,cpm(g)t(g):t € P(A,M,h) if P(A,M,h) #0
GM(h)—{ +oo{ seM j if P(A,M,h) =0
(7
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for all 1 € A, and o3,(0) = 0, where 0 is the zero of A.

Lemma 4.1 Given j € A\M and m € {1, ...,lj}. Let n/1\] be the b complement of
mj. Then

Z(m) > max{—m re P(A,M,r/n\j)} .

Proof. Fort € P(A,M,@), n/ﬁ € )igeMt(g)g, then
mjtmj € mjty \1(8)s.

Since .
bemjt+mj, -
bemjty . ,1(8)s (8)
Thus P(A,M,mj) C V(m), and we have
min{7r ;1 € V(m)} < min{m‘ ‘e P(A,M,n/[j)}.
Therefore

Z(m) > max{—m re P(A,M,r/n\j)} .

o~

Corollary 4.1 If P(A,M,m}) # 0, then Z(m) > —op(mj).

Theorem 4.1 Let 7' : MU{j} — R define to

ﬂ/(g) _ { max{oamaxme{l,.,,lg} {1_6+(m/§)}} fg=] 9)
(g) ifg#j

forall g e MU{j}. Then 7' is a facet of P(A,M U{j},b).

Proof.

Notice that P(A,M U {j},b) is full dimensional, since P(A,M U {j} is full
dimensional. Now by the definitions 3.2 and 3.5, X, = {(0,7) € RU}WM .t ¢ RM},
so we have to

dim(P(A,MU{j},b)NX,) =dim(X,) >0

therefore the hypotheses of the theorem 3.7 is hold. Them (—s)m+ (—m)t < —1
is a facet of P(A,M U{j},b) if and only if —s is a vertice of P(A,M U {j},b)*.
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Let ¢ € V(m) such that (—7)t' = Z(m), form € {1,..,1;} where [; is the loop
order of j. Them (—s)m+ (—m)f’ < —1 since (m,t’) € P(A,MU{j},b), and
(—s)m— oy (mj) < —1 by lemma (4.1), therefore

I—GM(”/%})
m

s >

, since m > 0.

Now, 7’(j) is a vertex of P(A,MU{j},b)* , therefore , ' is a facet of P(A, MU
{j},b) by theorem 3.7, and the proof is complete.

If (A, ) is a finite abelian group, then Z(m) = —oy (b — mj) and the func-
tion to be defined in (4.3) is a facet. Therefore we have the theorem I1.1.4 of [7].
Moreover, if (A,—/iz) is an associative, abelian and b-complementary semigroup,
the function (4.3) is facet, too, and we have the theorem 4.3.2 of [10].
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