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Abstract 

Stepwise covariate selection is a popular method for multivariable regression model building. Based on 

the different significance levels pre-specified by statisticians, different covariates are included in the 

model. Further analyses with these models might introduce biases. This paper proposes a novel method 

to select covariates for stepwise logistic regression without pre-setting a significance level. Multiple 

models containing different numbers of covariates were outputted for final model selection. A 

user-oriented SAS macro was developed. Users of the macro may determine the final models, based on 

estimated characteristic changes of the overall models, the variances of the covariate effects on the 

response variable and their special needs. With this method, model selections are much easier than with 

purposeful or the best subsets method. This method improved stepwise covariate selection processes. 

Broad applications are expected.  

 

Keywords: logistic regression, model building, multivariate statistics, SAS Programming, Statistical 

computation. 

Introduction  

    Logistic regression is the most frequently used statistical model for the analysis of data with a 

discrete outcome in various research areas. If the data consist of a few covariates, there may be only one 

best model, which is easy to build. However, if covariates increase, multiple “best” models may exist. 
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Building a best model with data consisted of numerous covariates is difficult. 

What is the best model? A best regression model should be a model with the correct covariates and 

the most precise estimates for them. As Hosmer et al. described, “The traditional approach to statistical 

model building involves seeking the most parsimonious model that still accurately reflects the true 

outcome experience of the data” [1]. A model with fewer covariates is numerically stable and easier to use. 

In contrast, the more covariates included in a model the greater the standard errors of the coefficients and 

the wider the confidence intervals of the corresponding odds ratios.  

Stepwise selection is a popular and effective statistically driven method to reduce covariates of 

multivariable model including logistic regression. In each stage of the selection procedure, a covariate is 

added to (or subtracted from) the set of covariates based on a pre-specified significance level by the 

statistician. With different significance levels, different models are determined. Further analyses with these 

models might introduce biases. 

This paper proposes a novel method to select covariates for backward stepwise logistic regression 

without pre-setting a significance level. A user-oriented SAS macro was developed. To validate the 

proposed covariate selection method and the macro, a randomly generated hypothetical dataset was used. 

Material and methods 

    The proposed method is an improvement of the traditional backward elimination method. All 

covariates were included in the model first. SAS LOGISTIC procedure was used to remove covariates one 

at a time. The process was repeated until only one covariate was left in the model. Multiple models 

contained different numbers of covariates were outputted for final model selection. The detail of the 

method is described by means of the macro. 

Table 1 is a SAS macro for data generation. The first DATA step (lines 2-8) generated nine uniform 

distributed probabilities (ps) ranged from zero to one. The second DATA step (lines 11-23) generated nine 

random samples as covariates x1, x2, …, x8 and response variable y with 100 observations from Bernoulli 

distribution with the variant ps derived from the first DATA step. Seeds for both RAND functions were set 

to "2". 
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Table 1. SAS macro for data generation 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

%macro case(seed=2,obs=100,cov=8);  

 data uniform(keep=p); 

  call streaminit(&seed); 

  do i=1 to %eval(&cov+1); 

   p=rand("Uniform"); 

   output;  

  end; 

 run; 

 proc transpose data=uniform out=p prefix=p; 

 run; 

 data Bernoulli (keep=x1-x&cov y); 

  set p; 

  array p{%eval(&cov+1)} p1-p%eval(&cov+1); 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

  array x{%eval(&cov+1)} x1-x%eval(&cov+1); 

  call streaminit(&seed); 

  do i=1 to &obs; 

   do j=1 to %eval(&cov+1); 

    x(j)=rand("Bernoulli",p(j)); 

   end; 

   output; 

  end; 

  rename x%eval(&cov+1)=y; 

 run; 

%mend; 

%case(); 

 

To determine whether there were any complete or quasi-complete separations [2, 3], missing values, or 

all ‘0” or all “1” variables in the dataset, a general LOGISTIC procedure for the model containing all 

variables in the dataset was performed. After evaluating the data, the Macro Variate (Table 2) with file 

name Bernoulli was invoked. 

LOGISTIC procedure (lines 23-25 in Table 2) estimated the coefficient and the p-value of the Wald 

statistic [1, 4] for each covariate. The least significant effect (i.e. a covariate with the largest p-value) was 

removed. For the remaining covariates, the LOGISTIC estimated their effects, and the covariate with the 

largest p-value was removed again. The process was repeated until only one covariate was left in the 

model.  

DATA step Compare&k (lines 61-68) merged the full model with each reduced model, and calculated 

the delta-beta-hat-percent [1]  

     ∆𝛽̂ik% =100*(𝛽̂ik-𝛽̂i1)/ 𝛽̂i1, i =1, 2, …, 8, k =2, 3, …, 8,             (1)  
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Table 2. SAS macro for model building 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

 
42 
43 
44 

 
 

45 
46 
47 
48 
49 
50 
51 

 
52 

%macro variate(mydata=Bernoulli); 
 data _null_; 
  set &mydata; 
  column=n(of _all_)-1; 
  call symput('num',put(column,2.)); 
 run; 
 %macro x; 
  %do i=1 %to &num; 

 %global x&i; 
 %let x&i=x&i; 
%end; 

 %mend x; 
 %macro names; 
  %do i=1 %to &num; 
   &&x&i 
  %end; 
 %mend names; 
 %macro logistic; 
  %x; 
  %do j=1 %to &num; 
   ods select none; 
   ods output ParameterEstimates=_pe FitStatistics=_fit; 

 proc logistic data=&mydata; 
  model y(event='1')=%names; 
 run; 
 ods output close; 
 proc sql; 
  create table output1 as 

select variable, estimate, ProbChiSq 
from _pe 
where variable^='Intercept' 
order by ProbChiSq desc; 

 quit; 
 data output2; 

set output1; 
max=0; 
if _n_=1 then max=1; 

 run; 
 proc sql; 

create table output&j._1 as 
select variable, estimate as estimate2, 
 ProbChiSq as ProbChiSq2, max 
from output2 
union all 
select Criterion as variable,  
 InterceptAndCovariates as estimate2,  
 . as ProbChiSq2, 0 as max     

  from _fit  
where Criterion='-2 Log L' 
order by variable; 

 quit; 
   data output&j._2; 

set output&j._1; 
rename ProbChiSq2=ProbChiSq1    
 estimate2=estimate1; 
if variable='-2 Log L' then variable='_2LogL'; 

53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

 
67 
68 
69 
70 
71 
72 

 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 

    if max=1 then do; 
     call symput(variable,' '); 

   delete; 
  end; 

    if variable='_2LogL' then variable='-2 Log L'; 
   run; 

%end; 
  %do k=2 %to &num; 

 data compare&k(drop=estimate1 ProbChiSq1); 
merge output1_2 output&k._1(in=a drop=max); 
by variable; 
if a; 
delta&k=100*(estimate2- estimate1)/estimate1; 
rename estimate2=estimate&k 
 ProbChiSq2=ProbChiSq&k; 
if variable='-2 Log L' then delta&k=estimate2; 

 run; 
%end; 

  data output1_3; 
 set output1_1(drop=max); 

   rename estimate2=estimate1             
    ProbChiSq2=ProbChiSq1; 
  run; 

%macro names2; 
 %do m=2 %to &num; 

compare&m 
 %end; 
%mend names2; 
data delta; 
 merge output1_3 %names2; 
 by variable; 
 if variable='-2 Log L' then variable='D'; 
 temp=input(substr(variable,2,3),3.); 
run; 

 %mend logistic; 
 %logistic; 
 proc sort data=delta out=delta1(drop=temp); 

by temp; 
 run; 
 ods select all; 
 proc print data=delta1 noobs; 
  title 'Table 3. Delta-beta-hat-percent between full 
and reduced model'; 

var variable delta:; 
where variable^='D'; 

 run;  
 proc print data=delta1 noobs; 
  title 'Table 4. P-values of the Wald test'; 

var variable ProbChiSq:; 
where variable^='D'; 

 run; 
 proc print data=delta1 noobs; 
  title 'Table 5. Deviance and coefficient estimate'; 

var variable estimate:; 
 run;  
%mend variate; 
%variate(); 
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where 𝛽̂i1 and 𝛽̂ik are the estimated coefficient of the covariate xi in the full model and the kth reduced 

model, respectively. In this paper, a full model means a model containing all covariates in the dataset 

rather than that defined by McCullagh and Nelder [5]. It is not a saturated model, in which there are as 

many estimated parameters as observations [6]. The reduced model is the model obtained by setting 

certain parameters in the full model equal to zero [7]. 

DATA step Delta (lines 79-84) merged the deviances D = -2LogL [1], the delta-beta-hat percent, 

p-values and coefficient estimates of each covariate in the full and the reduced models. L is the likelihood 

of a fixed model. PRINT procedures (lines 91-104) printed them out for final model selection. Each 

column except the “Variable” column in any of the three output tables represented a model. They were 

named model 1, model 2, …, and model 8. They are in descending order of the number of covariates from 

left to right. 

Based on the outputs of the macro, the process of final model selection, which had three steps, was 

performed:  

(1) Observe p-values of each covariate in each model. Choose the smallest model that contains at least 

one covariate with p < 0.05. If the statistician wants to include some important covariates, choose the 

smallest model containing those covariates.  

(2) Check delta-beta-hat-percent, ∆𝛽̂ik% for the covariates in the model with p < 0.05. If any |∆𝛽̂ik%| > 

20% or another criterion pre-set based on special requirement, shift one column left in the output tables 

and repeat this step, until arriving at a column that does not include any |∆𝛽̂ik%| which is larger than the 

pre-set criterion for the covariates with p < 0.05. 

(3) Compare deviance D = -2logL for each model with ϰ2 in the Chi-Squared distribution table for p = 

0.05. If any D > ϰ2 with the same degree of freedom (DF), shift one column left and then compare D with 

ϰ2 again with the reduced DF. The comparisons will repeat until we find a model with D < ϰ2 and then 

return to Step 2. The iteration between steps 2 and 3 continues until a model that meets both ∆β� ik% and D 

requirements is found.   

    An alternative method for step 3 is to conduct the likelihood ratio test [7]: 

 

LRk = -2LogLk - (-2LogLk-1), k = 2, 3, …, 8,                    (2) 

 

where Lk and Lk-1 are the likelihoods of the models k and k-1, respectively. Because deviance D = -2logL, 

which provided by LOGISTIC directly, and -2logL cannot be used as a SAS variable name, D was used 
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for output instead of -2logL. 

Although the process described above appears complicated, the steps can be completed within 

minutes. 

To validate the methodology and the macro, the best subsets regression [1] was performed with the 

same dataset using a SAS code created by King [8]. The method and macro were also used for a project to 

detect factors associated with recommendations for rare disease drug in Canada [9]. 

All analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, NC). 

Results 

Table 3 shows the delta-beta-hat-percent ∆𝛽̂ik% between the full model and each reduced model. delta2, delta3, …, 
delta8 are the variable names of ∆𝛽̂ ik%. Tables 4 and 5 show p-values (ProbChiSq1, ProbChiSq2, …, and 
ProbChiSq8) of the Wald tests and the coefficient estimates (estimate1, estimate2, …, and estimate8) of all covariates 
in each model, respectively. Deviance (D), a criterion rather than a variable is included in Table 5 for convenience. 
 

Table 3. Delta-beta-hat-percent between full and reduced model 

Variable delta2 delta3 delta4 delta5 delta6 delta7 delta8 

x1 

x2 

x3 

x4 

x5 

x6 

x7 

x8 

4.67241 

0.60020 

3.56317 

-0.71575 

0.41012 

0.42983 

-0.07275 

. 

. 

0.4229 

13.9809 

-0.5464 

1.9325 

-2.0565 

-0.6350 

. 

. 

7.21031 

. 

0.86465 

-7.05382 

-5.36167 

0.81951 

. 

. 

13.4218 

. 

-2.1822 

. 

-2.3109 

1.2553 

. 

. 

18.0088 

. 

-3.2992 

. 

. 

-3.6413 

. 

. 

10.5127 

. 

. 

. 

. 

-10.9315 

. 

. 

. 

. 

. 

. 

. 

-18.3892 

. 

 
Table 4. P-value of the Wald test 

Variable ProbChiSq1 ProbChiSq2 ProbChiSq3 ProbChiSq4 ProbChiSq5 ProbChiSq6 ProbChiSq7 ProbChiSq8 

x1 

x2 

x3 

x4 

x5 

x6 

x7 

x8 

0.90516 

0.30450 

0.81040 

0.35729 

0.65400 

0.56257 

0.00943 

0.91743 

0.90072 

0.30100 

0.80319 

0.35958 

0.65237 

0.56116 

0.00957 

. 

. 

0.30185 

0.77825 

0.35939 

0.64712 

0.56824 

0.00944 

. 

. 

0.25468 

. 

0.35271 

0.67263 

0.58055 

0.00787 

. 

. 

0.22172 

. 

0.36482 

. 

0.56805 

0.00731 

. 

. 

0.20086 

. 

0.36932 

. 

. 

0.00808 

. 

. 

0.22428 

. 

. 

. 

. 

0.01114 

. 

. 

. 

. 

. 

. 

. 

0.016159 

. 
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Table 5. Deviance and coefficient estimate 
Variable estimate1 estimate2 estimate3 estimate4 estimate5 estimate6 estimate7 estimate8 

D 

x1 

x2 

x3 

x4 

x5 

x6 

x7 

x8 

75.6505 

0.1535 

0.6631 

0.2364 

0.6900 

0.2857 

-0.3598 

1.7119 

0.1203 

75.6615 

0.1606 

0.6671 

0.2448 

0.6850 

0.2868 

-0.3614 

1.7107 

. 

75.6767 

. 

0.6659 

0.2694 

0.6862 

0.2912 

-0.3524 

1.7011 

. 

75.7538 

. 

0.7109 

. 

0.6959 

0.2655 

-0.3405 

1.7260 

. 

75.9349 

. 

0.7521 

. 

0.6749 

. 

-0.3515 

1.7334 

. 

76.2615 

. 

0.7825 

. 

0.6672 

. 

. 

1.6496 

. 

77.1366 

. 

0.7328 

. 

. 

. 

. 

1.5248 

. 

78.6116 

. 

. 

. 

. 

. 

. 

1.3971 

. 

 

Table 4 shows that in any of the eight models only x7 is significant (p < 0.05).  Considering the 

definition of the best model, i.e. smaller is better if no other significant effect changes, the model with 

only one covariate x7 was chosen first and its delta-beta-hat-percent ∆𝛽̂78% (= -18.3892) in the column 

delta8 of Table 3 was checked. If |∆𝛽̂ik%| <= 20% was used as a criterion, this univariate model would be 

the final model. If the 18% coefficient change were not satisfied, this model would not be chosen. Instead, 

if 15% coefficient changes were accepted, x2 would be added to the model. More rigorously, if even a 10% 

variation for the coefficient of x7 were not permitted, |∆𝛽̂ik%| <= 10% would be set and the three 

covariate model with x2, x4 and x7 would be chosen. It would not matter that the value of delta6 for x2 

increased to 18.0088% >10%, because x2 had no significant effect (p = 0.20086) on the outcome. 

However, although x2 had no direct significant effect on outcome, combining with x4, it adjusted the 

coefficient of x7 from 1.39711 to 1.64959. The odds ratio of x7 increased from 4.044 to 5.205 (not shown 

in the table). 

If n (= 100 here) is the observation number and q (= 8 here) is the covariate number in the full model, 

the degree of freedom (DF) for the deviance test is n - q = 92. In Table 5, the D for each model is smaller 

than 80, while ϰ2 with DF = 92 is 115.39 for p = 0.05. For reduced models, the DFs for the deviance tests 

are larger than 92 and the corresponding ϰ2  > 115.39. Therefore, all models here have no significant 

differences from the saturated model at the significance level 0.05. 

The result of the likelihood test was the same as that of the deviation test. The difference of Ds 

between any two adjacent columns in Table 5 was much smaller than 3.84, the critical value of the 

Chi-Square statistic with DF = 1. Therefore, removing any covariates except x7 did not change the overall 

model significantly at p = 0.05 level. 

If it were important to keep covariate x4, for example, in the model, the iteration should be started 
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from the model containing x2, x4 and x7 for the model selection process.  

Finally, the result of the best subsets regression (not shown) verified that among all possible models 

with the same number of covariates, all reduced models generated by the macro with the hypothetical data 

had the smallest Mallows’ Cp [1,10]. 

The method and macro were used for the project to detect factors associated with recommendations 

for rare disease drug coverage in Canada [9]. The real data consist of 92 observation and 15 covariates. All 

variables were binary. Based on the proposed method, five covariates were remained in the model. 

Although they were the same as using stepwise method with that the significance levels for entry and stay 

were set at 0.2 in chance, with the proposed method, the coefficient changes (< 20%) of significant 

covariates in the model were derived. The overall model did not change significantly at p = 0.05 level after 

10 covariates were removed [9]. 

Discussion 

Why a new method? 

    The SAS LOGISTIC procedure is a convenient tool for us to perform stepwise regressions. 

Statisticians only need to specify significance levels for variable entry and/or stay, then LOGISTIC will 

automatically select covariates to build the model for us. However, the significance levels are set 

arbitrarily. The arbitrariness may result in bias for the following analyses. Because of different 

significance levels, different sets of covariates will remain in the fixed models. If the significance level 

were too low, important effects would be missed. In contrast, if the significance level were set too high, 

some covariates, which have little effect on the outcome would be included in the model, diluting the 

important relationships between other covariates and the outcome. 

A remedial strategy is using a higher significance level to run the LOGISTIC first, and then manually 

removing one covariate with the largest p-value and running the LOGISTIC again. This process will 

repeat until there are no covariates with p-values larger than the pre-set significance level in the model.  

Every time after removing a covariate, statisticians have to evaluate the characteristic changes of the 

remaining covariates and the overall model. The higher the significance level pre-set, the more covariates 

will be included. Therefore, the manual workload to eliminate redundant covariates will increase.  While 

the significance level increases to 1.0, regardless of forward, backward, combined stepwise or purposeful 

selection methods, the selection process becomes a backward selection without a significant level. The 
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idea of the proposed method came from this strategy.  

What is new? 

    Traditional backward elimination regression needs a pre-set significance level to control the covariate 

selection process. The process stops when there are no covariates that meet the criteria for removal. The 

proposed method does not need a pre-set significance level. Therefore, the process will not stop until only 

one covariate remains in the model.  

The delta-beta-hat-percent ∆𝛽̂% proposed by Hosmer et al. [1] was calculated for each covariate in 

each reduced model. The numerators are the differences of the coefficient estimates between the full 

model and each reduced model [11]. As we have seen from Table 5, the estimates of the coefficients vary 

depending on the presence or absence of other covariates included in the model.  However, the variations 

are not monotonic. Removing a covariate may increase or decrease other covariates’ effects on outcome. 

During the process of the backward selection, even if at a stage a coefficient changed a lot, the direction of 

the change might toward to its initial value in the full model. In contrast, even if the change were minor at 

a stage of the process, the estimated coefficient might quite differ to its original value. Therefore 

comparing reduced models with the full model appears more reasonable.  

A user-oriented macro was developed. To validate the proposed method and the macro, a hypothetical 

dataset was generated. For simplicity, all variables are binary. Referring to the three output tables, 

statisticians can decide their final models quickly and confidently. The decision is more flexible than with 

the traditional stepwise method. Statisticians can change their criteria and build different final models to 

meet their special requirements. Same as the best subsets method, the output of the macro provides 

multiple models for further selections. However, with the proposed method, the number of covariates 

included in the final model is easy to determine.  

    The results of deviance and likelihood tests are the same. If observation number is larger, the latter is 

more convenient. Instead of checking the Chi-Squared distribution table with larger DF, statisticians only 

need to compare the difference between each pair of adjacent deviances Ds with 3.84, the critical value of 

Chi-Square statistic with DF =1. 

How to use the macro? 

   As with traditional logistic regressions, the data should not contain any variables with all “0”or all “1” 

values. Complete or quasi-complete separation should not occur. In addition, the data should not contain any 

variables with missing values. Because the LOGISTIC in the macro runs iteratively, the dataset should 
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always be the same during the iteration.  If the data contained a variable with missing values, the effective 

observation number will increase while this variable removes.  

    After data preparation, users need to change their variable names to y, x1, x2, x3, and so on, exclude 

variables not for the regression, and then input their file names to invoke the macro. The number of variables 

and observations are arbitrary.  

    Readers can also use the macro in Table 1 to generate a dataset with a different seed to validate the 

macro in Table 2. I chose seed = “2” for convenience. If you choose another seed number, you may need to 

deal with complete or quasi-complete separation before running the macro.  For illustrative purposes, I set 

the covariate number to “8”. Because the number was relatively small, the characteristic changes of the 

overall model and the coefficient estimates during the process were not obvious. 

    After running the macro, statisticians can screen the output tables to select their final models. The macro 

focuses on the main effect model building. If statisticians want to identify interactions, they can add 

corresponding interactions to the fixed model and run the LOGISTIC procedure to build their final models 

with interactions easily. 

    In practice, one or more important covariates may have to stay in the model. Suppose that the purpose of 

a medical study is to compare two treatment effects. If the covariate represented the treatment were removed, 

the analysis would be meaningless. In this case, the statistician should select a final model containing the 

treatment from the macro outputs. 

Conclusions 

  This paper proposed a novel method for stepwise logistic regression. A user-oriented SAS macro was 

included. With this method, model selection is much easier than with purposeful or the best subsets 

method. This method improved the stepwise covariate selection process. Broad applications are expected. 

Acknowledgment 

    The author thanks Dr. Tania Stafinski, School of Public Health, University of Alberta, for the initial 

manuscript revision.  

 

 

77 
 



 

References 

[1]. D. W. Hosmer, S. Lemeshow and R. X. Sturdivant. Applied logistic regression. 3rd ed., John Wiley & 

Sons, Inc., Hoboken, New Jersey, 2013. 

[2]. A. Albert and J. A. Anderson. On the existence of maximum likelihood estimates in logistic 

regression models. Biometrika, 71, 1, 1-10, 1984. 

[3]. C. Rainey. Dealing with separation in logistic regression model. Political Analysis, 24, 339-355, 

2016. 

[4]. W. H. Greene. Econometric analysis, 6th ed., Prentice Hall, Boston, 2008. 

[5]. P. McCullaph and J. A. Nelder. Generalized linear model, 2nd ed., Chapman and Hall, London, 1989. 

[6]. A. Agresti. Categorical data Analysis, 3rd ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2013. 

[7]. D. G. Kleinbaum. Logistic regression: a self-learning text, Springer-Verlag, 1994. 

[8]. J. E. King. Running a best-subsets logistic regression: an alternative to stepwise methods. 

Educational and Psychological Measurement, 63, 392-403, 2003. 

[9]. F. N. I. Nagase, T. Stafinski, Sun J, G. Jhangri and D. Menon. Factors associated with positive and 

negative recommendations for cancer and non-cancer drugs for rare diseases in Canada. Orphanet 

Journal of Rare Diseases, 2019; https://doi.org/10.1186/s13023-019-1104-7. 

[10]. C. L. Mallows. Some comments on Cp. Technometrics, 15, 661-675, 1973. 

[11]. Z. Bursac, C. H. Gauss, D. K. Williams and D. W. Hosmer. Purposeful selection of variables in 

logistic regression. Source Code for Biology and Medicine, 3, 17, 2008, (no page numbers).  

78 
 


