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1 Introduction

The study of stochastic differential games on networks is a broad area. In a
stochastic differential game on a network, the state process of each player is
associated with a vertex of the network graph and each player minimizes the
individual cost function by controlling its state, where the state processes
are described by a stochastic differential system. The interactions among
the players through the network is encoded in the individual cost functions.
Roughly speaking, if player i (vertex i) is connected to player j (vertex j) in
the network, then the cost function of player i depends on the state process
of player j, and the cost function of player j depends on the state process
of player i. If the graph is directed, and if there is an arrow from j to i,
then the cost function of player i depends on the state process of player j.
The goal of study of stochastic differential game problem on networks is to
determine and analyze the Nash equilibrium of the game for different types
of networks. There are the following two extreme situations of the networks.

On one hand, we can consider a fully connected network (complete graph),
described in fig. 1 (a), with interaction of mean-field type. When the number
N of players goes to infinity, i.e., N → ∞, with appropriate scalings, this
kind of game can be approximated by a mean field game. The approximation
problem of mean field games has been discussed widely, for instance in Lacker
[7]. Stochastic games on infinite random networks have been proposed and
studied. Delarue [5] investigated an example of a game with a large number of
players in mean-field interaction when the graph connection between them
is of Erdős-Rényi type. More recently, Caines and Huang [1] [2] explored
stochastic differential games under dense graphs.

On the other hand, we can consider a very sparse, structured network
such as a directed, torus chain of N vertices in fig. 1 (b), where there are
arrows from i+ 1 to i for i = 1, . . . , N − 1 and an arrow from 1 to N . There
are only N directed edges in the network in contrast to the fully connected
graph, where there are

(
N
2

)
undirected edges. It is a complete opposite to the

mean field games, since, on a directed chain network, each player interacts
only with its neighbor in a given direction. The finite directed chain of N
vertices in fig. 1 (c) is obtained as a graph with even a fewer number of
directed edges, by removing the directed edge from 1 to N in the directed,
torus chain of fig. 1 (b). The difference between them is how to deal with
the boundary vertices (vertices 1 and N).
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In this paper, we introduce a stochastic differential game aspect of the
directed chain structures and identify Nash equilibria. We consider the limit,
when the number of players goes to infinity as in fig. 1 (d), and generalize
the results to the stochastic differential games on a directed tree structure.
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(c) Finite directed chain graph (d) Infinite directed chain graph

Figure 1: (a) Fully connected graph, (b) Directed torus chain graph, (c)
Finite directed chain, (d) Infinite directed chain.

Recently, the stochastic processes on one-dimensional, infinite directed
chain have been studied in Detering, Fouque and Ichiba [6] without the game
aspect. Similarly, Lacker, Ramanan and Wu [8] studied the limit of an in-
teracting diffusive particle system on a large sparse interaction graph with
finite average degree. Interestingly, the equilibrium dynamics on the network
discussed in this paper turns out to be different from the dynamics suggested
in [6]. Particularly, the long time variance behavior is different. The equilib-
rium dynamics for the infinite-player game is described by a Catalan Markov
chain introduced in this paper.

Our goal is to consider tractable stochastic differential games on directed
chain networks and to find their Nash equilibria explicitly in a similar spirit
of the work by Carmona, Fouque and Sun [4]. We focus on open-loop Nash
equilibria, discuss briefly closed loop Nash equilibria and examine how the
structure of the network affects this Nash equilibrium. We propose three
directed chain networks shown in fig. 1 (b)-(d) first and then consider the
stochastic differential games on the directed tree structure as an extension
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of directed chain graphs. In these considerations, all these graphs are not
considered as geometric graphs. In other words, the graph represents inter-
actions among players through the cost functions but not necessarily reflects
physical (spatial) distance among players.

The paper is organized as follows. In section 2, we propose a finite-player
game model on a directed chain of fig. 1 (b), and construct an open-loop
Nash equilibrium. We discuss general boundary conditions on the boundary
vertex of the network graph as well as two special cases to illustrate that the
boundary condition actually affects weakly the Nash equilibrium. We also
observe that for this type of games open-loop and closed-loop Nash equilibria
coincide.

Section 3 is devoted to the analysis of an infinite-player stochastic dif-
ferential game on a directed chain of fig. 1 (c). We find an open-loop Nash
equilibrium from a similar Riccati system to that of the finite-player game.
The solutions of the infinite-dimensional Riccati system are called Catalan
functions. We use them to build a Catalan Markov chain and introduce an
infinite-dimensional Ornstein-Uhlenbeck process in section 4. We find that
its long-time asymptotic variance and covariance are finite.

In section 5, we shall incorporate the mean-field interactions to the stochas-
tic differential games on the directed chain. We call it a mixed system of
directed chain and mean-field interactions. We discuss both finite-player and
infinite-player games for the mixed system. By choosing a tuning parameter
u ∈ [0, 1], we may adjust the model to be a purely mean field game (studied
in [4]), or a purely directed chain game, or a mixture of the two interactions.
For it, we repeat the same steps as in section 2, section 3, and section 4 to
find the Nash equilibria and we construct a generalized Catalan Markov chain
describing the two effects. We find that the long-time asymptotic variance
of the process with the purely directed chain interaction is finite, which is
different from the case with mean-field interaction as it was shown in Table
1 in [6].

In section 6, we propose anN player stochastic differential game under the
directed chain torus graph fig. 1 (a). It corresponds to the periodic boundary
condition. We construct an open-loop Nash equilibrium. We conjecture that
as N → ∞, its infinite-player limit is the same as the one found for other
boundary condition. This conjecture is supported by numerical results.

In section 7, we extend our results to tree structures (fig. 3) with fixed
finite number of descendants. Section 8 gives a conclusion and open problems.
Appendix A includes some technical proofs and discussions.

4
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2 N-Player Directed Chain Game

2.1 Setup and Assumptions

In fig. 1 (c), we consider a stochastic differential game in continuous time,
involving N players indexed from 1 to N . Each player i is controlling its
own, real-valued private state X i

t by taking a real-valued action αit at time
t ∈ [0, T ]. The dynamics of the states of the N individual players are given
by N stochastic differential equations of the form:

dX i
t = αitdt+ σdW i

t , i = 1, · · · , N, (1)

where 0 ≤ t ≤ T and (W i
t )0≤t≤T , i = 1, · · · , N are independent standard

Brownian motions on a filtered probability space (Ω,F ,P) with filtration
(Ft)0≤t≤T generated by the noises and augmented with an initial σ-algebra
F0, independent of the Brownian motions.

Here and throughout the paper, the argument in the superscript rep-
resents index or label but not the power. For simplicity, we assume that
the diffusion is one-dimensional and the diffusion coefficients are constant
and identical denoted by σ > 0. The drift coefficients αi’s are progressively
measurable with respect to the filtration (Ft)0≤t≤T and satisfy the square

integrability E[
∫ T
0
|αit|2dt] < ∞ for i = 1, . . . , N . The system starts at time

t = 0 from i.i.d. square-integrable, F0-measurable random variables X i
0 = ξi

for i = 1, . . . , N , independent of the Brownian motions. For simplicity, we
assume E(ξi) = 0 for i = 1, . . . , N .

In this model, among the first N − 1 players, each player i chooses its
own strategy αi, in order to minimize its objective function given by: for
1 ≤ i ≤ N − 1

J i(α1, · · · , αN) = E

{∫ T

0

(1

2
(αit)

2 +
ε

2
(X i+1

t −X i
t)

2
)

dt+
c

2
(X i+1

T −X i
T )2
}
,

(2)
for some constants ε > 0 and c ≥ 0. The running cost and the terminal cost
functions are defined by

f i(x, αi) :=
1

2
(αi)2 +

ε

2
(xi+1 − xi)2, and gi(x) :=

c

2
(xi+1 − xi)2, (3)

respectively for x := (x1, . . . , xN) ∈ RN and αi ∈ R, i = 1, . . . , N . This is
a Linear-Quadratic game on a directed chain network in fig. 1 (c), since the
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state X i of each player i interacts only with X i+1 through the quadratic cost
functions for i = 1, . . . , N − 1. The system is completed by describing the
behavior of player N , which will be done in the following section, when we
discuss it as the boundary condition of the system.

2.2 Open-Loop Nash Equilibrium

In this section, we search for an open-loop Nash equilibrium of the system
of N players among the admissible strategies {αit, i = 1, · · · , N, t ∈ [0, T ]}
by the Pontryagin stochastic maximum principle (see the monograph [10] for
stochastic controls, and also see [3] for stochastic maximum principle in the
mean-field games) and study the effect of boundary conditions induced by
the behavior of player N .

Definition (Open-loop Nash equilibrium). We call {αi, 1 ≤ i ≤ N} an
open-loop Nash equilibrium if for every player i and for any other (Ft)0≤t≤T
adapted and square-integrable control β· we have

J i(α1, . . . , αi−1, β, αi+1, . . . , αN) ≥ J i(α1, . . . , αi−1, αi, αi+1, . . . , αN). (4)

We discuss a general boundary condition first in section 2.2.1 and then
show two particular choices in sections 2.2.2 -2.2.3.

2.2.1 General Boundary Condition

We consider a setup with a general boundary condition for the directed chain
where the last player N does not depend on the other players. The expected
cost functional for player N is defined by:

JN(αN) := E

{∫ T

0

(
1

2
(αNt )2 + q2(X

N
t )

)
dt+Q2(X

N
T )

}
, (5)

where q2(x) :=
a1
2

(x−m)2+a2, and Q2(x) :=
c1
2

(x−m)2+c2, x ∈ R
(6)

are non-degenerate convex quadratic functions in x, where a1, a2,m, c1, c2 are
some constants with a1 > 0 and c1 > 0. The running cost and terminal cost
functions are fN(x, αN) := 1

2
(αN)2 + q2(x) and gN(x) := Q2(x), respectively.

This can be seen as a control problem for the player N and we assume its
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state is attracted to some constant level m ∈ R. We define the Hamiltonian
for each player. The Hamiltonian for player i ≤ N − 1 is given by:

H i(x1, · · · , xN , yi,1, · · · , yi,N , α1, · · · , αN) :=
N∑
k=1

αkyi,k+
1

2
(αi)2+

ε

2
(xi+1−xi)2,

while the Hamiltonian for player N is:

HN(x1, · · · , xN , yi,1, · · · , yi,N , α1, · · · , αN)

:=
N∑
k=1

αkyi,k +
1

2
(αN)2 +

a1
2

(xN −m)2 + a2

for xk, yi,k, αk ∈ R, i, k = 1, . . . , N . For i = 1, . . . , N the value of αi minimiz-
ing the Hamiltonian H i(·) with respect to αi, when all the other variables
including αj for j 6= i are fixed, is given by the first order condition

∂αiH i = yi,i + αi = 0 leading to the choice: α̂i = −yi,i.

The adjoint processes Y i
t = (Y i,j

t ; j ≤ N) and Zi
t = (Zi,j,k

t ; j, k ≤ N) for
i = 1, · · · , N are defined as the solutions of the system of backward stochastic
differential equations (BSDEs): for j = 1, . . . , N

dY i,j
t = −∂xjH i(Xt, Y

i
t , αt)dt+

N∑
k=1

Zi,j,k
t dW k

t

= −ε(X i+1
t −X i

t)(δi+1,j − δi,j)dt+
N∑
k=1

Zi,j,k
t dW k

t , 0 ≤ t ≤ T,

Y i,j
T = ∂xjgi(XT ) = c(X i+1

T −X i
T )(δi+1,j − δi,j), i ≤ N − 1;

dY N,j
t = −a1(XN

t −m)δN,jdt+
N∑
k=1

ZN,j,k
t dW k

t , 0 ≤ t ≤ T,

Y N,j
T = c1(X

N
T −m)δN,j

(7)

where δi,j := 1, if i = j, and 0, otherwise. Particularly, for j = i, j = i + 1,
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it becomes:

dY i,i
t = ε(X i+1

t −X i
t)dt+

N∑
k=1

Zi,i,k
t dW k

t , Y i,i
T = −c(X i+1

T −X i
T ),

dY i,i+1
t = −ε(X i+1

t −X i
t)dt+

N∑
k=1

Zi,i+1,k
t dW k

t , Y i,i+1
T = c(X i+1

T −X i
T ),

dY N,N
t = −a1(XN

t −m)dt+
N∑
k=1

ZN,N,k
t dW k

t , Y N,N
T = c1(X

N
T −m)

(8)

for i ≤ N − 1, 0 ≤ t ≤ T . Thus, because of Y i,i
T = −Y i,i+1

T and of the form
of dynamics, it is reduced to

Y i,i
t = −Y i,i+1

t , Zi,i,k
t = −Zi,i+1,k

t (9)

for i ≤ N − 1, k ≤ N, 0 ≤ t ≤ T . For j 6= i, i + 1, i ≤ N − 1, it becomes:
dY i,j

t =
∑N

k=1 Z
i,j,k
t dW k

t , Y i,j
T = 0, and hence, the solution is

Y i,j
t ≡ 0 , Z i,j,k

t ≡ 0, 0 ≤ t ≤ T . (10)

Considering the BSDE (8) and its terminal condition, we make the ansatz:

Y i,i
t =

N−1∑
j=i

φN,i,jt Xj
t + (φN,i,Nt XN

t + ψN,it ) =
N∑
j=i

φN,i,jt Xj
t + ψN,it , (11)

for some deterministic scalar functions φt (depending on N) satisfying the
terminal conditions: for 1 ≤ i ≤ N −1, φN,i,iT = c, φN,i,i+1

T = −c, φN,i,jT = 0 for
j ≥ i + 2, ψN,iT = 0; and φN,N,NT = c1, ψ

N,N
T = −c1m. With this ansatz, the

optimal strategy α̂· and the controlled forward equation for X· in (1) become,
for i ≤ N

α̂it = −Y i,i
t , dX i

t = −
( N∑
k=i

φN,i,kt Xk
t + ψN,it

)
dt+ σdW i

t , t ≥ 0. (12)

Differentiating the ansatz (11) and substituting (12) leads to: dY i,i
t has

drifts{ N∑
k=i

(
φ̇N,i,kt −

k∑
j=i

φN,i,jt φN,j,kt

)
Xk
t +

[
ψ̇N,it −

N∑
j=i

ψN,jt φN,i,jt

]}
dt (13)
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and martingale terms σ
∑N

k=i φ
N,i,k
t dW k

t . Here φ̇t represents the time deriva-
tive of φt. Comparing the martingale terms of two Itô’s decompositions (8)
and (13) of Y i,i

t , we obtain the deterministic (and therefore adapted) pro-
cesses Zi,i,k

t :

Zi,i,k
t = 0 for k < i, and Zi,i,k

t = σφN,i,kt for k ≥ i; (14)

Moreover, the drift terms show that the functions φN,·,·t and ψN,·t must satisfy
the system of Riccati equations : φ̇N,N,Nt = φN,N,Nt · φN,N,Nt − a1, φN,N,NT = c1
and

φ̇N,i,jt =

j∑
`=i

φN,i,`t φN,`,jt + ε(−δi,j + δi+1,j), φN,i,jT = c(δi,j − δi+1,j) (15)

for i ≤ N − 1, j ≤ N , and ψN,j· , j ≤ N are determined by ψ̇N,Nt =
ψN,Nt φN,N,Nt + a1m, ψN,NT = −c1m and for i ≤ N − 1

ψ̇N,it =
N∑
j=i

ψN,jt φN,i,jt , ψN,iT = 0, (16)

From the equations above, the functions φN,i,it for all i = 1, · · · , N −1 are
identical; the functions φN,i,i+1

t for all i = 1, · · · , N −2 are identical ;· · · ; and
the functions φN,i,N−2t = φN,i+1,N−1

t . The functions φN,i,Nt for all i depend
on φN,N,Nt of the last player which is determined by the boundary condition.
However, the functions φN,i,it , · · · , φN,i,N−1t are independent of φN,i,Nt and the
boundary condition. The functions ψN,· depend on the φ functions and have
no effect on φN,i,j (j < N) as well.

In conclusion, these φN,i,j (j < N) are solvable, identical and independent
of the boundary condition as long as the boundary condition defines the last
player as a self-controlled problem. The preceding argument is summarized
as the following.

Proposition 1. An open-loop Nash equilibrium for the linear quadratic stochas-
tic game with cost functionals (2)-(3) for the first N − 1 players and (5)-(6)
for the N th player is given by (12), where φN,i,j· and ψN,j are uniquely deter-
mined by the system (15)-(16) of Riccati equations.

As the number of players goes to infinity, we can get rid of the boundary
condition and get a sequence of functions {φjt , j = 1, 2, · · · }, defined by φ0

t =
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φN,i,it , φ1
t = φN,i,i+1

t , · · · , φjt = φN,i,i+jt for large N and so on. It indicates
that the Nash equilibrium converges to a limit independent of the boundary
condition. Therefore, it is natural to study a similar game with infinite
players. We conjecture that in general, as the number N of players goes to
infinity, the limit of the Nash equilibrium of the finite-player, linear-quadratic
stochastic differential game under the directed chain graphs gives us the Nash
equilibrium of the infinite-player game, and moreover, {φjt , i ∈ N} is the
solution to the Riccati equation system of the infinite-player game. This will
be discussed in section 3. Next, two particular examples are discussed to
better illustrate the effect of the special boundary.

2.2.2 Boundary Condition 1: XN is attracted to 0

Here, we discuss the case when XN is attracted to 0 which is also the common
mean E[ξi] = 0 of the initial condition. It is equivalent to the general
boundary condition (5)-(6) with m = 0. Without loss of generality, we can
take constants: a1 = ε, c1 = c and a2 = c2 = 0. Then the cost functional for
player N is given by:

JN(αN) := E

{∫ T

0

(
1

2
(αNt )2 +

ε

2
(XN

t )2
)

dt+
c

2
(XN

T )2
}
.

The running cost function is defined by fN(x, αN) = 1
2
(αN)2 + ε

2
x2 and the

terminal cost function is defined by gN(x) = c
2
x2. Then, XN is independent

of the other players and is the solution of a self-controlled problem. We then
make the same ansatz as (11) with ψN,it = 0 for all i, 0 ≤ t ≤ T . As a result,
Zi,i,k
· and φN,i,j· are as (14) and (15), respectively. Consequently, we have the

same conclusion: the functions φN,i,i+kt = φN,j,j+kt for all i, j ≥ 1, k ≥ 1 and
i + k < N, j + k < N ; and functions φN,i,jt (j < N) are independent of the
boundary condition.

Remark 1 (Shift invariance). Notice that in this case φN,N,Nt has the same
solution as φN,i,it (i < N). Thus, in the ansatz (11), we can actually assume
the solution φN,i,j· depends only on the difference j − i for j ≥ i.

2.2.3 Boundary Condition 2: αN = 0

We study the case when there is no control for the last player XN , i.e. the
dynamics of the state is given by:

dXN
t = σdWN

t , 0 ≤ t ≤ T ; XN
0 = ξN , E(ξN) = 0.

10
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Player i chooses the strategy αit (i < N) to minimize J i given in (2) and
the last player does not control, i.e., αN· ≡ 0. We make the same ansatz
as in (11) with ψN,it = 0 for all i. Then Zi,i,k

· are the same as in (14) for
i ≤ N , k ≤ N , 0 ≤ t ≤ T , and φN,i,j· , i ≤ N − 1, j ≤ N satisfy (15),
however, for i = N , φ̇N,N,Nt = −ε for 0 ≤ t ≤ T with φN,N,NT = c. Thus, it is
demonstrated again that the boundary condition does not affect the solutions
φN,i,j· (j < N), however, the functions φN,i,N· for all i are different from those
in section 2.2.2, which depends on the boundary.

2.3 Closed-loop Nash Equilibrium

In search for closed-loop Nash equilibria, the controls are of the form αk(t, x).
When computing ∂xjH

i in the derivation of the BSDE for Y i,j, one needs
to pay attention in taking derivatives with respect to xj in α̂k for k 6= i,
using α̂k = −yk,k and the ansatz (22). This is a tedious but straightforward
computation which leads to the fact that the obtained closed-loop equilib-
rium coincides with the open-loop equilibrium identified before. We omit
the details here as well as repeating this remark in the following sections.
The only place where closed-loop and open-loop equilibria will be different
is in section 5 when we will look at a mixture of directed chain and mean
field interactions for finite player games, as it is already the case for pure
mean field interaction studied in [4]. However, they will coincide again for
the infinite-player games in section 5.2.

3 Infinite-Player Game Model

Motivated by the limit of the finite-player game discussed in section 2, we
define the game with infinite players on a directed chain structure as shown
in fig. 1. In remark 2 in section 3.1, we will see that the Hamiltonian only
depends on finite players, which will make it well-defined. We assume that the
state dynamics of all players are given by the stochastic differential equations
of the form: for i ≥ 1,

dX i
t = αitdt+ σdW i

t , 0 ≤ t ≤ T, (17)

where (W i
t )0≤t≤T , i ≥ 1 are one-dimensional, independent Brownian motions

on a filtered probability space (Ω,F ,P) with filtration (Ft)0≤t≤T . Similar
to the setup for the finite-player games in section 2, we assume that the
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drift coefficients αi are adapted to the filtration of the Brownian motions
and satisfy E[

∫ T
0
|αit|2dt] <∞. We also assume that the diffusion coefficients

are constant and identically denoted by σ > 0. The system starts at time
t = 0 from i.i.d. square-integrable random variables X i

0 = ξi with E(ξi) = 0,
independent of the Brownian motions. In this model, player i chooses its
own strategy αi in order to minimize its expected cost function of the form:

J i(α) := E

[ ∫ T

0

f i(Xs, α
i
s)ds+ gi(XT )

]
, (18)

where the running and terminal cost functions f i(x, αi), gi(x) are the same
as in (3).

3.1 Open-Loop Nash Equilibrium

We search for an open-loop Nash equilibrium of the infinite system (17)
among admissible strategies {αit, i = 1, 2, · · · , 0 ≤ t ≤ T}.

Definition (Open-loop Nash equilibrium). We call α := {αi, i ≥ 1} an
open-loop Nash equilibrium if for every player i and for any other (Ft)0≤t≤T
adapted and square-integrable control β· we have

J i(α1, . . . , αi−1, β, αi+1, . . .) ≥ J i(α1, . . . , αi−1, αi, αi+1, . . .). (19)

First, we define the Hamiltonian H i of the form:

H i(x1, x2, · · · , yi,1, · · · , yi,ni , α1, α2, · · · )

:=

ni∑
k=1

αkyi,k +
1

2
(αi)2 +

ε

2
(xi+1 − xi)2,

(20)

assuming it is defined on real numbers xi, yi,k, αi, i ≥ 1, k ≥ 1, where only
finitely many yi,k are non-zero for every given i. Here, ni is a finite number
depending on i with ni > i. This assumption is checked in remark 2 below.
Thus, the Hamiltonian H i is well defined for i ≥ 1.

The adjoint processes Y i
t = (Y i,j

t ; j ≤ ni) and Zi
t = (Zi,j,k

t ; j ≤ ni, k ≥ 1)
for i ≥ 1 are the solutions of the following BSDEs for 0 ≤ t ≤ T , i ≥ 1,
1 ≤ j ≤ ni, dY i,j

t = −ε(X i+1
t −X i

t)(δi+1,j − δi,j)dt+
∞∑
k=1

Zi,j,k
t dW k

t ,

Y i,j
T = ∂xjgi(XT ) = c(X i+1

T −X i
T )(δi+1,j − δi,j).

(21)
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Remark 2. For every j 6= i or i + 1, dY i,j
t =

∑∞
k=1 Z

i,j,k
t dW k

t and Y i,j
T = 0

implies Zi,j,k
t = 0 for all k. This observation is consistent with (10) in the

finite player game case. Note also that Y i,i+1 = Y i,i. There must be finitely
many non-zero Y i,j’s for every i. Hence, the Hamiltonian H i in (20) can be
rewritten as

H i(x1, x2, · · · , yi,i, yi,i+1, α1, α2, · · · ) = αiyi,i+αi+1yi,i+1+
1

2
(αi)2+

ε

2
(xi+1−xi)2.

Since each H i is minimized at α̂i = −yi,i, inspired by the conclusion from
the finite-player game (see also remark 1), we then make the ansatz of the
form:

Y i,i
t =

∞∑
j=i

φj−it Xj
t , 0 ≤ t ≤ T (22)

for some deterministic scalar functions φit satisfying the terminal conditions:
φ0
T = c, φ1

T = −c, φiT = 0 for i ≥ 2. Substituting the ansatz (22), the optimal
strategy α̂i and the forward equation for X i

· in (17) are

α̂it = −Y i,i
t = −

∞∑
j=i

φj−it Xj
t , dX i

t = −
∞∑
j=i

φj−it Xj
t dt+ σdW i

t (23)

for i ≥ 1, 0 ≤ t ≤ T . Differentiating the ansatz (22), we obtain

dY i,i
t =

∞∑
`=0

φ̇`tX
i+`
t dt−

∞∑
`=0

(∑̀
j=0

φjtφ
`−j
t

)
X i+`
t dt+ σ

∞∑
`=i

φ`−it dW `
t . (24)

Now by comparing the two Itô’s decompositions (24) and (21) of Y i,i
t , we

obtain

Zi,i,k
t = 0 for k < i and Zi,i,k

t = σφk−it for k ≥ i

and the system of Riccati equations: for i ≥ 0, 0 ≤ t ≤ T

φ̇it =
i∑

j=0

φjtφ
i−j
t + ε(−δ0,i + δ1,i), φiT = c(δ0,i − δ1,i). (25)

The solutions to this Riccati system coincide with the limit of the solu-
tions to the ODE system (15) of the N-player directed chain game in section 2,
i.e., φi· = lim

N→∞
φN,i,i+j· in the supremum norm. The Riccati system (25) is

solvable.
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Proposition 2 (Catalan functions). With c > 0, ε > 0, the solution to (25)
satisfies

∞∑
j=0

φjt = 0, φ0
t =

(−ε− c
√
ε)e2

√
ε(T−t) + ε− c

√
ε

(−
√
ε− c)e2

√
ε(T−t) −

√
ε+ c

> 0, (26)

for 0 ≤ t ≤ T . Moreover, the functions φk· ’s are obtained by a series expan-
sion of the generating function St(z) =

∑∞
k=0 z

k · φkt , z ≤ 1 of {φ`} given by
St(1) ≡ 0, and

St(z) =

(
− ε(1− z)− c

√
ε(1− z)(1− z)

)
e2
√
ε(1−z)(T−t) + ε(1− z)− c

√
ε(1− z)(1− z)(

−
√
ε(1− z)− c(1− z)

)
e2
√
ε(1−z)(T−t) −

√
ε(1− z) + c(1− z)

(27)

for 0 ≤ t ≤ T , z < 1. We call φk’s Catalan functions.

Proof. Given in appendix A.1.

Remark 3. It follows from (2) that the forward dynamics (23) can be written
as:

dX i
t = −

∞∑
j=0

φjtX
i+j
t dt+ σdW i

t = φ0
t ·
( ∞∑
j=1

−φjt
φ0
t

X i+j
t −X i

t

)
dt+ σdW i

t

(28)

for i ≥ 1, 0 ≤ t ≤ T . This is a mean-reverting type process with φ0
t > 0. We

also see that this system is invariant under the shift of indices of individuals,
i.e., the law of X i is the same as that of X1 for every i and also X i is
independent of (W 1, · · · ,W i−1).

We end with a summary of this section on the infinite player game.

Proposition 3. An open-loop Nash equilibrium for the infinite-player stochas-
tic game with cost functionals (18) with (3) is determined by (28), where
{φj, j ≥ 0} are the unique solution to the infinite system (25) of Riccati
equations.

4 Catalan Markov Chain

In order to simplify our analysis, we look at the stationary solution {φj, j ≥
0} of (25) and the corresponding dynamics of (28), as T →∞. For simplicity,
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we assume ε = 1. By taking T → ∞, we obtain the stationary long-time
behavior satisfying φ̇j· = 0 for all j. Then, (25) gives the recurrence relation
for the stationary solution {φj, j ≥ 0}:

φ0 = 1 and
n∑
j=0

φjφn−j = δ0,n − δ1,n; n ≥ 0. (29)

This is closely related to the recurrence relation of Catalan numbers. By
using a moment generating function method as in appendix A.1, we get the
stationary solutions

φ0 := 1, φ1 := −1

2
, φj := − (2j − 3)!

(j − 2)! j! 22j−2 for j ≥ 2. (30)

We consider the continuous-time Markov chain M(·) with state space N
and generator matrix Q = (qi,j), where (i, j) element qi,j of Q is given by
qi,j := pj−i · 1{j≥i} with pk := −φk, k ≥ 0, i, j ≥ 1. Note that the transition
probabilities of the continuous-time Markov chain M(·), called a Catalan
Markov chain, are pi,j(t) = P(M(t) = j|M(0) = i) = (etQ)i,j, i, j ≥ 1, t ≥ 0.
For simplicity, we assume σ = 1. Then with replacement of φjt , t ≥ 0 by the
stationary solution φj in (30), the infinite particle system (X i

· , i ≥ 1) in (28)
can be represented formally as a linear stochastic evolution equation:

dXt = Q Xtdt+ dWt; t ≥ 0, (31)

where X. = (X i
. , i ≥ 1) with X0 = x0 and W. = (W k

. , k ≥ 1). Its solution is

Xt = etQx0 +

∫ t

0

e(t−s)QdWs; t ≥ 0. (32)

Without loss of generality, let us assume X0 = 0. Then,

X i
t =

∫ t

0

∞∑
j=i

pi,j(t− s)dW j
s =

∫ t

0

∞∑
j=i

P(M(t− s) = j|M(0) = i)dW j
s

= E
M
[∫ t

0

∞∑
j=i

1(M(t−s)=j)dW
j
s |M(0) = i

]
; t ≥ 0,

(33)
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where the expectation is taken with respect to the probability induced by the
Catalan Markov chain M(·), independent of the Brownian motions (W j

· , j ∈
N0). This is a Feynman–Kac representation formula for the infinite particle
system X· in (33) associated with the continuous-time Markov chain M(·)
with the generator Q. Interestingly, we may compute quite explicitly the
corresponding transition probability.

Proposition 4. With x0 = 0, the Gaussian process X i
t , i ≥ 1 , t ≥ 0 in

(33), corresponding to the Catalan Markov chain with the generator Q, is

X i
t =

∞∑
j=i

∫ t

0

(t− s)2(j−i)

(j − i)!
· ρj−i(−(t− s)2) e−(t−s) · dW j

s , (34)

where W j
· , j ∈ N are independent standard Brownian motions and ρi(·) is

defined by

ρi(x) :=
1

2i

2i−1∑
j=i

(i− 1)!

(2j − 2i)!!(2i− j − 1)!
· (−x)−

j
2 , (35)

for i ≥ 1, and ρ0(x) = 1 for x ≤ 0.

Proof. Given in appendix A.2.

Remark 4. To evaluate the asymptotic properties, it can be shown that

ρj(−ν2) =
1

2jνj
·
√

2ν

π
· eν ·Kj−(1/2)(ν) ; j ≥ 1 , (36)

where Kn(x) is the modified Bessel function of the second kind defined by

Kn(x) =

∫ ∞
0

e−x cosh t cosh(nt)dt (> 0) ; n > −1, x > 0.

The asymptotic behaviors of X i
· in (34) are derived rather straightfor-

wardly from its explicit expression and are summarized in the following with
proofs in appendix A.3 - appendix A.5.
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4.1 Asymptotic Behavior of the Variances as t→∞
It follows from (34) that for t ≥ 0 , the variance of the Gaussian process X i

· ,
i ≥ 1, in (33) is given by

Var(X i
t) = Var(X1

t ) =
∞∑
j=0

∫ t

0

(t− s)4j

(j!)2
|ρj(−(t− s)2)|2e−2(t−s)ds

=
∞∑
k=1

∫ t

0

2

π

ν2k+1

(k!)2 4k
(
Kk−(1/2)(ν)

)2
dν +

1− e−2t

2

(37)

Proposition 5. The asymptotic variance is limt→∞Var(X1
t ) = 1/

√
2.

4.2 Asymptotic Independence

The auto-covariance and cross-covariance are given respectively by: for s ≤ t

E[X1
sX

1
t ] =

∞∑
j=0

∫ s

0

((t− s+ u)u)j+1/2

π(j!)222j−1 Kj−1/2(t− s+ u)Kj−1/2(u)du,

E[X1
tX

j+1
t ] =

∞∑
`=0

∫ t

0

sj+2`+1

π(j + `)!`!2j+2`−1Kj+`−1/2(s)K`−1/2(s)ds, t ≥ 0.

(38)

The following propositions give two results about these covariances and
the details of the proofs are given in Appendix appendix A.5.

Proposition 6 (Ergodicity). The auto-covariance E[X1
sX

1
t ] is positive. For

every s > 0, as t→∞, it converges to 0, i.e., the process is ergodic.

Proposition 7 (Asymptotic behavior of the cross-covariance). Similarly, for
every k ≥ 0 and for any t > 0 the cross-covariance E[X1

tX
k+1
t ] is positive,

and 0 < limt→∞E[X1
tX

k+1
t ] ≤ 1/

√
2. The asymptotic cross-covariance is

positive and bounded above, which means the states are asymptotically de-
pendent.
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5 Mixture of Directed Chain and Mean Field

Interaction

In the spirit of the paper, we shall look at the game on a mixed system,
including the directed chain interaction and the mean field interaction for
finite players. This section repeats the same steps as before to analyze the
mixed system game.The state dynamics of all the payers are of the form:
dX i

t = αitdt+ σdW i
t for i ≥ 1 as in the previous sections.

5.1 Finite-Player Game

In this N -player model, player i chooses its own strategy αi in order to
minimize its objective function of the mixed form: i ≤ N

J i(α1, · · · , αN) := E

{∫ T

0

f i(Xt, α
i)dt+ gi(XT )

}
, (39)

where the running cost and terminal cost functions are defined by

f i(x, αi) :=
1

2
(αi)2 + u · ε

2
(xi+1 − xi)2 + (1− u) · ε

2
(x̄− xi)2, (40)

gi(x) := u · c
2

(xi+1 − xi)2 + (1− u) · c
2

(x̄− xi)2, (41)

for some positive constants ε, c and a weight u ∈ [0, 1]. Here, x̄ is defined by
x̄ = (x1 + · · · + xN)/N and we use the convention xN+1 ≡ 0 for notational
simplicity.

Each player optimizes the cost determined by the mixture of two cri-
teria: distance from the neighbor in the directed chain with weight u and
distance from the empirical mean X̄· with weight 1− u. The system is again
completed by describing the behavior of player N . For simplicity, we con-
sider the boundary condition of the system where XN is attracted to 0 (cf.
section 2.2.2). If u = 1, the system becomes the directed chain system dis-
cussed before. If u = 0, it becomes a mean-field system where each player is
attracted towards the mean.

5.1.1 Open-Loop Nash Equilibrium

As before, we find an open-loop Nash equilibrium of the system among strate-
gies {αit, i = 1, · · · , N} by reiterating the previous procedure and solving the
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corresponding BSDE system. It is desribed by

dX i
t =

[
− u

N∑
k=i

φN,i,kt Xk
t + (1− u)(X̄t −X i

t)θt

]
dt+ σdW i

t , (42)

where X̄· := (X1
· + · · · + XN

· )/N , φN,i,j· and θ· are determined by the ODE
system

uφ̇N,i,`t − u2
∑̀
j=i

φN,i,jt φN,j,`t − 2u(1− u)θtφ
N,i,`
t

+ uε(δi,` − δi+1,`) + [(1− u)θ̇t − (1− u)2θ2t ]δi,`

+
1

N
(1− u)

[
− θ̇t + (1− u)θ2t + uθt(

∑̀
j=1

φN,j,`t +
N∑
k=i

φN,i,kt )
]

= 0,

uθt

N∑
k=i

φN,i,kt − θ̇t + (1− u)θ2t − ε
(

1− 1

N

)
= 0

(43)

with terminal condition φN,i,`T = c(−δi,` + δi+1,`), θT = c(1−N−1) for ` ≥ i ,
0 ≤ t ≤ T and for fixed u ∈ (0, 1).

The Hamiltonian is denoted byH i(x1, · · · , xN , yi,1, · · · , yi,N , α1, · · · , αN) :=

N∑
k=1

αkyi,k +
1

2
(αi)2 + u

ε

2
(xi+1 − xi)2 + (1− u)

ε

2
(x̄− xi)2,

for player i ≤ N − 1, and HN(x1, · · · , xN , yi,1, · · · , yi,N , α1, · · · , αN) :=

N∑
k=1

αkyi,k +
1

2
(αi)2 + u

ε

2
(xN)2 + (1− u)

ε

2
(x̄− xi)2

for player N . Minimizing the Hamiltonian with respect to αi,

∂αiH i = yi,i + αi = 0 leading to the choice: α̂i = −yi,i.

The adjoint processes Y i
t = (Y i,j

t ; j = 1, · · · , N) and Zi
t = (Zi,j,k

t ; j =
1, · · · , N, k = 1, · · · , N) for i = 1, · · · , N are defined as the solutions of
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the backward stochastic differential equations (BSDEs):

i < N :



dY i,j
t = −∂xjH i(Xt, Y

i
t , αt)dt+

N∑
k=0

Zi,j,k
t dW k

t

= −
[
uε(X i+1

t −X i
t)(δi+1,j − δi,j)

+ (1− u)ε(X̄t −X i
t)
(

1
N
− δi,j

)]
dt+

N∑
k=0

Zi,j,k
t dW k

t ,

Y i,j
T = ∂xjgi(XT ) = uc(X i+1

T −X i
T )(δi+1,j − δi,j)

+ (1− u)c(X̄T −X i
T )( 1

N
− δi,j).

(44)

i = N :



dY N,j
t = −

[
uεXN

t δN,j

+ (1− u)ε(X̄t −XN
t )
( 1

N
− δN,j

)]
dt+

N∑
k=0

ZN,j,k
t dW k

t ,

Y N,j
T = ucXN

T δN,j + (1− u)c(X̄T −XN
T )
( 1

N
− δN,j

)
.

(45)
When j = i, it becomes:

dY i,i
t =

[
uε(X i+1

t −X i
t) + (1− u)ε(X̄t −X i

t)(1−
1

N
)
]
dt

+
N∑
k=0

Zi,i,k
t dW k

t ,

Y i,i
T = −uc(X i+1

T −X i
T )− (1− u)c(X̄T −X i

T )
(

1− 1

N

)
, i < N

(46)

dY N,N
t =

[
− uεXN

t + (1− u)ε(X̄t −XN
t )
(

1− 1

N

)]
dt

+
N∑
k=0

ZN,N,k
t dW k

t ,

Y N,N
T = ucXN

T − (1− u)c(X̄T −XN
T )
(

1− 1

N

)
.

(47)

Considering the BSDE system and the initial condition, we then make
the following ansatz with function parameters depending on N :

Y i,i
t = u

N∑
j=i

φN,i,jt Xj
t − (1− u)(X̄t −X i

t)θ
N
t , (48)
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for some deterministic scalar functions φt, θt satisfying the terminal condition:
when i < N , φN,i,iT = c, φN,i,i+1

T = −c, φN,i,jT = 0 for N ≥ j ≥ i+2; φN,N,NT = c
and θNT = c(1− 1

N
). For simplicity of notation, we denote θt = θNt . Using the

ansatz (48), the optimal strategy and forward equation become:
α̂i = −Y i,i

t = −u
N∑
j=i

φN,i,jt Xj
t + (1− u)(X̄t −X i

t)θt,

dXj
t =

[
− u

N∑
k=j

φN,j,kt Xk
t + (1− u)(X̄t −Xj

t )θt

]
dt+ σdW j

t .

(49)

By taking the averages, we obtain

dX̄t = −u · 1

N

N∑
j=1

N∑
k=j

φN,j,kt Xk
t dt+ σ · 1

N

N∑
j=1

dW j
t

= −u · 1

N

N∑
k=1

(
k∑
j=1

φN,j,kt )Xk
t dt+ σ · 1

N

N∑
k=1

dW k
t

and then

d(X̄t −X i
t) = −u · 1

N

i−1∑
k=1

(
k∑
j=1

φN,j,kt )Xk
t dt+ u

N∑
k=i+1

(
φN,i,kt − 1

N

k∑
j=1

φN,j,kt

)
Xk
t dt

+
(
uφN,i,it − u 1

N

i∑
j=1

φN,j,it + (1− u)θt

)
X i
tdt− (1− u)X̄tθtdt

+ σ
( 1

N

N∑
k=1

dW k
t − udW i

t

)
.

(50)

Differentiating the ansatz eq. (48) and using eq. (50), we obtain

dY i,i
t = u ·

N∑
j=i

[Xj
t φ̇

N,i,j
t dt+ φN,i,jt dXj

t ]

− (1− u) ·
(
θ̇t(X̄t −X i

t)dt+ θtd(X̄t −X i
t)
)

def
= u · I− (1− u) · II

(51)
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For the first term, we have

I =
N∑
j=i

[Xj
t φ̇

N,i,j
t dt+ φN,i,jt dXj

t ]

=
N∑
k=i

(
φ̇N,i,kt − u

k∑
j=i

φN,i,jt φN,j,kt − (1− u)θtφ
N,i,k
t

)
Xk
t dt

+ (1− u)θt

N∑
k=i

φN,i,kt · X̄tdt+ σ

N∑
k=i

φN,i,kt dW k
t .

Then, for the second term, we have

II = θ̇t(X̄t −X i
t)dt+ θtd(X̄t −X i

t) (52)

= −uθt
1

N

i−1∑
k=1

(
k∑
j=1

φN,j,kt )Xk
t dt+ uθt

N∑
k=i+1

(φN,i,kt − 1

N

k∑
j=1

φN,j,kt )Xk
t dt

− [θ̇t − uθt(φN,i,it − 1

N

i∑
j=1

φN,j,it )− (1− u)θ2t ]X
i
tdt

+ (θ̇t − (1− u)θ2t )X̄tdt+ σ(
1

N

N∑
k=1

dW k
t − dW i

t ).

Thus dY i,i
t = u · I− (1− u) · II in (51) can be written as:

i−1∑
k=1

(
u(1− u)θt

1

N

k∑
j=1

φN,j,kt

)
Xk
t dt

+
N∑

k=i+1

[
uφ̇N,i,kt − u2

k∑
j=i

φN,i,jt φN,j,kt

− u(1− u)θtφ
N,i,k
t − u(1− u)θt(φ

N,i,k
t − 1

N

k∑
j=1

φN,j,kt )
]
Xk
t dt

(53)

+
[
uφ̇N,i,it − u2(φN,i,it )2 − 2u(1− u)θtφ

N,i,i
t

+(1− u)θ̇t + u(1− u)θt
1

N

i∑
j=1

φN,j,it − (1− u)2θ2t

]
X i
tdt
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+
[
u(1− u)θt

N∑
k=i

φN,i,kt − (1− u)θ̇t + (1− u)2θ2t

]
X̄tdt

+ uσ

N∑
k=i

φN,i,kt dW k
t − (1− u)σθt

( 1

N

N∑
k=1

dW k
t − dW i

t

)
.

Now we compare the two Itô’s decompositions (46) and (53). The mar-
tingale terms give the processes Zi,j,k

t :

Zi,i,k
t = −(1− u)σθt

1
N

for k < i,

Zi,i,i
t = uσφN,i,it + (1− u)σθt(1− 1

N
) and Zi,i,k

t = uσφN,i,kt for k > i.

And from the drift terms, we get the following system of ordinary differ-
ential equations for φN,i,k:
when i < N , k = i

uφ̇N,i,it − u2(φN,i,it )2 − 2u(1− u)θtφ
N,i,i
t

+ (1− u)θ̇t

(
1− 1

N

)
− (1− u)2θ2t

(
1− 1

N

)
+ u(1− u)θt

1

N

( i∑
j=1

φN,j,it +
N∑
`=i

φN,i,`t

)
= −uε− (1− u)ε

(
1− 1

N

)2
, φN,i,iT = c,

(54)

for k = i+ 1

uφ̇N,i,i+1
t − u2(φN,i,it φN,i,i+1

t + φN,i,i+1
t φN,i+1,i+1

t )

− 2u(1− u)θtφ
N,i,i+1
t − (1− u)θ̇t

1

N
+ (1− u)2θ2t

1

N

+ u(1− u)θt
1

N

( i+1∑
j=1

φN,j,i+1
t +

N∑
`=i

φN,i,`t

)
= uε+ (1− u)ε

(
1− 1

N

) 1

N
, φN,i,i+1

T = −c,

(55)
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for k ≥ i+ 2

uφ̇N,i,kt − u2
l∑
j=i

φN,i,jt φN,j,kt − 2u(1− u)θtφ
N,i,k
t

− (1− u)θ̇t
1

N
+ (1− u)2θ2t

1

N
+ u(1− u)θt

1

N

( k∑
j=1

φN,j,kt +
N∑
`=i

φN,i,`t

)
= (1− u)ε

(
1− 1

N

) 1

N
, φN,i,kT = 0,

(56)

and

u(1− u)θt

N∑
k=i

φN,i,kt − (1− u)θ̇t + (1− u)2θ2t = (1− u)ε
(

1− 1

N

)
,

θT = c
(

1− 1

N

)
;

(57)

When i = k = N ,

uφ̇N,N,Nt − u2(φN,N,Nt )2 − 2u(1− u)θtφ
N,N,N
t

+ (1− u)θ̇t

(
1− 1

N

)
− (1− u)2θ2t

(
1− 1

N

)
+ u(1− u)θt

1

N
(
N∑
j=1

φN,j,Nt + φN,N,Nt )

= −uε− (1− u)ε
(

1− 1

N

)2
, φN,N,NT = c,

(58)

and

u(1− u)θtφ
N,N,N
t − (1− u)θ̇t + (1− u)2θ2t

= (1− u)ε
(

1− 1

N

)
, θT = c

(
1− 1

N

)
.

(59)

Proposition 8. An open-loop Nash equilibrium for the finite-player stochas-
tic game with cost functionals (39) with (40)-(41) is determined by (49),
where {φN,i,j, θ} are the unique solution to the finite system (54)-(57) of Ric-
cati equations with (58)-(59).
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When u = 1, the systems are exactly what we obtained for finite-player
directed chain game in section 2. We have the similar conclusion that the
boundary condition does not affect the functions φN,i,jt (j < N) for all i < N .
We can also compare the system with the system (63) we introduce later.
Under suitable assumptions, the system may converge, as the number N of
players goes to infinity.

5.2 Infinite-Player Game Model with Mean-Field In-
teraction

Motivated by section 5.1 and following section 3, we can define a game with
infinite players on a mixed system, including the directed chain interaction
and the mean field interaction. This section searches for an open-loop Nash
equilibrium and repeats the same steps as before to analyse the infinite mixed
system game. We have a more general Catalan Markov chain and table 1
below shows the asymptotic behaviors of the variances and covariances as
t → ∞ for the process with different types of interactions. Comparing it
with Table 1 in [6], we have similar conclusions except that our asymptotic
variance of purely directed chain does not explode.

We assume the same drift and diffusion coefficients and the initial con-
ditions for X i

· as the finite-player game. By choosing αit, player i tries to
minimize:

J i(α1, α2, · · · ) :=E

{∫ T

0

(1

2
(αit)

2 + u · ε
2

(X i+1
t −X i

t)
2

+ (1− u) · ε
2

(mt −X i
t)

2
)

dt

+ u · c
2

(X i+1
T −X i

T )2 + (1− u) · c
2

(mT −X i
T )2
}
,

(60)

for some positive constants ε, c and u ∈ [0, 1]. Here, there is an issue in the
choice of mt. Intuitively, it should come from the finite-player mixed game
described in section 5.1 as the limit of X̄· as N → ∞. Combined with the
fact that we had E{X i

t} independent of i, it is natural to set mt = E{X i
t}

and check afterwards that this mean value does not depend on i de facto after
solving the fixed point step. Note that the case u = 0 is very particular, and
consists in solving the same mean field game problem for every i. The case
u = 1 has already been studied in section 3, and therefore, in what follows,
we concentrate on the case u ∈ (0, 1).
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5.2.1 Open-Loop Nash Equilibrium

We search for a Nash equilibria of the system among strategies {αit, i ≥ 1}.
For i ≥ 1, minimizing the Hamiltonian

∞∑
k=1

αkyi,k +
1

2
(αi)2 + u

ε

2
(xi+1 − xi)2 + (1− u)

ε

2
(mt − xi)2, (61)

with respect to αi, and following closely to Carmona, Fouque, and Sun [4],
we obtain

dX i
t =

(
− u

∞∑
j=i

φj−it Xj
t + (1− u)(mt −X i

t)ψt
)
dt+ σdW i

t , (62)

where φk· and ψ· are determined by the following system of Riccati equation:
k ≥ 0

φ̇kt = u
k∑
j=0

φjtφ
k−j
t + 2(1− u)ψtφ

k
t + ε(−δ0,k + δ1,k),

φkT = c(δ0,k − δ1,k),

ψ̇t = uψt

∞∑
j=0

φjt + (1− u)(ψt)
2 − ε, ψT = c.

(63)

In appendix A.6 we show the following result which simplifies it consid-
erably.

Proposition 9. φj· satisfies
∑∞

j=0 φ
j
t = 0 for 0 ≤ t ≤ T and thus, ψ· is the

unique solution to ψ̇t = (1− u)(ψt)
2 − ε, 0 ≤ t ≤ T , ψT = c in eq. (63).

Proposition 10. An open-loop Nash equilibrium for the infinite-player stochas-
tic game with cost functionals (60) is determined by (62), where {φN,i,j· , ψ·}
are the unique solution to the infinite system (63) of Riccati equations.

Looking at the stationary solution in the limit (T → ∞), and without
loss of generality assuming ε = 1 again, the recurrence relation can be solved
by the method of moment generating function to obtain:

ψ =
√

1
1−u , φ0 = 1−

√
1−u
u

,

φ1 = −1
2
, φk = − (2k − 3)!

(k − 2)!k!22k−2u
k−1, for k ≥ 2.

(64)
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5.2.2 Catalan Markov Chain for the Mixed Model

As in section 4, letting T → ∞, with replacement of φjt by the stationary
solution φj in (64), X i

· , i ≥ 1 defined by eq. (62) can be represented by the
form of eq. (31) but now with a new matrix Q(u), where its (i, j) element qi,j
is given by qi,i = −1, qi,j = −uφj−i · 1{j>i} with φj in (64) for i, j ≥ 1. Since

u2
∑k−1

i=1 φ
iφk−i = −2uφk, we have (Q(u))2 = I−uB with B having 1 ’s on

the upper second diagonal and 0 ’s elsewhere.

With a smooth function F (x) := exp(−
√
−x) , x ∈ C, the matrix ex-

ponential of Q(u)t can be written formally exp(Q(u)t) = F ((−I + uB)t2).
With a slight modification of proof of proposition 4 in appendix A.2, we may
compute it explicitly. We can summarize our finding on the limiting process
as T →∞:

Proposition 11. With x0 = 0, the Gaussian process X i
t , i ∈ N , t ≥ 0 ,

corresponding to the (Catalan) general Markov chain with generator Q(u), is

X i
t =

∞∑
j=i

∫ t

0

uj−i(t− s)2(j−i)

(j − i)!
· ρj−i(−(t− s)2) e−(t−s) · dW j

s , t ≥ 0.

(65)

where ρj(·) is defined in eq. (35).

5.2.3 Asymptotic Behavior

Table 1 exhibits the asymptotic behaviors of their variances and covariances
as t → ∞. The calculation is given in appendix A.7. We find that only
when u = 0 (i.e., pure mean field game), the asymptotic cross-covariance
is zero, which means the states are asymptotically independent. Otherwise,
they are dependent and their covariance is finite. Note in the purely nearest
neighbor interaction studied in Detering, Fouque, and Ichiba [6], i.e., in the
case u = 0, the variance is not stabilized as in our “Catalan” interaction
equilibrium dynamics.

6 Periodic Directed Chain Game

We consider a stochastic game with finite players on a periodic ring structure
in fig. 1 (b). Assume the dynamics of the states of the individual players are
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u Interaction Type
Asymptotic

Variance
Asymptotic Independence

between two players

u = 0 Purely mean-field Stabilized Independent

u ∈ (0, 1) Mixed interaction Stabilized Dependent

u = 1 Purely directed chain Stabilized Dependent

Table 1: Asymptotic behaviors as t→∞

given by N stochastic differential equations of the form:

dX i
t = αitdt+ σdW i

t , i = 1, · · · , N, 0 ≤ t ≤ T, (66)

where (W i
t )0≤t≤T , i = 1, · · · , N are one-dimensional independent standard

Brownian motions. The drift coefficient function, the diffusion coefficient
and the initial conditions are assumed to be the same as those in section 2.
In this model, player i chooses its own strategy αi in order to minimize its
objective function of the form:

J i(α1, · · · , αN) := E

{∫ T

0

[1

2
(αit)

2 +
ε

2
(X i+1

t −X i
t)

2
]
dt+

c

2
(X i+1

T −X i
T )2
}
,

(67)
with some constants ε > 0, c ≥ 0, where we define XN+1

· = X1
· or more

generally, X i+j
t = X

(i+j) mod N
t , because of the periodic ring structure, for

i, j = 1, . . . , N .

6.1 Construction of an Open-Loop Nash Equilibrium

We construct an open-loop Nash equilibria of the system among strategies
{αit, 1 ≤ i ≤ N} by the Pontryagin stochastic maximum principle. The
Hamiltonian H i for player i is

N∑
k=1

αkyi,k +
1

2
(αi)2 +

ε

2
(xi+1 − xi)2. (68)

The adjoint processes Y i
t = (Y i,j

t ; j = 1, · · · , N) and Zi
t = (Zi,j,k

t ; j, k =
1, · · · , N) for i = 1, · · · , N are defined as the solutions of the system of
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BSDEs: dY i,j
t = −ε(X i+1

t −X i
t)(δi+1,j − δi,j)dt+

N∑
k=1

Zi,j,k
t dW k

t ,

Y i,j
T = c(X i+1

T −X i
T )(δi+1,j − δi,j).

(69)

Based on the sufficiency part of the Pontryagin stochastic maximum prin-
ciple, we can get an open-loop Nash equilibrium by minimizing the Hamil-
tonian H i with respect to αi: ∂αiH i = yi,i + αi = 0 leadings to the choice
α̂i = −yi,i for each i. With this choice for the controls αi’s, the forward
equation (66) becomes coupled with the backward equation (69). We make
the ansatz: for t ≥ 0, i ≥ 1,

Y i,i
t =

N−1∑
j=0

φN,jt X i+j
t , (70)

for some deterministic scalar functions φN,jt satisfying the terminal condi-

tions: φN,0T = c, φN,1T = −c, φN,kT = 0 for k ≥ 2 and X i+j
t :=X

(i+j) mod N
t .

Using the ansatz, the optimal strategy α̂i and the forward equation (66)
become:

α̂i = −Y i,i
t = −

N−1∑
j=0

φN,jt X i+j
t , dX i

t = −
N−1∑
j=0

φN,jt X i+j
t dt+ σdW i

t . (71)

Using the equations (71), we can differentiate the ansatz (70): for 1 ≤ i ≤ N ,
t ≤ 0,

dY i,i
t =

N−1∑
j=0

X i+j
t φ̇N,jt dt−

N−1∑
j=0

φN,jt

N−1∑
k=0

φN,kt X i+j+k
t dt+

N−1∑
j=0

σφN,jt dW i+j
t

(72)

Now comparing the two Itô’s decompositions (72) and (69) of Y i,i
t , we

obtain

φ̇N,it =
N−1∑
j=0

φN,jt φN,N+i−j
t − ε(δ0,i − δ1,i), φN,i(T ) = c(δ0,i − δ1,i),

Zi,i,k
t = σφN,N+k−i

t , 0 ≤ t ≤ T, 1 ≤ i ≤ N

(73)
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(cf. (25)), where we use a convention φN,N+i−j
· = φN,i−j· , if i− j ≥ 0.

It can be written as a matrix Ricatti equation:

Φ̇N(t) = ΦN(t)ΦN(t)− E , ΦN(T ) := C , (74)

where we denote by ΦN(·) the N × N matrix-valued function with (i, j)
element being φN,N+i−j

t for 1 ≤ i, j ≤ N by using the convention φN,N+i−j
t =

φN,i−jt , if i ≥ j, and by C = (ci,j) and E = (εi,j), respectively the N × N
matrices with (i, j) element being ci,j := c(δi,j−δi,j+1) and εi,j := ε(δi,j−δi,j+1)
for 1 ≤ i, j ≤ N .

Proposition 12. The solution φN,k· , k = 1, . . . , N to the system of Riccati
equations (73) satisfies the relation

∑N−1
k=0 φ

N,k
t = 0 for 0 ≤ t ≤ T .

Proof. Given in appendix A.8.

Proposition 13. An open-loop Nash equilibrium for the linear quadratic
stochastic game with cost functionals (67) for the N players with a periodic
boundary condition XN+1

· = X1
· is given by (71), where {φN,k· } are uniquely

determined by the system (73) of Riccati equations.

With finite N , these equations (73) are not easy to solve explicitely. If
we let N → ∞, we expect that the system converges to the Riccati system
of the infinite-player game studied in section 3.

Conjecture 1. The limit of each element in ΦN(·) in (74) exists as N →∞,
i.e., ΦN(t) → Φ∞(t) and the limit Φ∞(t) is an infinite dimensional, lower
triangular, matrix-valued function of t ≥ 0 given by Φ∞(t) = (Φ∞,i,j(t))i,j∈N
with Φ∞,i,j(·) ≡ 0 if i < j; Φ∞,i,j(·) ≡ φi−j if i ≥ j, where φk’s are given in
proposition 2.

Remark 5. Proving this conjecture is equivalent to verify that for every j,∑N−1
k=j+1 φ

N,k
t φN,N+j−k

t → 0 as N → ∞. As of now, this remains an open
problem.

Our conjecture is substantiated by numerical evidences presented below.

6.2 Numerical Results

By the methods given in [9], we get the numerical solution of the matrix Ric-
cati equation (74). Taking ε = 2, c = 1, T = 10 (large terminal time), fig. 2
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(a)-(b) shows the behaviors of the φ functions defined by the system (25) for
N = 4 and N = 100. They converge to the constant solutions of the infinite
game given in section 4, except in the tail close to maturity as T is large
but not infinite. This result confirms our conjecture stated in the previous
section. fig. 2 (c) shows the behavior of the function

∑N−1
k=1 φ

N,k
t φN,N−kt for

different values of N = 5, 10, 20, 50, 100. As we can see, the sum converges
to 0 when N becomes larger, which supports the statement with j = 0 in
remark 5. Although these numerical results give us strong evidence and con-
fidence that the conjecture is true, a mathematical proof is still needed and
it is part of our ongoing research.

(a) N = 4 (b) N = 100 (c)
∑N−1

k=1 φ
N,k
t φN,N−kt

Figure 2: The blue line (top) is φN,0t and the orange line (bottom) is φN,1t in
(a)-(b).

∑N−1
k=1 φ

N,k
t φN,N−kt for different values of N = 5, 10, 20, 50, 100 from

top to bottom in (c).

7 Directed Infinite Tree Game

We describe a stochastic game on a directed tree structure with N ≥ 2 gen-
erations first. Starting with one player in the root node denoted by (1, 1) in
the first generation, recursively each parent has a fixed, common number of
descendants, denoted by d ≥ 1, and there are dn−1 players in the n-th genera-
tion for n ≥ 1. For 1 ≤ n ≤ N, 1 ≤ k ≤ dn−1, Xn,k represents the state of the
k-th individual of the n-th generation, and its direct descendants in the (n+
1)st generation are labelled as {Xn+1,(k−1)d+1, Xn+1,(k−1)d+2, · · · , Xn+1,kd}.
We consider the stochastic differential game of players in the N generations
and then we generalize to a stochastic differential game in a directed infinite
tree by considering its limit as N →∞. The network is shown in fig. 3.

We assume the dynamics of the states of the players are given by the
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Root (1, 1)

(2, 1)

(3, 1) (4, 1)

...
...

(3, d) ...

(2, 2)

(3, d+ 1) ...

...
...

(3, 2d) ...

...
...

...
· · · · · ·Infinite

generations

(2, d)

(3, d(d− 1) + 1) ...

...
...

(3, d2) (4, d3)

Figure 3: Directed Tree Network

stochastic differential equations of the form:

dXn,k
t = αn,kt dt+ σdW n,k

t , 0 ≤ t ≤ T, (75)

where (W n,k
t )0≤t≤T , 1 ≤ n ≤ N, 1 ≤ k ≤ dn−1 are one-dimensional indepen-

dent standard Brownian motions. Similarly, we assume that the diffusion
is one-dimensional and the diffusion coefficients are constant and identical
denoted by σ > 0. The drift coefficients αn,k’s are adapted to the filtration
of the Brownian motions and satisfy E[

∫ T
0
|αn,kt |2dt] <∞. The system starts

at time t = 0 from i.i.d. square-integrable random variables Xn,k
0 = ξn,k inde-

pendent of the Brownian motions and, without loss of generality, we assume
E(ξn,k) = 0 for every pair of (n, k).

In this model, among the first N−1 generations, each player (n, k) chooses
its own strategy αn,k in order to minimize its objective function of the form:
for 1 ≤ n < N

Jn,k(αm,`; 1 ≤ m ≤ N, 1 ≤ ` ≤ dm)

:= E

{∫ T

0

(1

2
(αn,kt )2 +

ε

2

(
X
n+1,k

t −Xn,k
t

)2)
dt+

c

2

(
X
n+1,k

T −Xn,k
T

)2}
,

(76)

where X
n,k

· :=
∑kd

i=(k−1)d+1X
n,i
· /d for some constants ε > 0 and c ≥ 0 and

for n, k ≥ 1. The running cost and the terminal cost functions are defined by
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fn,k(x, αn,k) := 1
2
(αn,k)2 + ε

2
(xn+1,k − xn,k)2 and gn,k(x) := c

2
(xn+1,k − xn,k)2,

respectively with xn,k :=
∑kd

i=(k−1)d+1 x
n,i/d. For simplicity, the behaviours

of the N -th generation are described by the boundary condition where all
the players {XN,k, 1 ≤ k ≤ dN−1} are attracted to 0. The cost functional for
player (N, k) is given by:

JN,k(αN,k) := E

{∫ T

0

(1

2
(αN,kt )2 +

ε

2
(XN,k

t )2
)
dt+

c

2
(XN,k

T )2
}

(77)

for k = 1, . . . , dN−1. Since players of the last generation do not depend on
the other players, the boundary condition defines a self-controlled problem.

Now, inspired by the conclusion in section 2, as the number N of gen-
erations goes to infinity, i.e., N → ∞, the effect of the boundary condition
should vanish. Thus it is natural and reasonable that we decide to pass the
N -generation finite tree to an infinite tree with infinite number of genera-
tions, and study the Nash equilibrium of the infinite-tree game. We still
assume each parent has d direct descendants. The dynamics of the states
and the costs are the same as (75) and (76) with n ≥ 1.

7.1 Open-Loop Nash Equilibria

We search for an open-loop Nash equilibrium of the directed infinite-tree
system among strategies {αn,k;n ≥ 1, 1 ≤ k ≤ dn−1}. The Hamiltonian
Hn,k(xm,l, yn,k;m,l, αm,l;m ∈ N, 1 ≤ l ≤ dm−1) for player (n, k) is

Mn∑
m=1

dm−1∑
l=1

αm,lyn,k;m,l +
1

2
(αn,k)2 +

ε

2
(xn+1,k − xn,k)2,

assuming it is defined on Y n,k
t ’s where only finitely many Y n,k;m,l

t ’s are non-
zero for every given (n, k). Here, Mn ∈ N represents a depth of this finite
dependence depending on n with Mn > n for n ≥ 1. This assumption is
checked in remark 6 below. Thus, the Hamiltonian Hn,k for player (n, k) is
well defined for n, k ≥ 1.

The adjoint processes Y n,k
t = (Y n,k;m,l

t ;m ∈ N, 1 ≤ l ≤ dm−1) and Zn,k
t =

(Zn,k;m,l;p,q
t ;m, p ∈ N, 1 ≤ l ≤ dm−1, 1 ≤ q ≤ dp−1) for n ∈ N, 1 ≤ k ≤ dn−1
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are defined as the solutions of BSDEs

dY n,k;m,l
t = −ε(Xn+1,k

t −Xn,k
t )(δ

n+1,k

m,` − δ
n,k
m,`)dt+

∞∑
p=1

dp−1∑
q=1

Zn,k;m,l;p,q
t dW p,q

t ,

Y n,k;m,l
T = ∂xm,lgn,k(XT ) = c(X

n+1,k

T −Xn,k
T )(δ

n+1,k

m,` − δ
n,k
m,`),

(78)

where δn,km,` := 1 , if (n, k) = (m, `); 0, otherwise, and δ
n,k

m,` :=
∑kd

i=(k−1)d+1 δ
n,i
m,`/d.

Remark 6. For every (m, l) 6= (n, k) or (n + 1, i) where (k − 1)d + 1 ≤
i ≤ kd, dY n,k;m,l

t =
∑∞

p=1

∑dp−1

q=1 Z
n,k;m,l;p,q
t dW p,q

t and Y n,k;m,l
T = 0 implies

Zn,k;m,l;p,q
t = 0 for all (p, q). Thus, there must be finitely many non-zero

Y n,k;m,l’s for every (n, k). Hence, the Hamiltonian can be rewritten as

Hn,k(xm,l, yn,k;n,k, yn,k;n+1,i, αm,l;m ∈ N, 1 ≤ l ≤ dm−1, (k − 1)d+ 1 ≤ i ≤ kd)

= αn,kyn,k;n,k +
kd∑

i=(k−1)d+1

αn+1,iyn,k;n+1,i +
1

2
(αn,k)2 +

ε

2
(xn+1,k − xn,k)2.

By minimizing the Hamiltonian Hn,k at α̂n,k = −yn,k;n,k with respect to
αn,k for all (n, k), we can get an open-loop Nash equilibrium. We make the
ansatz:

Y n,k;n,k
t =

∞∑
i=0

φit

di−1∑
j=0

Xn+i,dik−j
t =

∞∑
m=n

φm−nt

dm−n−1∑
j=0

Xm,dm−nk−j
t , (79)

for some deterministic scalar function φk· satisfying the terminal conditions:
φ0
T = c, φ1

T = − c
d
, φkT = 0 for k ≥ 2. Using the ansatz, the optimal strat-

egy α̂n,k and the forward equation for Xn,k
· in (75) for an open-loop Nash

equilibrium become:

α̂n,kt = −Y n,k;n,k
t = −

∞∑
m=n

φm−nt

dm−n−1∑
j=0

Xm,dm−nk−j
t ,

dXn,k
t = −

∞∑
m=n

φm−nt

dm−n−1∑
j=0

Xm,dm−nk−j
t dt+ σdW n,k

t .

(80)
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Now comparing the two Itô’s decompositions of dY n,k;n,k from (78) and
(79)-(80), we obtain from the martingale terms:

Zn,k;n,k;p,q
t = σφp−nt for p ≥ n and 1 ≤ q ≤ dp−n ; Zn,k;n,k;p,q

t = 0, otherwise,

for 0 ≤ t ≤ T , and we obtain from the drift terms: k ≥ 0, 0 ≤ t ≤ T

φ̇kt =
k∑
j=0

φjtφ
k−j
t − ε

(
δ0,k −

1

d
· δ1,k

)
, φkT = c

(
δ0,k −

1

d
· δ1,k

)
. (81)

This Riccati system is closely related to the one in (25) for the infinite-
player directed chain game and we can have a similar result.

Proposition 14. Let φ
(k)
· := φk· in (81) to avoid confusion from the power.

We have
∑∞

k=0 d
kφ

(k)
· = 0, and the functions φk’s can be obtained by a series

expansion.

Proof. Given in appendix A.9.

Proposition 15. An open-loop Nash equilibrium for the linear quadratic
stochastic game with cost functionals (76) for the infinite players on the
directed tree in fig. 3 is given by (80), where {φi·} are uniquely determined by
the system (81) of Riccati equations.

Without loss of generality, we assume ε = 1 and σ = 1. Following sec-
tion 4, by taking T → ∞, we look at the stationary long-time behavior of
the Riccati system (81) satisfying φ̇k = 0 for all k. Then the system gives
the recurrence relation: φ0 = 1, φ1 = −1/(2d) and

∑k
j=0 φ

jφk−j = 0 for
k ≥ 0. By using a moment generating function method as in appendix A.10,
we obtain the stationary solution (cf. (30)):

φ0 = 1, φ1 = − 1

2d
, and φk = − (2k − 3)!

(k − 2)!k!22k−2 ·
1

dk
for k ≥ 2.

(82)

7.2 Catalan Markov Chain for the Directed Tree Model

As T → ∞, the limit of average of the infinite particle system (80) can be
rewritten as

dXt = Qd-tree Xtdt+ dWt, t ≥ 0 (83)
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a linear stochastic evolution equation of Ornstein-Uhlenbeck type, where

X· := (X
k

· ≡
∑dk−1

i=1 Xk,i
· /d

k−1, k ∈ N) with X0 = x0, and W· := (W
k

t =∑dk−1

i=1 W k,i
· /dk−1, k ∈ N) is a vector of averaged Brownian motions with mean

0 and variance t/dk in each generation k ∈ N, and Qd-tree is exactly the same
as Q in section 4. Its solution is

Xt = etQd-treex0 +

∫ t

0

e(t−s)Qd-treedWs; t ≥ 0. (84)

Similarly to proposition 4 we can find the following formulas for X1,1
· ≡ X

1

·
and its asymptotic variance. Proof is in appendix A.11.

Proposition 16. With x0 = 0, the formula for the root node X1,1
t in (83)

is:

X1,1
t =

∞∑
j=1

∫ t

0

(t− s)2(j−1)

(j − 1)!
· ρj−1(−(t− s)2) e−(t−s) · dW j

s, t ≥ 0, (85)

where ρi(·) is in (35). Moreover, the asymptotic variance of X1,1
t is finite,

i.e.,

lim
t→∞

Var(X1,1
t ) =

√
2

2
·
(

1 +
( d− 1

d

)1/2)−1/2
∈
(1

2
,

√
2

2

]
. (86)

Remark 7 (Connection to the mean-field game). When d goes to infinity, we
are in the regime of the mean field game. The asymptotic variance is 1

2
which

is consistent with the variance of an Ornstein–Uhlenbeck process where the
particle is attracted to 0 and the volatility and the mean reversion constant
are both 1.

8 Conclusion

We studied a linear-quadratic stochastic differential game on a directed chain
network. We were able to identify Nash equilibria in the case of finite chain
with various boundary conditions and in the case of an infinite chain. This
last case allows for more explicit computation in terms of Catalan functions
and Catalan Markov chain. The Catalan open-loop Nash equilibrium that
we obtained is characterized by interactions with all the neighbors in one
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direction of the chain weighted by Catalan functions, even though the inter-
action in the objective functions is only with the nearest neighbor. Under
equilibrium the variance of a state converges in the infinite time limit as op-
posed to the diverging behavior observed in the nearest neighbor dynamics
studied in Detering, Fouque & Ichiba [6]. Our analysis is extended to mixed
games with directed chain and mean field interaction so that our game model
includes the two extreme network interactions, fully connected and only one
neighbor connection. It is also extended to game on a deterministic tree struc-
ture. Our ongoing and future research concerns games with interactions on
directed tree-like stochastic networks modeled as branching processes.
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A Appendix

A.1 Proof of Proposition 2

Define St(z) :=
∑∞

k=0 z
k φ

(k)
t where 0 ≤ z < 1 with φ

(k)
t = φkt in (25) to avoid

confusion for t ≥ 0, k ≥ 0. Then substituting (25) into St(z), we obtain the
one-dimensional Riccati equation

Ṡt(z) =
∞∑
k=0

zkφ̇
(k)
t = (St(z))2 − ε(1− z), ST (z) = c(1− z) (87)

and its solution is given by (27). One needs to be careful when taking z = 1
because the series defining St(1) may not converge a priori. Instead, we take
a sequence {zn} converging to 1, the limit of St(zn) converges to the ODE
Ṡt(1) = (St(1))2, ST (1) = 0, and hence, solving this limiting ODE, we obtain
(26).

A.2 Catalan Markov Chain and Proposition 4

We have the Catalan probabilities {pk > 0, k ≥ 1}:
∑∞

k=1 pk = 1 and pk =
1
2

∑k−1
i=1 pipk−i. It is easily seen then that −Q2 = −I + B is an infinite

Jordan block matrix with diagonal components −1, where B having 1 ’s on
the upper second diagonal and 0 ’s elsewhere. Then as a smooth function
F (x) := exp(−

√
−x), x ∈ C of Jordan block matrix, we have

exp(Qt) = F ((−I +B)t2) =
∞∑
k=0

t2kF (k)(−t2)
k!

Bk,
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where the k-th derivative F (k) is given by F (k)(x) = ρk(x)F (x), x ∈ C with
ρk in (35) from direct calculations and mathematical induction. Therefore,
substituting them into (34), we obtain proposition 4.

A.3 Proof of Remark 4 in section 4

By ρk’s formula in (36), we have for ν ≥ 0, k ≥ 1,

ρk(−ν2) =
1

2k

2k−1∑
j=k

(j − 1)!

(2j − 2k)!!(2k − j − 1)!
=

1

2kνk
·
√

2ν

π
· eν ·Kk−(1/2)(ν),

where Kn(x) is the modified Bessel function of the second kind, i.e.,

Kn(x) =

∫ ∞
0

e−x cosh t cosh(nt)dt ; n > −1, x > 0 .

Then, by the change of variables, we obtain

Var(X1
t ) =

∞∑
k=0

∫ t

0

(t− s)4k

(k!)2
|ρk(−(t− s)2)|2e−2(t−s)ds

=
∞∑
k=1

∫ t

0

2

π

ν2k+1

(k!)2 4k
(
Kk−(1/2)(ν)

)2
dν +

1− e−2t

2
; t ≥ 0 .

A.4 Proof of Proposition 5 in section 4

Using the following identities from the special functions∫ ∞
0

tα−1(Kν(t))
2dt =

√
π

4Γ((α + 1)/2)
Γ
(α

2

)
Γ
(α

2
− ν
)

Γ
(α

2
+ ν
)
,

√
2

4
x

√
x2 −

√
x4 − 16 =

∞∑
k=0

(
4k

2k

)
1

2k + 1

1

x4k
, for x ≥ 2,
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based on remark 4, we obtain the limit of variance of X1
t , as t→∞ , i.e.,

lim
t→∞

Var(X1
t ) =

1

2
+
∞∑
k=1

∫ ∞
0

2 s2k+1

π(k!)24k
· [Kk−(1/2)(s)]

2ds

=
1

2
+
∞∑
k=1

2

π(k!)24k
· π Γ(k + 1) Γ(2k + (1/2))

8 Γ(k + (3/2))

=
1

2
+

1

2

∞∑
k=1

(
4k

2k

)
1

2k + 1

1

24k
=

1

2

∞∑
k=0

(
4k

2k

)
1

2k + 1

1

24k

=
1

2
·
√

2

4
2
√

22 − 0 =
1√
2
.

A.5 Proofs of Propositions 6-7 in section 4

From the expression (34) for X1
t , the auto-covariance E[X1

sX
1
t ] and the cross

covariance E[X1
tX

j+1
t ] are

E[X1
sX

1
t ] =

∞∑
i=0

1

π(i!)222i−1

∫ s

0

(t− v)i+1/2(s− v)i+1/2Ki−1/2(t− v)Ki−1/2(s− v)dv

=
∞∑
i=0

1

π(i!)222i−1

∫ s

0

((t− s+ v)v)i+1/2Ki−1/2(t− s+ v)Ki−1/2(v)dv > 0;

(88)

E[X1
tX

j+1
t ] =

∞∑
i=j

∫ t

0

1

πi!(i− j)!
(t− ν)2i−j+1

22i−j−1 Ki−1/2(t− ν)Ki−j−1/2(t− ν)dν

=
∞∑
i=0

1

π(j + i)!j!

1

2j+2i−1

∫ t

0

sj+2i+1Kj+i−1/2(s)Ki−1/2(s)ds

−−−→
t→∞

∞∑
i=0

1

π(j + i)!j!

1

2j+2i−1

∫ ∞
0

sj+2i+1Kj+i−1/2(s)Ki−1/2(s)ds > 0 .

(89)

By the Cauchy-Schwarz inequality, as t → ∞, the asymptotic cross co-
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variance between X1
t and Xj+1

t is bounded by

lim
t→∞

E[X1
tX

j+1
t ] ≤ lim

t→∞
(E[(X1

t )2])1/2 · (E[(Xj+1
t )2])1/2

= lim
t→∞

Var(X1
t ) =

1√
2

(90)

for j ≥ 0, because X1
· and Xj+1

· have the same distribution.
To compute the asymptotic auto-covariance, fix s > 0 and let t → ∞.

By the asymptotic expansion of the modified Bessel function Kα(z), z > 0,
there exists a positive constant c > 0 such that for every sufficiently large
t(> s)

sup
i≥0

1

i! ti+1

∫ s

0

((t− s+ v)v)i+1/2Ki−1/2(t− s+ v)Ki−1/2(v)dv ≤ c · e−(t−s) .

Then combining this estimate with (88), we obtain

E[X1
sX

1
t ] ≤

∞∑
i=0

4cti+1e−(t−s)

π i! 4i
≤ 4ct

π
e−(t−s)+(t/4) −−−→

t→∞
0.

A.6 Proof of Proposition 9

Define St(z) :=
∑∞

k=0 z
kφ

(k)
t for 0 ≤ z < 1 and φ

(k)
t := φkt again to avoid

confusion from the power. Then

uṠt(z) =
∞∑
k=0

zkuφ̇
(k)
t = u2(St(z))2 + u(1− u)ψtSt(z)− u(1− z)ε,

uST (z) = u(1− z)c

(91)

as in appendix A.1. For z → 1, we obtain the ODE: uṠt(1) = u2(St(1))2 +
u(1− u)ψtSt(1), uST (1) = 0, and hence, S·(1) ≡ 0 and conclude the proof.

A.7 Some details on Table 1

It follows from Proposition 11 that

Var(X1
t ) = Var

( ∞∑
k=0

∫ t

0

uk(t− s)2k

k!
F (k)(−(t− s)2)dWk(s)

)
(92)
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=
∞∑
k=0

∫ t

0

u2k(t− s)4k

(k!)2
|ρk(−(t− s)2)|2e−2(t−s)ds

=
∞∑
k=1

∫ t

0

2u2k

π(k!)24k
ν2k+1(Kk− 1

2
(ν))2dν +

1− e−2t

2

for t ≥ 0. As t→∞, we obtain

lim
t→∞

Var(X1
t )

=
1

2
+
∞∑
k=1

∫ ∞
0

2u2k s2k+1

π(k!)24k
· [Kk−(1/2)(s)]

2ds

=
1

2
+
∞∑
k=1

u2k · Γ(2k + (1/2))

4k+1 k! Γ(k + (3/2))
=

1

2
+

1

2

∞∑
k=1

(
2k

k

)
u2k

8k

=
1

2
+

1

2
((1− 4

u2

8
)−

1
2 − 1) =

1

2

(
1− u2

2

)− 1
2
<∞.

A.8 Proof of Proposition 12

Define SNt (z) =
∑N−1

k=0 z
kφN,kt , then, by (73),

ṠNt (z) = (SNt (z))2 + (1− zN)
[N−2∑
j=0

zj ·
N−1∑
k=j+1

φN,kt φN,N+j−k
t

]
− (1− z)ε, (93)

for 0 ≤ t ≤ T with SNT (z) = (1 − z)c for 0 ≤ z < 1. As z → 1, ṠNt (1) =
(SNt (1))2, SNT (1) = 0, and hence, SNt (1) =

∑N−1
k=0 φ

N,k
t = 0.

A.9 Proof of Proposition 14 in section 7

Similar to the proof of lemma proposition 2 in appendix A.1, define St(z) =∑∞
k=0 z

k ψ
(k)
t where 0 ≤ z < 1 and ψ

(k)
t := dkφ

(k)
t in (81). The Riccati system

for ψ
(k)
· functions is now the same as (87). The conclusion follows directly

from the Riccati equation.

A.10 Stationary Solution of (81) in section 7

Define Rt(z) :=
∑∞

k=0 z
k φ

(k)
t where 0 ≤ z < 1 and φ

(k)
t := φkt in (81)

to avoid confusion. Without loss of generality, we assume ε = 1. Then
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RT (z) = c(1− d−1z) and for 0 ≤ t ≤ T

Ṙt(z) =
∞∑
k=0

zkφ̇
(k)
t =

∞∑
k=0

zk
k∑
j=0

φ
(j)
t φ

(k−j)
t − 1 +

z

d
= (Rt(z))2 −

(
1− z

d

)
.

(94)

Thus, the stationary solution φ(k) of (81), as T → ∞, is obtained by the
Taylor expansion of

√
1− (z/d).

A.11 Proof of Proposition 16

(85) follows directly from (84) and proposition 4. Taking the limit t→∞ in
the variance formula

Var(X
1

t ) =
∞∑
k=1

∫ t

0

2

π

s2k+1

(k!)2 4k
(
Kk−(1/2)(s)

)2 · 1

dk
ds+

1− e−2t

2
,

we obtain (86):

lim
t→∞

Var(X
1

t ) =
1

2
+
∞∑
k=1

∫ ∞
0

2 s2k+1

π(k!)24k
· [Kk−(1/2)(s)]

2 · 1

dk
ds

=
1

2
+

1

2

∞∑
k=1

(
4k

2k

)
1

2k + 1

1

24kdk
=

1

2

∞∑
k=0

(
4k

2k

)
1

2k + 1

1

(2d1/4)4k

=
1

2
·
√

2

4
2d1/4

√
4d1/2 −

√
16d− 16

=

√
2

2
d1/4

√√
d−
√
d− 1 =

√
2

2

d1/4√√
d+
√
d− 1

=

√
2

2

(
1 +

√
d− 1

d

)−1/2
∈
(1

2
,

√
2

2

]
.

The limit is monotone in d with maximum of 1/
√

2 at d = 1.
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