
{ξ ∈Ω : ‖f (ξ)‖ = 0} , (1)

where ‖ · ‖ : Rn→R denotes any vector norm. Although finding the zeros of a function may seem like a simple
problem, in general it involves solving an algebraic equation system as follows


[f ]1 (x) = 0
[f ]2 (x) = 0

...
[f ]n (x) = 0

, (2)

where [f ]k : Rn → R denotes the k-th component of the function f . Let {êi}ni=1 be the canonical basis of Rn, if
the nature of function f allows it, it is possible to find a function g1 : Rn→R

n that allows rewriting the system of
equations (2) as follows
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Abstract

A nonlinear algebraic equation system of 5 variables is numerically solved, which allows modeling the behavior
of the temperatures and the efficiencies of a hybrid solar receiver, which in simple terms is the combination of a
photovoltaic system with a thermoelectric system. In addition, a way to reduce the previous system to a nonlinear
system of only 2 variables is presented. Naturally, reducing algebraic equation systems of dimension N to systems
of smaller dimensions has the main advantage of reducing the number of variables involved in a problem, but
the analytical expressions of the systems become more complicated. However, to minimize this disadvantage, an
iterative method that does not explicitly depend on the analytical complexity of the system to be solved is used.
A fractional iterative method, valid for one and several variables, that uses the properties of fractional calculus,
in particular the fact that the fractional derivatives of constants are not always zero, to find solutions of nonlinear
systems is presented.

Keywords: Iteration Function, Order of Convergence, Fractional Derivative, Parallel Chord Method, Hybrid
Solar Receiver.

1. Introduction

A classic problem in mathematics, which is of common interest in physics and engineering, is finding the set of
zeros of a function f : Ω ⊂R

n→R
n, that is,
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[x]1 − [g1]1 (x − ê1[x]1) = 0
[x]2 − [g1]2 (x − ê2[x]2) = 0

...
[x]n − [g1]n (x − ên[x]n) = 0

, (3)

it should be noted that the system of equations (3) may represent a linear system or a nonlinear system.
Without loss of generality, taking the variable [x]1 and replacing it in the rest of equations, the previous system
may be rewritten as


[x]2 − [g1]2 (x − ê2[x]2 − ê1[x]1 + ê1[g1]1 (x − ê1[x]1)) = 0
[x]3 − [g1]3 (x − ê3[x]3 − ê1[x]1 + ê1[g1]1 (x − ê1[x]1)) = 0

...
[x]n − [g1]n (x − ên[x]n − ê1[x]1 + ê1[g1]1 (x − ê1[x]1)) = 0

, (4)

if the nature of the function g1 allows it, it is possible to find a function g2 : Rn→R
n, with [g2]1 ≡ 0, that allows

rewriting the system of equations (4) as follows


[x]2 − [g2]2 (x − ê2[x]2 − ê1[x]1) = 0
[x]3 − [g2]3 (x − ê3[x]3 − ê1[x]1) = 0

...
[x]n − [g2]n (x − ên[x]n − ê1[x]1) = 0

, (5)

which corresponds to an equivalent system of the system of equations (3). Assuming that the process to build
the systems (4) and (5) may be repeated successively up to the variable [x]k−2, it is possible to obtain the following
system of equations


[x]k−1 − [gk−1]k−1

(
x − êk−1[x]k−1 −

∑k−2
r=1 êr [x]r

)
= 0

[x]k − [gk−1]k
(
x − êk[x]k −

∑k−2
r=1 êr [x]r

)
= 0

...

[x]n − [gk−1]n
(
x − ên[x]n −

∑k−2
r=1 êr [x]r

)
= 0

, (6)

if by taking the variable [x]k−1 and replacing it in the rest of equations, it is not possible to obtain an equivalent
system of the system of equations (3), it is possible to find a function h : Rn→R

n, with [h]r ≡ 0 ∀r < k, that allows
rewriting the resulting system as follows


[x]k − [h]k

(
x −

∑k−1
r=1 êr [x]r

)
= 0

[x]k+1 − [h]k+1

(
x −

∑k−1
r=1 êr [x]r

)
= 0

...

[x]n − [h]n
(
x −

∑k−1
r=1 êr [x]r

)
= 0

, (7)

the system of equations (7) represents a transcendental system, that is, there are no algebraic operations that
allow rewriting (7) in an equivalent system of the system of equations (3). It should be noted that the previous
system has the advantage of needing fewer variables, although its analytical expression becomes more compli-
cated. However, it is possible to extract the same information as that contained in the system (2). In general, it is
necessary to use numerical methods of the iterative type to approximate to the solution of the system (7).

It is necessary to mention that the iterative methods have an intrinsic problem, since if a system hasN solutions
it is necessary to invest time in finding N initial conditions, but this problem is partially solved by combining
iterative methods with fractional calculus, whose result is known as fractional iterative methods, because these
new methods have the ability to find N solutions of a system using a single initial condition. In this document, a
fractional iterative method that does not explicitly depend on the analytical complexity or the fractional partial
derivatives of the function for which zeros are searched is presented, then it is an ideal iterative method for solving
nonlinear systems in several variables.
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2. Fixed Point Method

Let Φ : Rn→R
n be a function. It is possible to build a sequence {xi}∞i=0 by defining the following iterative method

xi+1 := Φ(xi), (8)

if is true that xi → ξ ∈Rn and if the function Φ is continuous around ξ, we obtain that

ξ = lim
i→∞

xi+1 = lim
i→∞

Φ(xi) = Φ

(
lim
i→∞

xi

)
= Φ(ξ), (9)

the above result is the reason by which the method (8) is known as the fixed point method. Moreover, the
function Φ is called an iteration function. To understand the nature of the convergence of the iteration function
Φ , the following definition is necessary [1]

Definition 2.1. Let Φ : Rn → R
n be an iteration function. The method (8) for determining ξ ∈ Rn is called (locally)

convergent, if there exists δ > 0 such that for every initial value

x0 ∈ B(ξ;δ) :=
{
y ∈Rn :

∥∥∥y − ξ∥∥∥ < δ} ,
it holds that

lim
i→∞
‖xi − ξ‖ → 0 ⇒ lim

i→∞
xi = ξ. (10)

If we have a function f : Ω ⊂ R
n → R

n for which we want to determine the set (1), in general it is possible to
write an iteration function Φ as follows [2]

Φ(x) = x −A(x)f (x),

with A(x) a matrix given as follows

A(x) =:
(
[A]jk(x)

)
=


[A]11(x) [A]12(x) · · · [A]1n(x)
[A]21(x) [A]22(x) · · · [A]2n(x)

...
...

. . .
...

[A]n1(x) [A]n2(x) · · · [A]nn(x)

 ,
where [A]jk(x) : Rn → R. It is necessary to mention that the matrix A(x) is determined according to the order

of convergence desired [3].

2.1. Order of Convergence

Consider the following definition [1]

Definition 2.2. Let Φ : Ω ⊂ R
n→ R

n be an iteration function with a fixed point ξ ∈Ω. Then the method (8) is called
(locally) convergent of (at least) order p (p ≥ 1), if there are exists δ > 0 and C, a non-negative constant with C < 1 if
p = 1, such that for any initial value x0 ∈ B(ξ;δ) it holds that

‖xk+1 − ξ‖ ≤ C ‖xk − ξ‖p , k = 0,1,2, · · · , (11)

where C is called convergence factor.

287

Reduction of a nonlinear system and its numerical solution using a fractional iterative method



The order of convergence is usually related to the speed at which the sequence generated by (8) converges.
For the particular case p = 1 it is said that the method (8) has an order of convergence (at least) linear, and
for the case p = 2 it is said that the method (8) has an order of convergence (at least) quadratic. The following
theorem, allows characterizing the order of convergence of an iteration function Φ with its derivatives [1,4]. Before
continuing, we need to consider the following multi-index notation. Let N0 be the set N∪ {0}, if γ ∈Nn

0 then



γ! :=
n∏
k=1

[γ]k!

∣∣∣γ ∣∣∣ :=
n∑
k=1

[γ]k

xγ :=
n∏
k=1

[x][γ]k
k

∂γ

∂xγ
:=

∂|γ|

∂[x][γ]1
1 ∂[x][γ]2

2 · · ·∂[x][γ]n
n

. (12)

Theorem 2.3. Let Φ : Ω ⊂ R
n → R

n be an iteration function with a fixed point ξ ∈ Ω. Assuming that Φ is p-times
differentiable in ξ for some p ∈N, and moreover


∂γ [Φ]k(ξ)
∂xγ

= 0, ∀k ≥ 1 and ∀
∣∣∣γ ∣∣∣ < p, if p ≥ 2∥∥∥Φ (1)(ξ)

∥∥∥ < 1, if p = 1
, (13)

where Φ (1) denotes the Jacobian matrix of the function Φ , then Φ is (locally) convergent of (at least) order p.

Proof. Let Φ : Rn → R
n be an iteration function, and let {êk}nk=1 be the canonical basis of R

n. Considering the
following index notation (Einstein notation)

Φ(x) =
n∑
k=1

[Φ]k(x)êk := [Φ]k(x)êk = êk[Φ]k(x),

and using the Taylor series expansion of a vector-valued function in multi-index notation, we obtain two cases:

i) Case p ≥ 2 :

Φ(xi) =Φ(ξ) +
p∑
|γ|=1

1
γ!
êk
∂γ [Φ]k(ξ)
∂xγ

(xi − ξ)γ + êk[o]k

max
|γ|=p
{(xi − ξ)γ }


=Φ(ξ) +

p∑
m=1

 ∑
|γ|=m

1
γ!
êk
∂γ [Φ]k(ξ)
∂xγ

(xi − ξ)γ

+ êk[o]k

max
|γ|=p
{(xi − ξ)γ }

 ,
then

‖Φ(xi)−Φ(ξ)‖ ≤
p∑

m=1

 ∑
|γ|=m

1
γ!

∥∥∥∥∥êk ∂γ [Φ]k(ξ)
∂xγ

(xi − ξ)γ
∥∥∥∥∥
+

∥∥∥∥∥∥êk[o]k

max
|γ|=p
{(xi − ξ)γ }

∥∥∥∥∥∥
≤

p∑
m=1

 ∑
|γ|=m

1
γ!

∥∥∥∥∥∂γ [Φ]k(ξ)
∂xγ

êk

∥∥∥∥∥
‖xi − ξ‖m + o (‖xi − ξ‖p) ,
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assuming that ξ is a fixed point of Φ and that
∂γ [Φ]k(ξ)
∂xγ

= 0 ∀k ≥ 1 and ∀
∣∣∣γ ∣∣∣ < p is fulfilled, the previous

expression implies that

‖Φ(xi)−Φ(ξ)‖
‖xi − ξ‖p

=
‖xi+1 − ξ‖
‖xi − ξ‖p

≤
∑
|γ|=p

1
γ!

∥∥∥∥∥∂γ [Φ]k(ξ)
∂xγ

êk

∥∥∥∥∥+
o (‖xi − ξ‖p)
‖xi − ξ‖p

,

therefore

lim
i→∞

‖xi+1 − ξ‖
‖xi − ξ‖p

≤
∑
|γ|=p

1
γ!

∥∥∥∥∥∂γ [Φ]k(ξ)
∂xγ

êk

∥∥∥∥∥ ,
as a consequence, if the sequence {xi}∞i=0 generated by (8) converges to ξ, there exists a value k > 0 such that

‖xi+1 − ξ‖ ≤

 ∑
|γ|=p

1
γ!

∥∥∥∥∥∂γ [Φ]k(ξ)
∂xγ

êk

∥∥∥∥∥
‖xi − ξ‖p , ∀i ≥ k,

then Φ is (locally) convergent of (at least) order p.
ii) Case p = 1 :

Φ(xi) =Φ(ξ) +
∑
|γ|=1

1
γ!
êk
∂γ [Φ]k(ξ)
∂xγ

(xi − ξ)γ + êk[o]k

max
|γ|=1
{(xi − ξ)γ }


=Φ(ξ) +Φ (1)(ξ)(xi − ξ) + êk[o]k

max
|γ|=1
{(xi − ξ)γ }

 ,
then

‖Φ(xi)−Φ(ξ)‖ ≤
∥∥∥Φ (1)(ξ)

∥∥∥‖xi − ξ‖+ o (‖xi − ξ‖) ,

assuming that ξ is a fixed point of Φ and that
∥∥∥Φ (1)(ξ)

∥∥∥ < 1 is fulfilled, the previous expression implies that

‖Φ(xi)−Φ(ξ)‖
‖xi − ξ‖

=
‖xi+1 − ξ‖
‖xi − ξ‖

<
∥∥∥Φ (1)(ξ)

∥∥∥+
o (‖xi − ξ‖)
‖xi − ξ‖

,

therefore

lim
i→∞

‖xi+1 − ξ‖
‖xi − ξ‖

<
∥∥∥Φ (1)(ξ)

∥∥∥ ,
as a consequence, if the sequence {xi}∞i=0 generated by (8) converges to ξ, there exists a value k > 0 such that

‖xi+1 − ξ‖ <
∥∥∥Φ (1)(ξ)

∥∥∥‖xi − ξ‖ , ∀i ≥ k,
then Φ is (locally) convergent of order (at least) linear.

The following proposition follows from the previous theorem
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Proposition 2.4. Let f : Ω ⊂ R
n→ R

n be a function with a value ξ ∈Ω such that ‖f (ξ)‖ = 0, and let Φ : Rn→ R
n be

an iteration function as follows

Φ(x) = x −A(x)f (x), (14)

with A(x) a matrix. If the following condition is fulfilled

lim
x→ξ

A(x) =
(
f (1)(ξ)

)−1
, (15)

then Φ satisfies a necessary (but not sufficient) condition to be (locally) convergent of order (at least) quadratic in
B(ξ;δ).

Proof. From the Theorem 2.3 we have that an iteration function has an order of convergence (at least) quadratic if
it fulfills the following condition

lim
x→ξ

∂[Φ]k(x)
∂[x]j

= 0, ∀j,k ≤ n,

which may be written equivalently as follows

lim
x→ξ

∥∥∥Φ (1)(x)
∥∥∥ = 0. (16)

Then, we can assume that we have a function f (x) : Ω ⊂ R
n → R

n with a zero ξ ∈ Ω, such that all of its first
partial derivatives are defined in ξ, and taking the iteration function Φ given by (14), the k-th component of the
iteration function may be written as

[Φ]k(x) = [x]k −
n∑
j=1

[A]kj (x)[f ]j (x),

then

∂l[Φ]k(x) = δlk −
n∑
j=1

(
[A]kj (x)∂l[f ]j (x) +

(
∂l[A]kj (x)

)
[f ]j (x)

)
,

where δlk is the Kronecker delta, which is defined as

δlk =
{

1, si l = k
0, si l , k .

Assuming that (16) is fulfilled

∂l[Φ]k(ξ) = δlk −
n∑
j=1

[A]kj (ξ)∂l[f ]j (ξ) = 0 ⇒
n∑
j=1

[A]kj (ξ)∂l[f ]j (ξ) = δlk , ∀l,k ≤ n,

the previous expression may be written in matrix form as

A(ξ)f (1)(ξ) = In ⇒ A(ξ) =
(
f (1)(ξ)

)−1
,

where In denotes the identity matrix of n×n. Then any matrix A(x) that fulfills the following condition

lim
x→ξ

A(x) =
(
f (1)(ξ)

)−1

guarantees that exists δ > 0 such that iteration function Φ given by (14) satisfies a necessary (but not sufficient)
condition to be (locally) convergent of order (at least) quadratic in B(ξ;δ).
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Finally, the following corollary follows from the previous proposition

Corollary 2.5. Let Φ : Rn → R
n be an iteration function. If Φ defines a sequence {xi}∞i=0 such that xi → ξ, and if the

following condition is fulfilled

lim
x→ξ

∥∥∥Φ (1)(x)
∥∥∥ , 0, (17)

then Φ has an order of convergence (at least) linear in B(ξ;δ).

3. Riemann-Liouville Fractional Derivative

One of the key pieces in the study of fractional calculus is the iterated integral, which is defined as follows [5]

Definition 3.1. Let L1
loc(a,b) be the space of locally integrable functions in the interval (a,b). If f is a function such that

f ∈ L1
loc(a,∞), then the n-th iterated integral of the function f is given by

aI
n
x f (x) = aIx

(
aI
n−1
x f (x)

)
=

1
(n− 1)!

∫ x

a
(x − t)n−1f (t)dt, (18)

where

aIxf (x) :=
∫ x

a
f (t)dt.

Considerate that (n− 1)! = Γ (n) , a generalization of (18) may be obtained for an arbitrary order α > 0

aI
α
x f (x) =

1
Γ (α)

∫ x

a
(x − t)α−1f (t)dt, (19)

the equation (19) correspond to the definition of Riemann-Liouville (right) fractional integral. Fractional
integrals satisfy the semigroup property, which is given in the following proposition [5]

Proposition 3.2. Let f be a function. If f ∈ L1
loc(a,∞), then the fractional integrals of f satisfy that

aI
α
x aI

β
x f (x) = aI

α+β
x f (x), α,β > 0. (20)

From the previous proposition, and considering that the operator d/dx is the inverse operator to the left of the
operator aIx, any integral α-th of a function f ∈ L1

loc(a,∞) may be written as

aI
α
x f (x) =

dn

dxn a
Inx (aI

α
x f (x)) =

dn

dxn
(aI

n+α
x f (x)) . (21)

With the previous results, we can build the operator Riemann-Liouville fractional derivative as follows [5,6]

aD
α
x f (x) :=

 aI
−α
x f (x), if α < 0

dn

dxn
(aI

n−α
x f (x)) , if α ≥ 0

, (22)

where n = bαc + 1. Considering a = 0, then applying the operator (22) to the function xµ, with α ∈ R \Z and
µ > −1, we obtain the following result

0D
α
x x

µ =
Γ (µ+ 1)

Γ (µ−α + 1)
xµ−α . (23)
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4. Fractional Pseudo-Newton Method

Let f : Ω ⊂ R
n → R

n be a function. We can consider the problem of finding a value ξ ∈Ω such that ‖f (ξ)‖=0. A
first approximation to value ξ is by a linear approximation of the function f in a valor xi ∈ Ω with ‖xi − ξ‖ < ε,
that is,

f (x) ≈ f (xi) + f (1)(xi)(x − xi), (24)

then considering that ξ is a zero of f , from the previous expression we obtain that

0 ≈ f (xi) + f (1)(xi)(ξ − xi) ⇒ ξ ≈ xi −
(
f (1)(xi)

)−1
f (xi),

consequently, may be generated a sequence {xi}∞i=0 that approximates the value ξ using the iterative method

xi+1 := Φ(xi) = xi −
(
f (1)(xi)

)−1
f (xi), i = 0,1,2, · · · ,

which corresponds to well-known Newton’s method. However, the equation (24) is not the only way to generate
a linear approximation to the function f in the point xi , another alternative is to use the next approximation

f (x) ≈ f (xi) +mIn(x − xi), (25)

where In corresponds to the identity matrix of n × n and m is any constant value of a slope, that allows the
approximation (25) to the function f to be valid. The previous equation allows to obtain the following iterative
method

xi+1 := Φ(xi) = xi −
(
m−1In

)
f (xi), i = 0,1,2 · · · , (26)

which corresponds to a particular case of the parallel chord method [7]. It is necessary to mention that for
some definitions of fractional derivative, it is fulfilled that the derivative of the order α of a constant is different
from zero, that is,

∂αk c :=
∂α

∂[x]αk
c , 0, c = constant, (27)

where ∂αk denotes any fractional derivative applied only in the component k, that does not cancel the constants
and that fulfills the following continuity relation with respect to the order α of the derivative

lim
α→1

∂αk c = ∂kc. (28)

Using as a basis the idea of the method (26), and considering any fractional derivative that fulfills the condi-
tions (27) and (28), we can define the fractional pseudo-Newton method as follows

xi+1 := Φ(α,xi) = xi − Pε,β(xi)f (xi), i = 0,1,2 · · · , (29)

with α ∈ R \Z, in particular α ∈ [−2,2] \Z [3], where Pε,β(xi) is a matrix evaluated in the value xi , which is
given by the following expression

Pε,β(xi) :=
(
[Pε,β]jk(xi)

)
=

(
∂
β(α,[xi ]k )
k δjk + εδjk

)
xi
, (30)

where
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∂
β(α,[xi ]k )
k δjk :=

∂β(α,[xi ]k )

∂[x]β(α,[xi ]k )
k

δjk , 1 ≤ j,k ≤ n, (31)

with δjk the Kronecker delta, ε a positive constant� 1, and β(α, [xi]k) a function defined as follows

β(α, [xi]k) :=
{
α, if |[xi]k | , 0

1, if |[xi]k | = 0
. (32)

It should be mentioned that the value α = 1 in (32), is taken to avoid the discontinuity that is generated
when using the fractional derivative of constants in the value x = 0. Moreover, since in the previous method∥∥∥Φ (1)(α,ξ)

∥∥∥ , 0 if ‖f (ξ)‖ = 0, for the Corollary 2.5, any sequence {xi}∞i=0 generated by the iterative method (29) has
an order of convergence (at least) linear.

To finish this section, it is necessary to mention that although the interest in fractional calculus has mainly
focused on the study and development of techniques to solve differential equation systems of order non-integer
[5,6,8–10]. Over the years, iterative methods have also been developed that use the properties of fractional deriva-
tives to solve algebraic equation systems [3, 11–17]. These methods may be called fractional iterative methods,
which under certain conditions, may accelerate their speed of convergence with the implementation of the Aitken’s
method [4, 13].

It should be noted that depending on the definition of fractional derivative used, fractional iterative methods
have the particularity that they may be used of local form [11] or of global form [3]. These methods also have the
peculiarity of being able to find complex roots of polynomials using real initial conditions [12]. Some differences
between Newton’s method and two fractional iterative methods are listed in the Table 1

Classical Newton Fractional Newton Fractional Pseudo-Newton

Can it find complex zeros
of a polynomial using
real initial conditions?

No Yes Yes

Can it find multiple zeros
of a function using a

single initial condition?
No Yes Yes

Can it be used if the function
is not differentiable? No Yes Yes

For a space of dimension N
are needed

N ×N classic
partial derivatives

N ×N fractional
partial derivatives

N fractional
partial derivatives

Is it recommended for solving systems
where the (fractional) partial derivatives

are analytically difficult to obtain?
No No Yes

Table 1: Some differences between the classical Newton’s method and two fractional iterative methods.

4.1. Some Examples

Instructions for implementing the method (29) along with information to provide values α ∈ [−2,2] \Z are found
in the reference [3]. For rounding reasons, for the examples the following function is defined

Rndm ([x]k) :=

 Re ([x]k) , if |Im([x]k)| ≤ 10−m

[x]k , if |Im([x]k)| > 10−m . (33)

Combining the function (33) with the method (29), the following iterative method is defined

xi+1 := Rnd5 (Φ(α,xi)) , i = 0,1,2 · · · . (34)
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Example 4.1. Let {fk}∞k=0 be a sequence of functions, with

fk(x) =
π
2
−

k∑
m=0

(−1)mx2m+1

(2m+ 1)Γ (2m+ 2)
−→
k→∞

∫ ∞
x

sin(t)
t

dt.

Then considering the value k = 50, the initial condition x0 = 1.85 is chosen to use the iterative method given by (34)
along with fractional derivative given by (23). Consequently, we obtain the results of the Table 2

α xn ‖xn − xn−1‖2 ‖f50 (xn)‖2 n

1 −0.83718 23.60399266 4.10000e − 7 9.80551e − 9 30
2 −0.81526 29.87824476 7.30000e − 7 8.19133e − 7 273
3 −0.71339 17.33566366 4.10000e − 7 2.48591e − 8 34
4 −0.71324 11.08303768 3.70000e − 7 2.67499e − 8 29
5 −0.71174 4.89383571 5.10000e − 7 4.87621e − 8 24
6 0.36251 −12.29964074− 4.38965942i 4.41814e − 7 9.42697e − 7 42
7 0.36333 −31.27978791− 5.29112884i 4.31045e − 7 5.52647e − 7 391
8 0.36684 −24.97153098− 5.07020771i 3.56931e − 7 7.71425e − 7 42
9 0.38451 −24.97153097 + 5.07020788i 2.05913e − 7 5.36982e − 7 44

10 0.38646 −18.65002028 + 4.78651268i 2.30000e − 7 5.54454e − 7 42
11 0.44711 −5.86005858− 3.72373544i 4.72017e − 7 9.90371e − 7 41
12 0.55885 −31.27978639 + 5.2911368i 5.50000e − 7 3.69789e − 7 183
13 1.41172 1.92644561 1.10000e − 7 9.97696e − 7 196

Table 2: Results obtained using the iterative method (34) with ε = e − 3.

Example 4.2. Let f be a function, with

f (x) =


1
2

[x]1

(
sin

(
[x]1[x]2

)
− 1

)
− 1

4π
[x]2(

1− 1
4π

)(
e2[x]1 − e

)
+ e

( 1
π

[x]2 − 2[x]1

)
 .

Then the initial condition x0 = (0.86,0.86)T is chosen to use the iterative method given by (34) along with fractional
derivative given by (23). Consequently, we obtain the results of the Table 3

α [xn]1 [xn]2 ‖xn − xn−1‖2 ‖f (xn)‖2 n

1 0.7283 −0.13780202− 0.87180273i 2.16460988− 4.68221226i 9.11043e − 8 8.81449e − 7 100
2 0.72889 −0.15442216 1.14021866 6.22977e − 7 8.30511e − 7 60
3 0.78188 −0.20477864− 1.30850366i 2.21623485− 7.86783099i 5.56776e − 8 9.92736e − 7 246
4 0.86097 1.14584377 + 0.68994256i 8.09450017− 5.99607116i 2.64575e − 8 9.42041e − 7 249
5 1.11159 1.70987637 −18.87534307 1.41421e − 8 9.92487e − 7 447
6 1.14766 1.48216448 −8.41311536 1.41421e − 8 8.86632e − 7 233
7 1.17262 −1.36674692 + 0.07786741i −5.76423 + 0.47853094i 2.00000e − 8 9.92337e − 7 394
8 1.18538 −1.36674698− 0.07786726i −5.76422966− 0.4785315i 2.23607e − 8 9.88600e − 7 387
9 1.19954 1.57643706 −12.098725 1.41421e − 8 7.09538e − 7 386

10 1.20058 1.64946521 −15.55495398 1.41421e − 8 9.10544e − 7 465
11 1.2852 −0.76073057 + 0.14192444i −2.11123992 + 0.82667655i 1.02470e − 7 8.39720e − 7 97
12 1.29642 1.34362303 −4.29400761 7.61577e − 8 4.60872e − 7 92

Table 3: Results obtained using the iterative method (34) with ε = e − 3.

Example 4.3. Let f be a function, with

f (x) =


−3.6[x]2

(
cos

(
[x]2

2

)
+ [x]3

1[x]3

)
− 3.6[x]3 + 10.8

−1.6[x]1

(
[x]1 + [x]3

2[x]3

)
− 1.6sinh([x]3) + 6.4

−4.6[x]2

(
[x]1[x]3

3 + 1
)
− 4.6cosh([x]1) + 27.6

 .
Then the initial condition x0 = (0.95,0.95,0.95)T is chosen to use the iterative method given by (34) along with

fractional derivative given by (23). Consequently, we obtain the results of the Table 4
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α [xn]1 [xn]2 [xn]3 ‖xn − xn−1‖2 ‖f (xn)‖2 n

1 0.96828 −0.28991424 + 1.38566039i 0.4041105− 1.39254282i −0.62409681 + 1.25568859i 2.44949e − 8 8.34134e − 7 78
2 0.9698 0.62792492− 1.29495978i 0.57678001− 1.30742987i 0.48322895− 1.29731024i 2.64575e − 8 9.12958e − 7 64
3 0.96985 −0.28991423− 1.38566037i 0.40411047 + 1.39254282i −0.62409683− 1.25568861i 2.00000e − 8 9.32021e − 7 83
4 0.97106 −0.58277447 + 0.49660576i −0.49995795 + 1.39319334i 0.09221108− 1.69837571i 3.00000e − 8 6.23838e − 7 62
5 0.97192 0.62792485 + 1.29495977i 0.57677997 + 1.3074299i 0.48322899 + 1.29731024i 3.31662e − 8 9.61719e − 7 57
6 0.97823 −0.12415396 + 0.98083552i −0.51004547− 1.39105393i −0.57743861− 1.50487453i 2.44949e − 8 9.15509e − 7 270
7 0.97858 −0.12415386− 0.98083557i −0.51004543 + 1.3910539i −0.57743856 + 1.50487453i 1.41421e − 8 9.86401e − 7 278
8 1.03775 1.30219735 −1.31677799 −1.4605226 2.82843e − 8 8.76439e − 7 98
9 1.04019 −1.43433659 1.27415875 −1.11130559 4.89898e − 8 8.39041e − 7 54

10 1.0421 −1.16248344 + 0.0469604i −0.62570099− 0.42962177i 1.74938849− 0.27012065i 3.31662e − 8 8.92465e − 7 279
11 1.96396 0.53848559− 0.36927367i 0.64776248 + 0.48376485i 2.00930932− 0.07078346i 1.73205e − 8 9.76607e − 7 216
12 1.96537 0.5384856 + 0.3692736i 0.64776247− 0.48376478i 2.00930935 + 0.07078343i 1.41421e − 8 9.37835e − 7 208

Table 4: Results obtained using the iterative method (34) with ε = e − 3.

5. Equations of a Hybrid Solar Receiver

Considering the notation

(Tcell ,Thot ,Tcold ,ηcell ,ηT EG)T := ([x]1, [x]2, [x]3, [x]4, [x]5)T ,

it is possible to define the following system of equations that corresponds to the combination of a solar photo-
voltaic system with a thermoelectric generator system [18, 19], which is named as a hybrid solar receiver



[x]1 = [x]2 + a1 · a2 (1− [x]4)
[x]2 = [x]3 + a1 · a3 (1− [x]4) (1− [x]5)
[x]3 = a4 + a1 · a5 (1− [x]4) (1− [x]5)
[x]4 = a6[x]1 + a7

[x]5 = (a8 − 1)
(
1− [x]3 + a9

[x]2 + a9

)(
a8 +

[x]3 + a9

[x]2 + a9

)−1

, (35)

whose deduction and some details about the difficulty in finding its solution may be found in the reference [20].
The ai ’s in the previous system are constants defined by the following expressions



a2 = rcell + rsol +Acell

 rcop + rcer
AT EG

+
rintercon

0.5 ·
√
f ∗ ·AT EG

(
b ·

√
f ∗ +
√
AT EG

)
a5 = Acell

 rintercon

0.5 ·
√
f ∗ ·AT EG

(
b ·

√
f ∗ +
√
AT EG

) +
rcer
AT EG

+Rheat exch


a1 = ηopt ·Cg ·DNI, a3 =

Acell · l
f ∗ ·AT EG · kT EG

, a4 = Tair

a6 = −ηcell,ref ·γcell , a7 = ηcell,ref (1 + 25 ·γcell) , a8 =
√

1 +ZT

a9 = 273.15

,

with the following particular values [20]



ηopt = 0.85, rintercon = 2.331e − 7, Tair = 20
Cg = 800, Acell = 9e − 6, Rheat exch = 0.5
DNI = 900, AT EG = 5.04e − 5, ηcell,ref = 0.43
rcell = 3e − 6, f ∗ = 0.7, γcell = 4.6e − 4
rsol = 1.603e − 6, b = 5e − 4, ZT = 1
rcop = 7.5e − 7, l = 5e − 4, rcer = 8e − 6
kT EG = 1.5

.
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Using the system of equations (35), it is possible to define a function f1 : Ω ⊂R
5→R

5, that is,

f1(x) :=



[x]1 − [x]2 − a1 · a2 (1− [x]4)
[x]2 − [x]3 − a1 · a3 (1− [x]4) (1− [x]5)
[x]3 − a4 − a1 · a5 (1− [x]4) (1− [x]5)

[x]4 − a6[x]1 − a7

[x]5 − (a8 − 1)
(
1− [x]3 + a9

[x]2 + a9

)(
a8 +

[x]3 + a9

[x]2 + a9

)−1


. (36)

Then the initial condition x0 = (53.67,51.82,21.54,0.43,0.01)T is chosen to use the iterative method given by
(34) along with fractional derivative given by (23). Consequently, we obtain the results of the Table 5

α [xn]1 [xn]2 [xn]3 [xn]4 [xn]5 ||xn − xn−1||2 ||f1(xn)||2 n

1 1.02632 53.76229916 51.55509481 22.07807195 0.42431082 0.01618411 9.35752e − 6 9.99890e − 3 4112

Table 5: Results obtained using the iterative method (34) with ε = e − 4.

5.1. Reducing the Number of Equations of a Hybrid Solar Receiver

It should be noted that system (35) corresponds to a particular case of the system of equations (3), as a consequence
through consecutive substitutions of certain variables [x]k ’s may be transformed into a particular case of the system
of equations (7). In particular, if we do consecutive substitutions of variables [x]1, [x]4, [x]5 and some algebraic
simplifications, we may obtain the following transcendental system


[x]2 = [x]3 − a1 · a3

(a6[x]2 + a7 − 1)(a8 ([x]3 + a9) + ([x]2 + a9))
(1 + a1a2a6) (a8 ([x]2 + a9) + ([x]3 + a9))

[x]3 = a4 − a1 · a5
(a6[x]2 + a7 − 1)(a8 ([x]3 + a9) + ([x]2 + a9))

(1 + a1a2a6) (a8 ([x]2 + a9) + ([x]3 + a9))

, (37)

whose solution allows to know the values of the variables [x]1, [x]4 and [x]5 through the following equations



[x]1 =
[x]2 − a1a2(a7 − 1)

1 + a1a2a6

[x]4 =
a6 (a1a2 + [x]2) + a7

1 + a1a2a6

[x]5 =
(a8 − 1)([x]2 − [x]3)

a8 ([x]2 + a9) + ([x]3 + a9)

. (38)

Using the system of equations (37), it is possible to define a function f2 : Ω ⊂R
2→R

2, that is,

f2(x) :=


[x]2 − [x]3 + a1 · a3

(a6[x]2 + a7 − 1)(a8 ([x]3 + a9) + ([x]2 + a9))
(1 + a1a2a6) (a8 ([x]2 + a9) + ([x]3 + a9))

[x]3 − a4 + a1 · a5
(a6[x]2 + a7 − 1)(a8 ([x]3 + a9) + ([x]2 + a9))

(1 + a1a2a6) (a8 ([x]2 + a9) + ([x]3 + a9))

 . (39)

Then the initial condition x0 = (53,19)T is chosen to use the iterative method given by (34) along with fractional
derivative given by (23). Consequently, we obtain the results of the Table 6

α [xn]2 [xn]3 ||xn − xn−1||2 ||f2(xn)||2 n

1 1.17778 51.55653453 22.0782978 3.72194e − 5 9.97906e − 3 1420

Table 6: Results obtained using the iterative method (34) with ε = e − 4.
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Finally, using (38) and the results of the Table 6, we obtain the following values
[xn]1 = 53.76173931

[xn]4 = 0.42431093

[xn]5 = 0.01618472
. (40)

It should be mentioned that the previous results are practically the same as those presented in Table 5, which
shows that it is possible to extract the information contained in system (35) using the system (37).

The system of equations (35) generally depends on two parameters, the direct normal irradiance (DNI) and
the ambient temperature (Tair ). These parameters are measured in real-time at certain times of the day [20] and it
is necessary to calculate a new system solution for each new pair of parameters, that is,

(DNI,Tair )
f1−→ xn ∈R5.

Unfortunately this system presents a certain degree of instability [15], as a consequence, it is difficult to find
a solution through iterative methods unless a suitable initial condition is used. The latter implies that before
trying to solve the system (35) using some iterative method, the task of searching for a suitable initial condition
in a space of 5 dimensions must be carried out, and this task complicates obtaining in real-time the behavior of
the temperatures and the efficiencies of the hybrid solar receiver. Although reducing the system dimensions does
not eliminate the task of searching for an initial condition, it is less complicated to search for an initial condition
in a space of 2 dimensions than in a space of 5 dimensions. Therefore, the solutions of the system (37) may be
determined more quickly, and the behavior in real-time of the temperatures and the efficiencies of the hybrid solar
receiver may be obtained with greater precision.

We finish this section by presenting real measurements of parameters DNI and Tair , as well as the solutions
they generate for the system (37) using the iterative method given by (34) along with fractional derivative given
by (23).

DNI Tair [x0]2 [x0]3 α [xn]2 [xn]3 ||xn − xn−1||2 ||f2(xn)||2 n

1 574.319 16.832 33 22 1.15517 36.97006552 18.16597807 2.14742e − 5 9.99513e − 3 1697
2 81.348 23.332 32 21 1.22759 26.1945392 23.51244959 3.78783e − 5 9.98177e − 3 1423
3 421.637 17.061 35 14 1.17586 31.86785373 18.03494236 3.41155e − 5 9.98047e − 3 1264
4 370.62 15.34 25 19 1.2069 28.35083227 16.20876627 5.35705e − 5 9.96884e − 3 997
5 63.796 19.527 30 22 1.23793 21.78372255 19.67591543 4.24110e − 5 9.96582e − 3 1861
6 173.964 13.955 23 12 1.22759 20.06382043 14.35167375 6.20276e − 5 9.99870e − 3 778
7 60.219 21.911 22 25 1.23793 24.04433152 22.05249253 3.74858e − 5 9.97890e − 3 1924
8 158.031 16.98 27 23 1.23793 22.54666358 17.34765403 4.07181e − 5 9.99593e − 3 1942
9 73.3474 31.87 30 33 1.21724 34.46203488 32.04766382 2.46233e − 5 9.99229e − 3 1960

10 114.473 19.798 20 15 1.23793 23.81769247 20.06413324 3.79117e − 5 9.97919e − 3 1927
11 337.977 14.505 27 12 1.24828 26.35550694 15.28940708 3.32622e − 5 9.99058e − 3 1599
12 290.003 17.678 25 20 1.2069 27.86466037 18.35620882 3.54168e − 5 9.98776e − 3 1178
13 198.9558 20.146 30 19 1.21724 27.15103929 20.60390244 3.60974e − 5 9.96025e − 3 1247
14 142.54 32.932 41 32 1.21724 37.96815767 33.25643301 2.40786e − 5 9.96843e − 3 1978
15 831.497 27.259 58 27 1.18621 56.50580249 29.1848537 2.60029e − 5 9.99290e − 3 1895
16 839.482 23.023 51 27 1.16552 52.50277786 24.97861392 2.19814e − 5 9.98513e − 3 1785
17 30.275 21.416 17 18 1.23793 22.47208318 21.48561688 4.08991e − 5 9.99714e − 3 1851
18 374.688 18.493 34 18 1.2069 31.66818022 19.36351722 2.63287e − 5 9.98794e − 3 1756
19 94.3555 28.373 35 28 1.21724 31.71360529 28.59186834 2.64235e − 5 9.98198e − 3 1978

Table 7: Results obtained using the iterative method (34) with ε = e − 4.

6. Conclusions

The reduction of an algebraic equation system has among its advantages the fact that it is less complicated to
determine initial conditions and that its solutions may be determined more quickly. However, these advantages
are overshadowed by the fact that the analytical expression of the system becomes more complicated. For this
reason, it is necessary to have an iterative method that is not affected by the increase in analytical complexity of
the system. The fractional pseudo-Newton method does not explicitly depend on the analytical complexity or the
fractional partial derivatives of the function for which zeros are searched, these characteristics make this method
ideal to be implemented when reducing and solving nonlinear systems in several variables.
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