
"Science Stays True Here" 
Journal of Mathematics and Statistical Science (ISSN 2411-2518), Vol.6, 157-181 | Science Signpost Publishing 

Weak Linear Independence of Vector Spaces 

Hamza Hakmi1, Eaman Al-Khouja2, Adnan Al-Taybani2  

1. Department of Mathematics, Faculty of Sciences, Damascus University, Damascus, Syria 

2. Department of Mathematics, Faculty of Sciences, Al-Baath University, Homs, Syria 

E-mail: hhakmi-64@hotmail.com, alkhoujaeaman@gmail.com, adn-math1986@hotmail.com 

 

Abstract 

The problem of generation and oneness considered for expressing about an element is very important 

and has a big effect in mathematics in general and in algebra in special for example in vector spaces, 

every element from this space is expressed in a unique way as a linear combination of elements of its 

base. 

In this paper, we introduce and study new concepts in vector space over a field, to express every 

element from this space in a unique way called weak linear combination. 

Keywords: Weak linear combination, Weak generation, Weak linear independence, Full linear 
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1. Introduction 

It is important to appreciate at outset that the idea of a vector space in the algebraic abstraction and 

generalization of the Cartesian coordinate system introduced into the Euclidean plane, that is, a 

generalization of analytic geometry. Therefore, a number of interesting papers have been published on the 

concepts of generating sets and linearly independence. 

In 2014, Michal Hrbek [5] introduced the concept of weak independence as a generalization of 

independence, to modules over associative rings with an identity element, where a subset 𝑋 of a left 

𝑅 −module 𝑀 is called weakly independent if for any distinct elements 𝑥1, 𝑥2, … , 𝑥𝑛 from 𝑋 such that 

𝛼1𝑥1 + 𝛼2𝑥2 + ⋯+ 𝛼𝑛𝑥𝑛 = 0, then none of 𝛼1,𝛼2, … ,𝛼𝑛 is invertible in 𝑅. Equivalent, a subset 𝑋 of 

𝑀 is weakly independent if 𝑥 ∉ 𝑆𝑝𝑎𝑛(𝑋\{𝑥}), i.e., 𝑥 is not in the submodule of 𝑀 generated by 

𝑋\{𝑥}. In addition, he studied a weak base, where a weakly independent generating set 𝑋 of a module 𝑀 

is called a weak base. He proved that weakly independent generating sets are exactly generating sets 
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minimal with respect to inclusion. 

In 2016, Daniel Herden [2] studied another generalization of independence for modules as following, 

let 𝑀 be an 𝑅 −module and 𝑁 be a submodule of 𝑀, a subset 𝑋 of 𝑀 is weakly independent over 𝑁 

provided that 𝑥 ∉ 𝑁 + 𝑆𝑝𝑎𝑛(𝑋\{𝑥}) for all 𝑥 ∈ 𝑋. Also, a subset 𝑋 of  𝑀 is weakly independent if it 

is weakly independent over the zero submodule. 

Weakly based Abelian groups were studied in [6] and [7]. In [6], the authors obtained their full 

characterization in terms of dimensions of certain residual vector spaces. 

It is known that a vector space over a field is a special case of a module over a ring [1]. Thus, if 𝑋 is 

a weakly independent subset of a vector space 𝑉  over afield 𝐹 , then for any distinct elements 

𝑥1, 𝑥2, … , 𝑥𝑛  from 𝑋 such that 𝛼1𝑥1 + 𝛼2𝑥2 + ⋯+ 𝛼𝑛𝑥𝑛 = 0 all 𝛼1,𝛼2, … ,𝛼𝑛  zero in 𝐹, i.e., 𝑋 is 

independent. 

The purpose of this paper is to generalize the concept of linear independence, to vector spaces over a 

field, where a subset 𝑋 of a vector space 𝑉 over a field 𝐹 is weakly independent if for any distinct 

elements 𝑥1, 𝑥2, … , 𝑥𝑛  from 𝑋  and any elements 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹  such that 𝛼1𝑥1 + 𝛼2𝑥2 + ⋯+

𝛼𝑛𝑥𝑛 = 0 and 𝛼1 + 𝛼2 + ⋯+ 𝛼𝑛 = 0, then 𝛼1,𝛼2, … ,𝛼𝑛 all zero in 𝐹. 

In section 2 of this paper, we study the concept of weak generation of vector space 𝑉 over a field 𝐹, 

we proved that if 〈𝑋〉 𝑊 is the subspace of 𝑉 weakly generated by 𝑋, then 〈𝑋〉 𝑊 ⊆ 〈𝑋〉, and 𝑋 ⊆ 〈𝑋〉 𝑊 

if and only if 〈𝑋〉 = 〈𝑋〉 𝑊. Moreover, if 𝑋 ⊈ 〈𝑋〉 𝑊, then 〈𝑋〉 𝑊 is a maximal subspace of 〈𝑋〉. 

In section 3 of this paper, we study the concept of weak linear independence which is considered a 

generalization of linear independence. We show that if 𝑋 is a maximal weakly independent subset of 𝑉, 

then 𝑋 generates 𝑉 weakly. 

In section 4 of this paper, we study the concept of a weak base of vector space and its properties. We 

show that all weak bases of vector space are equipotent. We proved that a subset 𝑋 of vector space is 

weak base if and only if 𝑋 is a minimal weakly generated set. Also, we proved that every weakly 

generated subset of vector space contains a weak base of this space. We proved that every weak 

independent subset of vector space can be extended to a weak base of this space. 

In section 5 of this paper, we study the concept of an independent weak base of a proper subspace. 

We show that if 𝑋 is an independent weak base of a proper subspace 𝑈, then 𝑋 ⊈ 𝑈. In addition to that, 

we study the relationship between the bases of 〈𝑋〉 and the independent weak bases of 〈𝑋〉 𝑊. Also, we 

proved many important and interesting properties of an independent weak bases of a proper subspace. 

In section 6 of this paper, we show the geometric interpretation of weak liner independence in the 
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vector space ℝ𝑛;𝑛 = 1,2,3 over ℝ where ℝ is the field of real numbers. 

Throughout this paper, all vector spaces 𝑉 are left over a field 𝐹 as in [4], a subset 𝑋 of a vector 

space 𝑉 over 𝐹 is called a base of 𝑉 [1], if it is generated of 𝑉 and linearly independent. If 𝑉 is a 

vector space and 𝑋 is a subset of 𝑉, then 𝑋 is a base of 𝑉 if and only if 𝑋 is maximal linearly 

independent if and only if 𝑋 is minimal generating of 𝑉 [1]. 

2. Weak Generation of Vector Spaces 

In this section, we study the concept of weak linear combination which is a special case of linear 

combinations of elements of a non-empty subset of a vector space over a field and the concept of weak 

generation of vector spaces. We start with the following definition. 

Definition 2.1. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. For any 

distinct elements 𝑣1, 𝑣2, … , 𝑣𝑛 of 𝑋 we say that every linear combination has the form ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  where 

𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 such that ∑ 𝛼𝑖 = 0𝑛
𝑖=1  is a weak linear combination of elements of 𝑋. We say that 

𝑣 ∈ 𝑉 is expressed as a weak linear combination of elements of 𝑋 if there exist distinct elements 

𝑢1,𝑢2, … ,𝑢𝑚 of 𝑋 and elements 𝛽1,𝛽2, … ,𝛽𝑚 ∈ 𝐹 such that 𝑣 = ∑ 𝛽𝑖𝑢𝑖𝑚
𝑖=1  and ∑ 𝛽𝑖 = 0𝑚

𝑖=1 . 

Corollary 2.2. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. For any 

distinct elements 𝑣1, 𝑣2, … , 𝑣𝑛 of 𝑋, then with 𝛼1 = 𝛼2 = ⋯𝛼𝑛 = 0 ∈ 𝐹, we notice that 0 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  

and ∑ 𝛼𝑖 = 0𝑛
𝑖=1 , i.e., the zero element of 𝑉 is expressed as a weak linear combination of elements of 

any non-empty subset of 𝑉. 

Lemma 2.3. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. Suppose that 

〈𝑋〉 𝑊 is the set of all weak linear combinations of 𝑋, then 〈𝑋〉 𝑊 is a subspace of 𝑉. 

proof. Obvious. 

According to the last Lemma, we can form the following definition. 

Definition 2.4. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. We call the 

subspace 〈𝑋〉 𝑊 a weakly generated subspace by 𝑋. If there exists a non-empty subset 𝑍 of 𝑉 such that 

𝑉 = 〈𝑍〉 𝑊, then we say that 𝑍 generates 𝑉 weakly, i.e., any element 𝑣 ∈ 𝑉 is expressed as a weak 

linear combination of elements of 𝑍. 

Example. With ℝ as the field of real numbers, let 𝑋 = {(1,0), (0,1), (2,3)} be a subset of the vector 

space ℝ2 over ℝ. It is easy to show that any (𝑥,𝑦) ∈ ℝ2 is expressed as a weak linear combination of 

𝑋 by the form: 
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(𝑥,𝑦) =
𝑥 − 𝑦

2
(1,0) +

𝑦 − 3𝑥
4

(0,1) +
𝑥 + 𝑦

4
(2,3) 

Thus, 𝑋 generates ℝ2 weakly. 

Lemma 2.5. Let 𝑉 be a vector space over a field 𝐹. The following hold: 

i. 〈{𝑣}〉 𝑊 = {0} for every 𝑣 ∈ 𝑉. 

ii. For any non-empty subset 𝑋 of 𝑉, then 〈𝑋〉 𝑊 ≠ {0} if and only if 𝐶𝑎𝑟𝑑 𝑋 ≥ 2. 

iii. For any non-empty subset 𝑋 of 𝑉, then 〈𝑋〉 𝑊 ⊆ 〈𝑋〉. 

proof. Obvious. 

Theorem 2.6. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. Then, the 

following are equivalent: 

i. 𝑋 ⊆ 〈𝑋〉 𝑊. 

ii. 〈𝑋〉 = 〈𝑋〉 𝑊. 

proof. (𝑖) ⟹ (𝑖𝑖). Suppose that 𝑋 ⊆ 〈𝑋〉 𝑊. Since 〈𝑋〉 is the smallest subspace in 𝑉 containing 𝑋, we 

have 〈𝑋〉 ⊆ 〈𝑋〉 𝑊. On the other hand, 〈𝑋〉 ⊆ 〈𝑋〉 𝑊 by Lemma 2.5. Thus, 〈𝑋〉 = 〈𝑋〉 𝑊. 

(𝑖𝑖) ⟹ (𝑖). Suppose that 〈𝑋〉 = 〈𝑋〉 𝑊. Since 𝑋 ⊆ 〈𝑋〉, then 𝑋 ⊆ 〈𝑋〉 𝑊. 

According to the last theorem, we can form the following corollary. 

Corollary 2.7. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. The 

following hold: 

i. If 𝑉 = 〈𝑋〉 𝑊, then 𝑉 = 〈𝑋〉. 

ii. 〈𝑋〉 𝑊 is the smallest subspace in 𝑉 containing 𝑋 if and only if 〈𝑋〉 = 〈𝑋〉 𝑊. 

iii. 〈𝑋〉 𝑊 ⊊ 〈𝑋〉 if and only if 𝑋 ⊈ 〈𝑋〉 𝑊. 

Example. With ℝ as the field of real numbers, let 𝑋 = {(1,0), (0,1)} be a subset of the vector space ℝ2 

over ℝ. It is clear that 〈𝑋〉 𝑊 ≠ 〈𝑋〉 and 𝑋 ⊈ 〈𝑋〉 𝑊 where 〈𝑋〉 𝑊 = {(𝑥,−𝑥); 𝑥 ∈ ℝ} and 〈𝑋〉 = ℝ2. 

Theorem 2.8. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. Then, the 

following are equivalent: 

i. 𝑋 ⊈ 〈𝑋〉 𝑊. 

ii. There exists an element 𝑣1 ∈ 𝑋  such that for any subset {𝑣1, 𝑣2, … , 𝑣𝑛}  of 𝑋  and elements 

𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 for which 𝑣1 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  yields that ∑ 𝛼𝑖𝑛

𝑖=1 = 1. 

iii. 〈𝑋〉 ≠ 〈𝑋〉 𝑊. 

proof. (𝑖) ⟹ (𝑖𝑖). Suppose that 𝑋 ⊈ 〈𝑋〉 𝑊, then there exists an element 𝑣1 ∈ 𝑋 such that 𝑣1 ∉ 〈𝑋〉 𝑊, 

i.e., for any subset {𝑣1,𝑣2, … , 𝑣𝑛}  of 𝑋  and elements 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹  for which 𝑣1 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  
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yields that 𝑏 = ∑ 𝛼𝑖𝑛
𝑖=1 ≠ 0. We suppose that 𝑏 ≠ 1, i.e., 1 − 𝑏 ≠ 0, then 

𝑣1 − 𝑏𝑣1 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1 − 𝑏𝑣1 = ∑ 𝛼𝑖𝑐𝑖𝑛

𝑖=1   

where 𝑐1, 𝑐2, … , 𝑐𝑛 ∈ 𝐹, with 𝑐1 = 𝛼1 − 𝑏 and 𝑐𝑖 = 𝛼𝑖 for 2 ≤ 𝑖 ≤ 𝑛. Therefore: 

𝑣1 = ∑ [(1 − 𝑏)−1𝑐𝑖]𝑣𝑖𝑛
𝑖=1   

and 

∑ (1 − 𝑏)−1𝑐𝑖𝑛
𝑖=1 = (1 − 𝑏)−1 ∑ 𝑐𝑖𝑛

𝑖=1 = (1 − 𝑏)−1[ ∑ 𝛼𝑖𝑛
𝑖=1 − 𝑏 ] = 0  

which means that 𝑣1 ∈ 〈𝑋〉 𝑊, a contradiction. Therefore, 𝑏 = ∑ 𝛼𝑖𝑛
𝑖=1 = 1. 

(𝑖𝑖) ⟹ (𝑖). Obvious. 
(𝑖) ⇔ (𝑖𝑖𝑖). Direct by Theorem 2.6. 

According to the last theorem, we can form the following corollary. 

Corollary 2.9. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. If 𝑋 is an 

independent subset of 𝑉, then 𝑋 ⊈ 〈𝑋〉 𝑊 and 〈𝑋〉 ≠ 〈𝑋〉 𝑊, i.e., 〈𝑋〉 𝑊 ⊊ 〈𝑋〉. 

Theorem 2.10. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉 where 

0 ∉ 𝑋. Then, the following are equivalent: 

i. 𝑉 = 〈𝑋〉. 

ii. 𝑉 = 〈𝑋 ∪ {0}〉 𝑊. 

proof. (𝑖) ⟹ (𝑖𝑖). Suppose that 𝑉 = 〈𝑋〉, then for any element 𝑣 ∈ 𝑉 there exist distinct elements 

𝑣1, 𝑣2, … , 𝑣𝑛  of 𝑋  and elements 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹  such that 𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1 . Suppose that 𝑣𝑛+1 = 0 

and 𝛼𝑛+1 = −∑ 𝛼𝑖𝑛
𝑖=1 , then 𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛+1

𝑖=1  and ∑ 𝛼𝑖𝑛+1
𝑖=1 = 0. Therefore, 𝑉 = 〈𝑋 ∪ {0}〉 𝑊. 

(𝑖𝑖) ⟹ (𝑖). Suppose that 𝑉 = 〈𝑋 ∪ {0}〉 𝑊, then 𝑉 = 〈𝑋 ∪ {0}〉 by Corollary 2.7. Therefore, 𝑉 = 〈𝑋〉. 

Corollary 2.11. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. If 0 ∈ 𝑋, 

then the following are equivalent: 

i. 𝑉 = 〈𝑋〉. 

ii. 𝑉 = 〈𝑋〉 𝑊. 

Lemma 2.12. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 = {𝑣𝑗}𝑗∈𝐽 be a non-empty subset of 𝑉. The 

following hold: 

i. 〈𝑋〉 𝑊 = 〈{𝑣𝑗 − 𝑢}𝑗∈𝐽〉 𝑊 for any element 𝑢 ∈ 𝑉. 

ii. If 𝑢 ∈ 𝑉 can be expressed as a linear combination of elements of 𝑋 by the form 𝑢 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  

where 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 such that ∑ 𝛼𝑖𝑛
𝑖=1 = 1, then {𝑣𝑗 − 𝑢}𝑗∈𝐽 ⊆ 〈𝑋〉 𝑊. 

proof. 

161 



Weak Linear Independence of Vector Spaces 

i. Let 𝑢 ∈ 𝑉 and let 𝑣 ∈ 〈𝑋〉 𝑊, then there exist distinct elements 𝑣1,𝑣2, … , 𝑣𝑛 of 𝑋 and elements 

𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 such that 𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  and ∑ 𝛼𝑖𝑛

𝑖=1 = 0. Then, 

𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1 − 0.𝑢 = ∑ 𝛼𝑖(𝑣𝑖 − 𝑢)𝑛

𝑖=1  . 

Thus, 〈𝑋〉 𝑊 ⊆ 〈{𝑣𝑗 − 𝑢}𝑗∈𝐽〉 𝑊. 

Let 𝑤 ∈ 〈{𝑣𝑗 − 𝑢}𝑗∈𝐽〉 𝑊 then there exist distinct elements 𝑣i1 − 𝑢, 𝑣i2 − 𝑢, … , 𝑣𝑖𝑚 − 𝑢 of {𝑣𝑗 − 𝑢}𝑗∈𝐽 

and elements 𝛽1,𝛽2, … ,𝛽𝑚 ∈ 𝐹 such that 𝑤 = ∑ 𝛽𝑗(𝑣𝑖𝑗 − 𝑢)𝑚
𝑗=1  and ∑ 𝛽𝑗𝑚

𝑗=1 = 0. Then, 

𝑤 = 𝑤 = ∑ 𝛽𝑗(𝑣𝑖𝑗 − 𝑢)𝑚
𝑗=1 = ∑ 𝛽𝑗𝑣𝑖𝑗𝑚

𝑗=1 − (∑ 𝛽𝑗𝑚
𝑗=1 ).𝑢 = ∑ 𝛽𝑗𝑣𝑖𝑗𝑚

𝑗=1   

Thus, 〈{𝑣𝑗 − 𝑢}𝑗∈𝐽〉 𝑊 ⊆ 〈𝑋〉 𝑊. Therefore, 〈𝑋〉 𝑊 = 〈{𝑣𝑗 − 𝑢}𝑗∈𝐽〉 𝑊. 

ii. Obvious. 

Lemma 2.13. Let 𝑉 be a vector space over a field 𝐹 and 𝑋,𝑌 are non-empty subsets of 𝑉. The 

following hold: 

i. If 𝑋 ⊆ 𝑌, then 〈𝑋〉 𝑊 ⊆ 〈𝑌〉 𝑊. 

ii. If 𝑋 ⊆ 〈𝑌〉 𝑊, then 〈𝑋〉 𝑊 ⊆ 〈𝑌〉 𝑊 and 〈𝑋〉 ⊆ 〈𝑌〉 𝑊. 

iii. If 𝑋 ⊆ 〈𝑌〉 𝑊 and 𝑌 ⊆ 〈𝑋〉 𝑊, then 〈𝑋〉 𝑊 = 〈𝑌〉 𝑊 and 〈𝑋〉 = 〈𝑌〉. 

proof. Obvious. 

Lemma 2.14. Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be a proper subspace of 𝑉. Suppose that 

𝑋 = {𝑣𝑗}𝑗∈𝐽 is a subset of 𝑉 such that 𝑋 ⊈ 𝑈 and 𝑈 = 〈𝑋〉 𝑊. The following hold: 

i. 𝑣𝑗 ∉ 𝑈 for any 𝑗 ∈ 𝐽. 

ii. If 𝑌 ⊆ 𝑋 such that 𝑈 = 〈𝑌〉 𝑊, then 𝑌 ⊈ 𝑈. 

iii. 𝑈 is a maximal subspace of 〈𝑋〉. 

proof. 

i. Suppose that there exists 𝑣 ∈ 𝑋 such that 𝑣 ∈ 𝑈. Then, 𝑢𝑗 = 𝑣𝑗 − 𝑣 ∈ 𝑈 for any 𝑗 ∈ 𝐽 by Lemma 

2.12. Thus, 𝑣𝑗 = 𝑢𝑗 + 𝑣 ∈ 𝑈 for any 𝑗 ∈ 𝐽, a contradiction. Therefore, 𝑣𝑗 ∉ 𝑈 for any 𝑗 ∈ 𝐽. 

ii. Direct by (i). 

iii. Suppose that 𝑋 ⊈ 𝑈 and 𝑈 = 〈𝑋〉 𝑊, then 𝑈 ⊊ 〈𝑋〉 by Corollary 2.7, i.e., 𝑈 is a proper subspace 

of 〈𝑋〉. We Suppose that 𝑈 is not a maximal subspace of 〈𝑋〉, then there exists a proper subspace 𝑊 

of 〈𝑋〉 such that 𝑈 ⊊ 𝑊 ⊊ 〈𝑋〉. Since 𝑊 is a proper subspace of 〈𝑋〉, there exists an element 𝑣 ∈ 〈𝑋〉 

such that 𝑣 ∉ 𝑊. Since 𝑈 ⊊ 𝑊, the element 𝑣 is expressed as a linear combination of elements of 𝑋 

by the form 𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  where 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 such that 𝛼 = ∑ 𝛼𝑖𝑛

𝑖=1 ≠ 0. Then, ∑ 𝛼−1𝛼𝑖𝑛
𝑖=1 =

1. On other hand, since 𝑈 ⊊ 𝑊, there exists an element 𝑤 ∈ 𝑊 such that 𝑤 ∉ 𝑈. Since 𝑊 ⊊ 〈𝑋〉, the 
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element 𝑤 is expressed as a linear combination of elements of 𝑋 by the form 𝑤 = ∑ 𝛽𝑖𝑤𝑖𝑚
𝑖=1  where 

𝛽1,𝛽2, … ,𝛽𝑚 ∈ 𝐹 such that 𝛽 = ∑ 𝛽𝑖𝑚
𝑖=1 ≠ 0. Then, ∑ 𝛽−1𝛽𝑖𝑚

𝑖=1 = 1. Obviously, 

𝑢 = 𝛼−1𝑣 − 𝛽−1𝑤 = ∑ (𝛼−1𝛼𝑖)𝑣𝑖𝑛
𝑖=1 − ∑ (𝛽−1𝛽𝑖)𝑤𝑖𝑚

𝑖=1 ∈ 𝑈 ⊊ 𝑊. 

Then, 𝑣 = 𝛼𝑢 + 𝛼𝛽−1𝑤 ∈ 𝑊, a contradiction. Therefore, 𝑈 is a maximal subspace of 〈𝑋〉. 

Lemma 2.15. Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be a proper subspace of 𝑉. Suppose that 

𝑋 = {𝑣𝑗}𝑗∈𝐽 is a subset of 𝑉 such that 𝑋 ⊈ 𝑈 and 〈𝑋〉 𝑊 ⊆ 𝑈. The following hold: 

i. 𝑋 ⊈ 〈𝑋〉 𝑊. 

ii. 𝑣𝑗 ∉ 𝑈 for any 𝑗 ∈ 𝐽. 

proof. 

i. Suppose that 𝑋 ⊆ 〈𝑋〉 𝑊, then 𝑋 ⊆ 𝑈 since 〈𝑋〉 𝑊 ⊆ 𝑈, a contradiction. Therefore, 𝑋 ⊈ 〈𝑋〉 𝑊. 

ii. Suppose that there exists 𝑣 ∈ 𝑋  such that 𝑣 ∈ 𝑈 . Since 𝑢𝑗 = 𝑣𝑗 − 𝑣 ∈ 〈𝑋〉 𝑊  for any 𝑗 ∈ 𝐽  by 

Lemma 2.12 and 〈𝑋〉 𝑊 ⊆ 𝑈, 𝑢𝑗 = 𝑣𝑗 − 𝑣 ∈ 𝑈. Thus, 𝑣𝑗 = 𝑢𝑗 + 𝑣 ∈ 𝑈 for any 𝑗 ∈ 𝐽, a contradiction. 

Therefore, 𝑣𝑗 ∉ 𝑈 for any 𝑗 ∈ 𝐽. 

A minimal weakly generated set of vector space is one of the important subsets of vector space as we 

will show later, and it is defined as the following. 

Definition 2.16. Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be a subspace of 𝑉. Suppose that 𝑋 is a 

non-empty subset of 𝑉. We say that 𝑋 is a minimal weakly generated set of 𝑈 if it satisfies the 

following: 

i. 𝑈 = 〈𝑋〉 𝑊. 

ii. No proper subset of 𝑋 generates 𝑈 weakly. 

More precisely, 𝑈 = 〈𝑋〉 𝑊 and 𝑈 ≠ 〈𝑋\{𝑣}〉 𝑊 for all 𝑣 ∈ 𝑋. 

3. Weak Linear Independence and Full linear Dependence 

In this section, we study a special type of non-empty subsets of a vector space over a field which is 

considered a generalization of linearly independent subsets. We start with the following definition. 

Definition 3.1. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. We say that 

𝑋 is weakly linearly independent or (weakly independent for short) if for any subset {𝑣1,𝑣2, … , 𝑣𝑛} of 𝑋 

and any elements 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 such that ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1 = 0 and ∑ 𝛼𝑖𝑛

𝑖=1 = 0, then 𝛼1 = 𝛼2 = ⋯ =

𝛼𝑛 = 0. If 𝑋 is not weakly independent, then we say that 𝑋 is fully linearly dependent or (fully 

dependent for short). 
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Example. With ℝ  as the field of real numbers, let 𝑋 = {(1,0), (0,1), (2,3)}  and 

𝑌 = {(1,0), (0,1), (2,−1)} are subsets of the vector space ℝ2 over ℝ. It is easy to show that 𝑋 is 

weakly independent while 𝑌 is fully dependent. 

Lemma 3.2. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. The following 

hold: 

i. 𝑋 is weakly independent if and only if any subset of 𝑋 is weakly independent. 

ii. 𝑋 is fully dependent if and only if there exists a fully dependent finite subset of 𝑋. 

iii. If 𝑋 is independent, then 𝑋 is weakly independent. 

iv. If 𝑋 is independent, then for any 𝑣 ∈ 𝑉 the set 𝑌 = {𝑣𝑗 − 𝑣}𝑗∈𝐽 is weakly independent. 

v. If 𝑋 is fully dependent, then 𝑋 is dependent. 

vi. If 𝑋 is dependent, then 𝑋 is either weakly independent or fully dependent. 

proof. Obvious. 

Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. It is known that, if 

0 ∈ 𝑋, then 𝑋 is dependent [1]. The following lemma shows the necessary and sufficient condition for 𝑋 

to be independent. 

Lemma 3.3. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉, such that 

0 ∉ 𝑋. Then, the following are equivalent: 

i. 𝑋 is independent. 

ii. 𝑋 ∪ {0} is weakly independent. 

proof. (𝑖) ⟹ (𝑖𝑖). Suppose that 𝑋  is independent, then any finite subset 𝑌  of 𝑋  is independent. 

Moreover, 𝑌 is weakly independent by Lemma 3.2. With 𝑣0 = 0 ∈ 𝑉, let {𝑣1, 𝑣2, … , 𝑣𝑛} be a subset of 

𝑋  and 𝛼0,𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹  such that ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=0 = 0  and ∑ 𝛼𝑖𝑛

𝑖=0 = 0 , then ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1 = 0  and 

∑ 𝛼𝑖𝑛
𝑖=1 = 0 . Since 𝑋  is independent and 𝛼0 = −∑ 𝛼𝑖𝑛

𝑖=1 , then 𝛼0 = 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑛 = 0 . 

Therefore, 𝑋 ∪ {0} is weakly independent.  

(𝑖𝑖) ⟹ (𝑖). Suppose that 𝑋 ∪ {0} is weakly independent and let 𝑌 = {𝑣1, 𝑣2, … , 𝑣𝑛} be a subset of 

𝑋 ∪ {0}. We recognize two cases: 

– 0 ∉ 𝑌, then 𝑌 ⊆ 𝑋, and 𝑌,𝑌 ∪ {0} are weakly independent by Lemma 3.2. We suppose that 𝑌 is 

dependent, then there exist 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 not all zero in 𝐹 such that ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1 = 0. With 𝑣0 = 0 

and 𝛼0 = −∑ 𝛼𝑖𝑛
𝑖=1  we find that ∑ 𝛼𝑖𝑛

𝑖=0 = 0 and ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=0 = 0. Since 𝛼0,𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 not all 

zero in 𝐹, 𝑌 ∪ {0} is fully dependent, a contradiction. Thus, 𝑌 is independent. 

– 0 ∈ 𝑌, then 𝑌\{0} ⊆ 𝑋, and 𝑌,𝑌\{0} are weakly independent by Lemma 3.2. We suppose that 𝑌\{0} 

164 



Weak Linear Independence of Vector Spaces 

is dependent, then with 𝑣1 = 0 there exist 𝛼2,𝛼3, … ,𝛼𝑛 ∈ 𝐹 not all zero in 𝐹 such that ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=2 = 0. 

Let 𝛼1 = −∑ 𝛼𝑖𝑛
𝑖=2 , then ∑ 𝛼𝑖𝑣𝑖𝑛

𝑖=1 = 0 and ∑ 𝛼𝑖𝑛
𝑖=1 = 0. Since 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 not all zero in 𝐹, 𝑌 

is fully dependent, a contradiction. Thus, 𝑌\{0} is independent. 

Therefore, every finite subset of 𝑋 is independent, i.e., 𝑋 is independent. 

According to the last lemma, we can formulate the following corollary. 

Corollary 3.4. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉, such that 

0 ∉ 𝑋. Then, the following are equivalent: 

i. 𝑋 is dependent. 

ii. 𝑋 ∪ {0} is fully dependent. 

Lemma 3.5. Let 𝑉 be a vector space over a field 𝐹. The following hold: 

i. Any subset of 𝑉 consisting of two elements is weakly independent. 

ii. {0} is weakly independent. 

iii. If 𝑣 ∈ 𝑉 is a non-zero element, then {0, 𝑣} is weakly independent. 

proof. Obvious. 

Two equivalent conditions for weak independence are presented by the following theorem. 

Theorem 3.6. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. Then, the 

following are equivalent: 

i. 𝑋 is weakly independent. 

ii. Zero of 𝑉 is expressed in a unique way as a weak linear combination of distinct elements of 𝑋. 

iii. Every element of 〈𝑋〉 𝑊 is expressed in a unique way as a weak linear combination of elements of 𝑋. 

proof. (𝑖) ⟹ (𝑖𝑖). Obvious. 

(𝑖𝑖) ⟹ (𝑖𝑖𝑖). Let 𝑣 ∈ 〈𝑋〉 𝑊, then there exist distinct elements 𝑣1, 𝑣2, … , 𝑣𝑛 of 𝑋 and 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 

such that 𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  and ∑ 𝛼𝑖 = 0𝑛

𝑖=1 . Let 𝛽1,𝛽2, … ,𝛽𝑛 ∈ 𝐹  such that 𝑣 = ∑ 𝛽𝑖𝑣𝑖𝑛
𝑖=1  and 

∑ 𝛽𝑖 = 0𝑛
𝑖=1 . Then, 

∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1 − ∑ 𝛽𝑖𝑣𝑖𝑛

𝑖=1 = ∑ (𝛼𝑖 − 𝛽𝑖)𝑣𝑖𝑛
𝑖=1 = 0  

∑ 𝛼𝑖𝑛
𝑖=1 − ∑ 𝛽𝑖𝑛

𝑖=1 = ∑ (𝛼𝑖 − 𝛽𝑖)𝑛
𝑖=1 = 0  

Thus, 𝛼𝑖 − 𝛽𝑖 = 0 for every 1 ≤ 𝑖 ≤ 𝑛, by assumption. Therefore, 𝛼𝑖 = 𝛽𝑖 for every 1 ≤ 𝑖 ≤ 𝑛, i.e., 𝑣 

is expressed in a unique way as a weak linear combination of elements of 𝑋. 

(𝑖𝑖𝑖) ⟹ (𝑖) . Let 𝑣1, 𝑣2, … , 𝑣𝑛  any distinct elements of 𝑋  and 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹  such that 𝑣 =

∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  and ∑ 𝛼𝑖 = 0𝑛

𝑖=1 . Since 0 ∈ 〈𝑋〉 𝑊, then 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑛 = 0 by assumption. Thus, 𝑋 is 
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weakly independent. 

Theorem 3.7. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. The following 

hold: 

i. If 𝑋 is weakly independent and non-independent, then 𝑋 ⊆ 〈𝑋〉 𝑊 and 〈𝑋〉 = 〈𝑋〉 𝑊. 

ii. If 𝑋 is dependent such that 𝑋 ⊈ 〈𝑋〉 𝑊, then 𝑋 is fully dependent. 

proof. 

i. Suppose that 𝑋 is weakly independent and non-independent. We recognize two cases: 

– 0 ∈ 𝑋 . Then for every 𝑣 ∈ 𝑋\{0}  we have 𝑣 = −1.0 + 1. 𝑣 , i.e., 𝑣 ∈ 〈𝑋〉 𝑊 . Since 0 ∈ 𝑋 , 

𝑋 ⊆ 〈𝑋〉 𝑊. Thus, 〈𝑋〉 = 〈𝑋〉 𝑊 by Theorem 2.6. 

– 0 ∉ 𝑋. Since 𝑋  is non-independent, there exists a dependent finite subset of 𝑋  let it be 𝑌 =

{𝑣1, 𝑣2, … , 𝑣𝑛} , and by Lemma 3.2 𝑌  is weakly independent. Since 𝑌  is dependent, there exist 

𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹  not all zero in 𝐹  such that ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1 = 0. 𝛽 = ∑ 𝛼𝑖𝑛

𝑖=1 ≠ 0 since 𝑌  is weakly 

independent. Hence, ∑ (−𝛽)−1𝛼𝑖𝑛
𝑖=1 = −1 and ∑ (𝛽)−1𝛼𝑖𝑣𝑖𝑛

𝑖=1 = 0. Moreover, for any 𝑣 ∈ 𝑋 , we 

have ∑ (−𝛽)−1𝛼𝑖𝑛
𝑖=1 + 1 = 0  and 𝑣 = ∑ (𝛽)−1𝛼𝑖𝑣𝑖𝑛

𝑖=1 + 𝑣 , i.e., 𝑣 ∈ 〈𝑋〉 𝑊 , then 𝑋 ⊆ 〈𝑋〉 𝑊 .Thus, 

〈𝑋〉 = 〈𝑋〉 𝑊 by Theorem 2.6. 

ii. Direct by (i). 

Theorem 3.8. Let 𝑉  be a vector space over a field 𝐹  and 𝑋  be a weakly independent and 

non-independent subset of 𝑉. If there exists an element 𝑣 ∈ 𝑋 can be expressed as a linear combination 

of elements of 𝑋\{𝑣}, then 𝑋\{𝑣} is independent. 

proof. Suppose that 𝑋 is weakly independent and non-independent, then 𝑋 ⊆ 〈𝑋〉 𝑊 and 〈𝑋〉 = 〈𝑋〉 𝑊 

by Theorem 3.7. Moreover, there exists an element 𝑣 ∈ 𝑋 can be expressed as a linear combination of 

elements of 𝑌 = 𝑋\{𝑣}, then 𝑣 ∈ 〈𝑌〉 and 〈𝑋〉 = 〈𝑌〉. On the other hand by Lemma 3.2, 𝑌 is weakly 

independent. We suppose that 𝑌 is dependent, then 𝑌 ⊆ 〈𝑌〉 𝑊 and 〈𝑌〉 = 〈𝑌〉 𝑊 by Theorem 3.7. Thus, 

〈𝑋〉 𝑊 = 〈𝑌〉 𝑊  and 𝑋 ⊆ 〈𝑌〉 𝑊 . Let 𝑣1  be another element of 𝑋 , then 𝑢 = 𝑣 − 𝑣1 ∈ 〈𝑋〉 𝑊 . Since 

〈𝑋〉 𝑊 = 〈𝑌〉 𝑊, 𝑢 can be expressed as a weak linear combination of elements of 𝑌, and 𝑣 not one of 

these elements. Thus, the element 𝑢 from 〈𝑋〉 𝑊 can be expressed as a weak linear combination of 

elements of 𝑋 as two different ways, this is contradictory to Theorem 3.6. Therefore, 𝑌 = 𝑋\{𝑣} is 

independent. 

Now, we state the basic properties of the fully dependent set, we start with the following theorem. 

Theorem 3.9. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. Then, the 

following are equivalent: 
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i. 𝑋 is fully dependent. 

ii. There exists an element 𝑣 ∈ 𝑋 can be expressed as a linear combination of elements of 𝑋\{𝑣} by 

the form 𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  where 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 such that ∑ 𝛼𝑖𝑛

𝑖=1 = 1. 

proof. (𝑖) ⟹ (𝑖𝑖). Suppose that 𝑋 is fully dependent, then there exists a fully dependent finite subset of 

𝑋, let it be 𝑌 = {𝑣1,𝑣2, … , 𝑣𝑛}. Since 𝑌 is fully dependent, there exist 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 not all zero in 

𝐹 such that ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1 = 0 and ∑ 𝛼𝑖𝑛

𝑖=1 = 0. Suppose that 𝛼1 ≠ 0, then 𝑣1 = ∑ (−𝛼1−1𝛼𝑖) 𝑣𝑖𝑛
𝑖=2  and 

∑ (−𝛼1−1𝛼𝑖)𝑛
𝑖=2 = 1. 

(𝑖) ⟹ (𝑖𝑖). Obvious. 

According to the last theorem, we can form the following corollary. 

Corollary 3.10. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. Then, the 

following are equivalent: 

i. 𝑋 is weakly independent and non-independent. 

ii. For each element 𝑣 from 𝑋 that is expressed as a linear combination of elements of 𝑋\{𝑣} by the 

form 𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  where 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹, then ∑ 𝛼𝑖𝑛

𝑖=1 ≠ 1. 

Theorem 3.11. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a fully dependent subset of 𝑉. If 𝑋 

generates 𝑉 weakly, then there exists an element 𝑢 ∈ 𝑋 such that 𝑋\{𝑢} generates 𝑉 weakly. 

proof. Since 𝑋 is fully dependent. Then, by Theorem 3.9 there exists an element 𝑢 ∈ 𝑋 can be expressed 

as a linear combination of elements of 𝑋\{𝑢} by the form 𝑢 = ∑ 𝛽𝑖𝑢𝑖𝑚
𝑖=1  where 𝛽1,𝛽2, … ,𝛽𝑚 ∈ 𝐹 such 

that ∑ 𝛽𝑖𝑚
𝑖=1 = 1. Suppose that 𝑉 = 〈𝑋〉 𝑊, then for every 𝑣 ∈ 𝑉 there exist a subset 𝑌 = {𝑣1,𝑣2, … , 𝑣𝑛} 

of 𝑋 and 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 such that 𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  and ∑ 𝛼𝑖 = 0𝑛

𝑖=1 . We recognize two cases: 

– 𝑢 ∉ 𝑌. Then, 𝑣 ∈ 〈𝑋\{𝑢}〉 𝑊. 

– 𝑢 ∈ 𝑌. Suppose that 𝑢 = 𝑣1. Then, 𝑣 = 𝛼1 ∑ 𝛽𝑖𝑢𝑖𝑚
𝑖=1 + ∑ 𝛼𝑖𝑣𝑖𝑛

𝑖=2 . Since ∑ 𝛽𝑖𝑚
𝑖=1 = 1 and ∑ 𝛼𝑖 =𝑛

𝑖=1

0, 𝛼1 ∑ 𝛽𝑖𝑚
𝑖=1 + ∑ 𝛼𝑖𝑛

𝑖=2 = 0.Thus, 𝑣 ∈ 〈𝑋\{𝑢}〉 𝑊. 

Therefore, 𝑉 = 〈𝑋\{𝑢}〉 𝑊. 

We state a special type of weakly independent sets and its properties, we start with the following 

definition. 
Definition 3.12. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a weakly independent subset of 𝑉. 

We say that 𝑋 is maximal weakly linearly independent or (maximal weakly independent for short) if 

𝑋 ∪ {𝑣} is fully dependent for any 𝑣 ∈ 𝑉\𝑋. 

Lemma 3.13. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a maximal weakly independent subset of 

𝑉. The following hold: 
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i. 𝑋 is dependent. 

ii. 𝑋 ⊆ 〈𝑋〉 𝑊 and 〈𝑋〉 = 〈𝑋〉 𝑊. 

proof. 

i. Suppose that 𝑋 is maximal weakly independent. We suppose that 𝑋 is independent, then 0 ∉ 𝑋. 

Thus, 𝑋 ∪ {0} is weakly independent by Lemma 3.3, a contradiction. Therefore, 𝑋 is dependent. 

ii. Since 𝑋 is maximal weakly independent, 𝑋 is weakly independent and non-independent by (i). Thus, 

𝑋 ⊆ 〈𝑋〉 𝑊 and 〈𝑋〉 = 〈𝑋〉 𝑊 by Theorem 3.7. 

Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. It is known that, if 𝑋 

is maximal independent, then 𝑋 ∪ {𝑣} is dependent for any 𝑣 ∈ 𝑉\𝑋 [1]. The following lemma shows 

the necessary and sufficient condition for 𝑋 to be maximal independent. 

Lemma 3.14. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉, such that 

0 ∉ 𝑋. Then, the following are equivalent: 

i. 𝑋 is maximal independent. 

ii. 𝑋 ∪ {0} is maximal weakly independent. 

proof. (𝑖) ⟹ (𝑖𝑖). Suppose that 𝑋 is maximal independent, then 𝑋 is independent. Thus, 𝑋 ∪ {0} is 

weakly independent by Lemma 3.3. On the other hand, since 𝑋 is maximal independent, 𝑋 ∪ {𝑣} is 

dependent for any 𝑣 ∈ 𝑉\(𝑋 ∪ {0}). Thus, 𝑋 ∪ {𝑣, 0} is fully dependent by Corollary 3.4. Therefore, 

𝑋 ∪ {0} is maximal weakly independent. 

(𝑖𝑖) ⟹ (𝑖). Suppose that 𝑋 ∪ {0} is maximal weakly independent, then 𝑋 ∪ {0} is weakly independent. 

Thus, 𝑋 is independent by Lemma 3.3. We suppose that 𝑋 is not maximal independent, then there exists 

a non-zero element 𝑣 ∈ 𝑉\𝑋 such that 𝑋 ∪ {𝑣} is independent, then 𝑋 ∪ {𝑣, 0} is weakly independent 

by Lemma 3.3, a contradiction. Thus, 𝑋 is maximal independent. 

Theorem 3.15. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a maximal weakly independent subset 

of 𝑉. The following hold: 

i. There exists an element 𝑣 ∈ 𝑋 such that 𝑋\{𝑣} is maximal independent. 

ii. 𝑉 = 〈𝑋〉 and 𝑉 = 〈𝑋〉 𝑊. 

proof. 

i. Suppose that 𝑋 is maximal weakly independent, then 𝑋 is weakly independent. Moreover, 𝑋 is 

dependent by Lemma 3.13. Then, there exists an element 𝑢0 ∈ 𝑋  can be expressed as a linear 
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combination of elements of 𝑌 = 𝑋\{𝑢0} , i.e., there exist distinct 𝑣1, 𝑣2, … , 𝑣𝑛  of 𝑌  and 

𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹  such that 𝑢0 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1 . In addition, 𝑌  is independent by Theorem 3.8. We 

suppose that 𝑌 is not maximal independent, then there exists an element 𝑢1 ∈ 𝑉\𝑋 such that 𝑌 ∪ {𝑢1} 

is independent. On other hand, since 𝑋 is maximal weakly independent, 𝑋 ∪ {𝑢1} is fully dependent, 

then there exists a fully dependent finite subset of 𝑋 ∪ {𝑢1} by Lemma 3.2, let it be 𝑍. It is clear that 

𝑢0,𝑢1 ∈ 𝑍, because if 𝑢1 ∉ 𝑍, then 𝑍 will be a subset of 𝑋 and it will be weakly independent by 

Lemma 3.2, and if 𝑢0 ∉ 𝑍, then 𝑍 will be a subset of 𝑌⋃{𝑢1} and it will be independent. Suppose that 

𝑍 = {𝑢0,𝑢1,𝑢2, … ,𝑢𝑚}. Since 𝑍 is fully dependent, there exist 𝛽0,𝛽1,𝛽2, … ,𝛽𝑚 ∈ 𝐹 not all zero in 𝐹 

such that ∑ 𝛽𝑖𝑢𝑖𝑚
𝑖=0 = 0  and ∑ 𝛽𝑖𝑚

𝑖=0 = 0 . 𝛽0 ≠ 0 , 𝛽1 ≠ 0  since 𝑌 ∪ {𝑢1}  is independent, 𝑋  is 

weakly independent and 𝛽0,𝛽1,𝛽2, … ,𝛽𝑚 ∈ 𝐹  not all zero in 𝐹 . Thus, 𝑢1 = ∑ (−𝛽1−1𝛽𝑖)𝑢𝑖𝑚
𝑖=2 +

∑ (−𝛽1−1𝛽0𝛼𝑖)𝑣𝑖𝑛
𝑖=1 , i.e., 𝑢1 can be expressed as a linear combination of elements of 𝑌, a contradiction. 

Therefore, 𝑋\{𝑢0} is maximal independent. 

ii. Suppose that 𝑋 is maximal weakly independent, then there exists an element 𝑣 ∈ 𝑋 such that 

𝑌 = 𝑋\{𝑣} is maximal independent by (i). Since 𝑌 is maximal independent, 𝑉 = 〈𝑌〉. On the other 

hand, 𝑉 = 〈𝑋〉 since 𝑌 ⊂ 𝑋. Thus, 𝑉 = 〈𝑋〉 𝑊 by Lemma 3.13. 

Theorem 3.16. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. Suppose that 

the element 𝑢0 ∈ 〈𝑋〉\𝑋  can be expressed as a linear combination of elements of 𝑋  by the form 

𝑢0 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  where 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 such that ∑ 𝛼𝑖𝑛

𝑖=1 ≠ 1. The following hold: 

i. If 𝑋 is independent, then 𝑋 ∪ {𝑢0} is weakly independent. 

ii. If 𝑋 is maximal independent, then 𝑋 ∪ {𝑢0} is maximal weakly independent. 

proof. 

i. Suppose that 𝑋 is independent and the element 𝑢0 ∈ 〈𝑋〉\𝑋 can be expressed as a linear combination 

of elements of 𝑋 by the form 𝑢0 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1 , where 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 such that ∑ 𝛼𝑖𝑛

𝑖=1 ≠ 1. Since 

𝑋 is independent, this expression is unique. We supposed that 𝑋 ∪ {𝑢0} is not weakly independent, i.e., 

𝑋 ∪ {𝑢0} is fully dependent, then there exists a fully dependent finite subset of 𝑋 ∪ {𝑢0} by Lemma 3.2, 

let it be 𝑌. It is clear that 𝑢0 ∈ 𝑌, because if 𝑢0 ∉ 𝑌, then 𝑌 will be a subset of 𝑋 and it will be 

independent. Suppose that 𝑌 = {𝑢0,𝑢1,𝑢2, … ,𝑢𝑚} . Since 𝑌  is fully dependent, there exist 

𝛽0,𝛽1,𝛽2, … ,𝛽𝑚 ∈ 𝐹 not all zero in 𝐹 such that ∑ 𝛽𝑖𝑢𝑖𝑚
𝑖=0 = 0 and ∑ 𝛽𝑖𝑚

𝑖=0 = 0. 𝛽0 ≠ 0 since 𝑋 is 

independent and 𝛽0,𝛽1,𝛽2, … ,𝛽𝑚  not all zero in 𝐹 . Hence, 𝑢0 = ∑ [ (−𝛽0)−1𝛽𝑖  ]𝑢𝑖𝑚
𝑖=1  and 

∑ (−𝛽0)−1𝛽𝑖𝑚
𝑖=1 = 1, a contradiction. Therefore, 𝑋 ∪ {𝑢0} is weakly independent. 
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ii. Since 𝑋  is maximal independent, 𝑉 = 〈𝑋〉  and 𝑋  is independent. Thus, 𝑋 ∪ {𝑢0}  is weakly 

independent by (i). We supposed that 𝑋 ∪ {𝑢0} is not maximal weakly independent, then there exists an 

element 𝑣𝑛+1 from 𝑉 such that 𝑣𝑛+1 ∉ 𝑋 ∪ {𝑢0} and 𝑋 ∪ {𝑢0, 𝑣𝑛+1} is weakly independent. Since 

𝑢0 can be expressed as a linear combination of elements of 𝑋, 𝑢0 = ∑ 𝛼𝑖𝑣𝑖𝑛+1
𝑖=1  where 𝛼𝑛+1 = 0. Thus, 

𝑢0  can be expressed as a linear combination of elements of 𝑋 ∪ {𝑣𝑛+1} , then 𝑋 ∪ {𝑣𝑛+1}  is 

independent by Theorem 3.8, a contradiction. Therefore, 𝑋 ∪ {𝑢0} is maximal weakly independent. 

Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. It is known that, 𝑋 is a 

base of 𝑉 if and only if 𝑋 is maximal dependent [1]. Moreover, all bases of 𝑉 are equipotent [1]. 

Accordingly, we can prove the following theorem. 

Theorem 3.17. Let 𝑉 be a vector space over a field 𝐹, then all maximal weakly independent subsets of 

𝑉 are equipotent. 

proof. Suppose that 𝑋,𝑌 are maximal weakly independent subsets of 𝑉, then there exist elements 𝑣 ∈ 𝑋 

and 𝑢 ∈ 𝑌 such that 𝑋′ = 𝑋\{𝑣},𝑌′ = 𝑌\{𝑢} are maximal independent by Theorem 3.15. Thus, 𝑋′,𝑌′ 

are bases of 𝑉 and they are equipotent. Therefore, 𝑋,𝑌 are equipotent. 

Corollary 3.18. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a maximal weakly independent subset 

of 𝑉, then 𝑑𝑖𝑚𝐹𝑉 = 𝑛 if and only if 𝐶𝑎𝑟𝑑 𝑋 = 𝑛 + 1.  

4. Weak Base and Weak Dimension 

In this section, we study the concept of a weak base of a vector space over a field and its basic 

properties. We start with the following definition. 

Definition 4.1. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. We say that 

𝑋 is a weak base of 𝑉 if it satisfies the following: 

i. 𝑉 = 〈𝑋〉 𝑊. 

ii. 𝑋 is weakly independent. 

If 𝑋 is a weak base of 𝑉, then we call 𝐶𝑎𝑟𝑑 𝑋 a weak dimension of 𝑉 over 𝐹, and we denote it as 

𝑤.𝑑𝑖𝑚 𝐹𝑉. We say that 𝑉 is a finite weak dimensional vector space if 𝑋 is finite. 

Example. With ℝ as the field of real numbers, let 𝑋 = {(1,0), (0,1), (2,3)} be a subset of the vector 

space ℝ2 over ℝ. It is easy to show that 𝑋 is a weak base of ℝ2. Thus, 𝑤.𝑑𝑖𝑚 ℝℝ2 = 3. 

Example. With ℝ as the field of real numbers, let 𝑋 = {−1,1, 𝑥, 𝑥2, … , 𝑥𝑛, … } be a subset of the vector 

space of polynomials ℝ[𝑥] over ℝ. It is easy to show that 𝑋 is a weak base of ℝ[𝑥]. Thus, ℝ[𝑥] is an 

infinite weak dimensional vector space. 
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Lemma 4.2. Let 𝑉 be a vector space over a field 𝐹. The following hold: 

i. {0} is a weak base of the zero subspace and 𝑤.𝑑𝑖𝑚 𝐹{0} = 1. 

ii. If 𝑋 is a weak base of 𝑉, then 𝑋 is dependent and 𝑉 = 〈𝑋〉. 

iii. If 𝑉 ≠ {0} and 𝑋 is a weak base of 𝑉, then 𝑉 = 〈𝑋〉 and 𝑤.𝑑𝑖𝑚 𝐹𝑉 ≥ 2. 

proof. By Lemma 2.5, Corollary 2.9 and Lemma 3.5. 

Now, we state the basic properties of the weak base, we start with the following theorem. 

Theorem 4.3. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉. Then, the 

following are equivalent: 

i. 𝑋 is a weak base of 𝑉. 

ii. 𝑋 is a minimal weakly generated set of 𝑉. 

iii. 𝑋 is maximal weakly independent. 

iv. Every element of 𝑉 is expressed in a unique way as a weak linear combination of elements of 𝑋. 

proof. (𝑖) ⟹ (𝑖𝑖). Suppose that 𝑋 is a weak base of 𝑉, then 𝑋 is weakly independent. We suppose that 

𝑋 is not a minimal weakly generated set of 𝑉, then there exists 𝑣0 ∈ 𝑋 such that 𝑉 = 〈𝑋\{𝑣0}〉 𝑊. And 

since 𝑉 = 〈𝑋\{𝑣0}〉 by Theorem 2.6, then 𝑣0 can be expressed as a linear combination of elements of 

𝑋\{𝑣0}. Thus, 𝑋\{𝑣0} is independent by Theorem 3.8. Moreover, 𝑋\{𝑣0} ⊈ 𝑉 by Corollary 2.9, a 

contradiction. Therefore, 𝑋 is a minimal weakly generated set of 𝑉. 

(𝑖𝑖) ⟹ (𝑖𝑖𝑖). Suppose that 𝑋 is a minimal weakly generated set of 𝑉. Since 𝑋 ⊆ 𝑉 and 𝑉 = 〈𝑋〉 𝑊, 𝑋 

is dependent by Corollary 2.9. Moreover, 𝑉 = 〈𝑋〉  by Theorem 2.6. We suppose that 𝑋  is fully 

dependent, then there exists an element 𝑢 ∈ 𝑋 such that 𝑋\{𝑢} generates 𝑉 weakly by Theorem 3.11, a 

contradiction. Thus, 𝑋 is weakly independent. We suppose that 𝑋 is not maximal weakly independent, 

then there exists an element 𝑣 ∈ 𝑉\𝑋 such that 𝑋 ∪ {𝑣} weakly independent. Since 𝑣 ∈ 〈𝑋〉, 𝑣 can be 

expressed as a linear combination of elements of 𝑋 . Thus, 𝑋  is independent by Theorem 3.8, a 

contradiction. Therefore, 𝑋 is maximal weakly independent. 

(𝑖𝑖𝑖) ⟹ (𝑖𝑣). By Theorem 3.15 and Theorem 3.6. 

(𝑖𝑣) ⟹ (𝑖). It is clear that 𝑉 = 〈𝑋〉 𝑊 by assumption. Moreover, 𝑋 is weakly independent by Theorem 

3.6. Thus, 𝑋 is a weak base of 𝑉. 

It is known that every independent subset of vector space 𝑉 over a field 𝐹 can be expanded to a 

base of 𝑉 [1]. Moreover, every vector space over afield has a base [1]. Now, we will show that every 

vector space over afield has a weak base. We start with the following theorem, which shows that every 

weakly independent subset of 𝑉 can be expanded to a weak base of 𝑉. 
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Theorem 4.4. Let 𝑉 be a non-zero vector space over a field 𝐹. The following hold: 

i. If 𝑋 is a base of 𝑉 and 𝑣 ∈ 𝑉\𝑋 such that 𝑣 can be expressed as a linear combination of elements 

of 𝑋 by the form 𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  where 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 such that ∑ 𝛼𝑖𝑛

𝑖=1 ≠ 1, then 𝑋 ∪ {𝑣} is a 

weak base of 𝑉, i.e., every base of 𝑉 can be expanded to a weak base of 𝑉. 

ii. If 𝑋 is a weak base of 𝑉, then there exists an element 𝑣 ∈ 𝑋 such that 𝑋\{𝑣} is a base of 𝑉. 

iii. All weak bases of 𝑉 are equipotent. 

iv. Every weakly independent subset of 𝑉 can be expanded to a weak base of 𝑉. 

v. If 𝐾 is a subspace of 𝑉, then any weak base of 𝐾 can be expanded to a weak base of 𝑉. 

proof. 

i. Direct by Theorem 3.16 and Theorem 4.3. 

ii. Direct by Theorem 3.15 and Theorem 4.3, since every base of 𝑉 is maximal independent. 

iii. Direct by Theorem 3.17 and Theorem 4.3. 

iv. Let 𝑋 be a weakly independent subset of 𝑉, then we recognize two cases: 

– 𝑋 is independent, then 𝑋 can be expanded to a base of 𝑉, let it be 𝑌. On other hand, since 𝑌 is a 

base of 𝑉, it can be expanded to a weak base of 𝑉 by (i), i.e., 𝑋 can be expanded to a weak base of 𝑉. 

– 𝑋 is weakly independent and non-independent, then there exists an element 𝑣 ∈ 𝑋 can be expressed 

as a linear combination of elements of 𝑋\{𝑣}. Thus, there exist distinct elements 𝑣1,𝑣2, … , 𝑣𝑛 of 

𝑋\{𝑣}  and 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹  such that 𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1 . Then, ∑ 𝛼𝑖𝑛

𝑖=1 ≠ 1  by Corollary 3.10. 

Moreover, 𝑋\{𝑣} is independent by Theorem 3.8. Thus, 𝑋\{𝑣} can be expanded to a base of 𝑉, let it 

be 𝑌. Since 𝑌 is a base of 𝑉 and 𝑋\{𝑣} ⊆ 𝑌, then 𝑌 is maximal independent and 𝑣 ∉ 𝑌. Thus, 

𝑌 ∪ {𝑣} is maximal weakly independent by Theorem 3.16. Therefore, 𝑌 ∪ {𝑣} is a weak base of 𝑉 by 

Theorem 4.3 and 𝑋 ⊆ 𝑌 ∪ {𝑣}, i.e., 𝑋 can be expanded to a weak base of 𝑉. 

v. Direct by (iv) since any weak base of 𝐾 is a weakly independent subset of 𝑉. 

According to the last theorem, we can formulate the following corollary: 

Corollary 4.5. Every vector space over a field has a weak base. Moreover, If 𝑉 is vector space over a 

field F, then 𝑑𝑖𝑚𝐹𝑉 = 𝑛 if and only if 𝑤.𝑑𝑖𝑚𝐹𝑉 = 𝑛 + 1. 

Theorem 4.6. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a non-empty subset of 𝑉 such that 

0 ∉ 𝑋. Then, the following are equivalent: 

i. 𝑋 is a base of 𝑉. 

ii. 𝑋 ∪ {0} is a weak base of 𝑉. 
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proof. Direct by Lemma 3.14 and Theorem 4.3. 

Theorem 4.7. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 = {𝑣𝑗}𝑗∈𝐽 be a non-empty subset of 𝑉. 

Then, the following are equivalent: 

i. 𝑉 = 〈𝑋〉 𝑊. 

ii. 𝑋 contains a weak base of 𝑉. 

proof. (𝑖) ⟹ (𝑖𝑖). Suppose that 𝑉 = 〈𝑋〉 𝑊. If 𝑋 is weakly independent, then 𝑋 is a weak base of 𝑉. 

Suppose that 𝑋 is not weakly independent, and let 𝑢 ∈ 𝑋, then 𝑋′ = {𝑣𝑗 − 𝑢}𝑗∈𝐽 generates 𝑉 weakly 

by Lemma 2.12. Since 0 ∈ 𝑋′, 𝑉 = 〈𝑋′\{0}〉 by Theorem 2.10. Thus, 𝑋′\{0} contains a base of 𝑉, let 

it be 𝑌′ = {𝑣𝑖 − 𝑢}𝑖∈𝐼 where 𝐼 ⊂ 𝐽. 

Then, for any element 𝑣 ∈ 𝑉  there exist distinct elements 𝑣1 − 𝑢, 𝑣2 − 𝑢, … , 𝑣𝑛 − 𝑢  of 𝑌′  and 

𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹  such that 𝑣 = ∑ 𝛼𝑖(𝑣𝑖 − 𝑢)𝑛
𝑖=1 . Since 𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛

𝑖=1 − (∑ 𝛼𝑖𝑛
𝑖=1 )𝑢  and 𝛼 +

∑ 𝛼𝑖𝑛
𝑖=1 = 0  where 𝛼 = −∑ 𝛼𝑖𝑛

𝑖=1 , then 𝑌 = {𝑣𝑖}𝑖∈𝐼 ∪ {𝑢}  generates 𝑉  weakly. Let 

𝑌1 = {𝑣𝑖1,𝑣𝑖2, … , 𝑣𝑖𝑚} be a subset of 𝑌, we recognize two cases: 

– 𝑢 ∈ 𝑌1. 

With 𝑢 = 𝑣𝑖1 , let 𝛽1,𝛽2, … ,𝛽𝑚 ∈ 𝐹  such that ∑ 𝛽𝑗𝑣𝑖𝑗𝑚
𝑗=1 = 0  and ∑ 𝛽𝑗𝑚

𝑗=1 = 0 , then 𝛽1𝑢 +

∑ 𝛽𝑗𝑣𝑖𝑗𝑚
𝑗=2 = 0 and 𝛽1 = −∑ 𝛽𝑗𝑚

𝑗=2 . Hence, ∑ 𝛽𝑗(𝑣𝑖𝑗 − 𝑢)𝑚
𝑗=2 = 0. Since 𝑌′  is a base of 𝑉 , 𝛽2 =

𝛽3 = ⋯ = 𝛽𝑚 = 0. Then, 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑚 = 0. 

– 𝑢 ∉ 𝑌1. 

Let 𝜆1, 𝜆2, … , 𝜆𝑚 ∈ 𝐹  such that ∑ 𝜆𝑗𝑣𝑖𝑗𝑚
𝑗=1 = 0  and ∑ 𝜆𝑗𝑚

𝑗=1 = 0 , then 0.𝑢 + ∑ 𝜆𝑗𝑣𝑖𝑗𝑚
𝑗=1 = 0 , i.e., 

∑ 𝜆𝑗(𝑣𝑖𝑗 − 𝑢)𝑚
𝑗=1 = 0. Since 𝑌′ is a base of 𝑉, 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑚 = 0. 

Thus, 𝑌 is weakly independent. Therefore, 𝑌 is a weakly base of 𝑉, and 𝑌 ⊂ 𝑋. 

(𝑖𝑖) ⟹ (𝑖). Suppose that 𝑌 is a weak base of 𝑉 such that 𝑌 ⊆ 𝑋. Then, 𝑉 ⊆ 〈𝑋〉 𝑊 by Lemma 2.13. 

Therefore, 𝑉 = 〈𝑋〉 𝑊. 

Theorem 4.8. Let 𝑉 be an 𝑛-weak dimensional vector space over a field 𝐹. The following hold: 

i. Any subset of 𝑉 consisting of 𝑚 elements where 𝑚 > 𝑛, is fully dependent. 

ii. If 𝑋 = {𝑣1, 𝑣2, … , 𝑣𝑛} is a weakly independent subset of 𝑉, then 𝑋 is a weak base of 𝑉. 

iii. If 𝑋 = {𝑣1, 𝑣2, … , 𝑣𝑛} is a subset of 𝑉 such that 𝑉 = 〈𝑋〉 𝑊, then 𝑋 is a weak base of 𝑉. 

proof. 

i. Suppose that 𝑌 is a weak base of 𝑉, then 𝐶𝑎𝑟𝑑 𝑌 = 𝑛 since all weak bases of 𝑉 are equipotent by 

Theorem 4.4. Since 𝑌  is maximal weakly independent by Theorem 4.3, any maximal weakly 
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independent subset of 𝑉  consists of 𝑛  elements by Theorem 3.17. Therefore, any subset of 𝑉 

consisting of 𝑚 elements where 𝑚 > 𝑛 is fully dependent. 

ii. Suppose that 𝑋 is weakly independent. Since 𝑤.𝑑𝑖𝑚𝐹𝑉 = 𝑛, then any subset of 𝑉 consisting of 

𝑛 + 1 elements is fully dependent by (i). Thus, 𝑋 is maximal weakly independent. Therefore, 𝑋 is a 

weak base of 𝑉 by Theorem 4.3. 

iii. Suppose that 𝑉 = 〈𝑋〉 𝑊. Then, 𝑋 contains a weak base of 𝑉 by Theorem 4.7, and let it be 𝑆. 

Since 𝑆 ⊆ 𝑋, then 𝐶𝑎𝑟𝑑 𝑆 ≤ 𝐶𝑎𝑟𝑑 𝑋 where both 𝑆 and 𝑋 are finite sets. We suppose that 𝐶𝑎𝑟𝑑 𝑆 ≠

𝐶𝑎𝑟𝑑 𝑋, then 𝐶𝑎𝑟𝑑 𝑆 < 𝑛, i.e., 𝑤.𝑑𝑖𝑚𝐹𝑉 < 𝑛, a contradiction. Thus, 𝐶𝑎𝑟𝑑 𝑆 = 𝐶𝑎𝑟𝑑 𝑋. Since 𝑆 ⊆ 𝑋, 

then 𝑆 = 𝑋. Therefore, 𝑋 is a weak base of 𝑉. 

Theorem 4.9. Let 𝑉 be an 𝑛-dimensional vector space over a field 𝐹 and 𝑈 be a subspace of 𝑉. The 

following hold: 

i. 𝑤.𝑑𝑖𝑚𝐹𝐾 ≤ 𝑛. 

ii. 𝐾 = 𝑉 if and only if 𝑤.𝑑𝑖𝑚𝐹𝐾 = 𝑛. 

proof. 

i. Suppose that 𝑤.𝑑𝑖𝑚𝐹𝑉 = 𝑛, then 𝑑𝑖𝑚𝐹𝑉 = 𝑛 − 1 by Corollary 4.5. Since 𝐾 is a subspace of 𝑉, 

𝑑𝑖𝑚𝐹𝐾 ≤ 𝑛 − 1. Hence, 1 + 𝑑𝑖𝑚𝐹𝐾 ≤ 𝑛. Thus, 𝑤.𝑑𝑖𝑚𝐹𝐾 ≤ 𝑛 by Corollary 4.5. 

ii. Obvious. 

5. Independent Weak Base of a Proper Subspace 

Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be an independent subset of 𝑉. Then, 𝑋 is weakly 

independent by Lemma 3.2. Moreover, 𝑋 ⊈ 〈𝑋〉 𝑊 by Corollary 2.9. Thus, 𝑋 is not a weak base of 

〈𝑋〉 𝑊. In this section, we study a weakly generated proper subspace 𝑈 of 𝑉 by an independent subset of 

𝑉. We start with the following definition. 

Definition 5.1. Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be a proper subspace of 𝑉. We say that 

the non-empty subset 𝑋 of 𝑉 is an independent weak base of 𝑉 if it satisfies the following: 

i. 𝑈 = 〈𝑋〉 𝑊. 

ii. 𝑋 is independent. 

Example. With ℝ as the field of real numbers, let ℝ2[𝑥] is the vector space of polynomials over ℝ of 

degrees at most 2 in unknown 𝑥, and let ℝ1[𝑥] the vector space of polynomials over ℝ of degrees at 

most 1 in unknown 𝑥. ℝ1[𝑥] is a subspace of ℝ2[𝑥]. The subset 𝑋 = {−1 + 𝑥2, 1 + 𝑥2, 𝑥 + 𝑥2} of 
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ℝ2[𝑥] is an independent weak base of ℝ1[𝑥]. Where 𝑋 is independent, and 

𝑎𝑥 + 𝑏 = −𝑎−𝑏
2

(−1 + 𝑥2) + −𝑎+𝑏
2

(1 + 𝑥2) + 𝑎(𝑥 + 𝑥2)  

for every 𝑎𝑥 + 𝑏 ∈ ℝ1[𝑥]; 𝑎, 𝑏 ∈ ℝ., i.e., ℝ1[𝑥] = 〈𝑋〉 𝑊. 

Example. With ℝ as the field of real numbers, let ℝ[𝑥,𝑦] is the vector space of polynomials over ℝ in 

unknowns 𝑥,𝑦, and let ℝ[𝑥] is the vector space of polynomials over ℝ in unknowns 𝑥. ℝ[𝑥] is a 

subspace of ℝ[𝑥,𝑦] . The subset 𝑋 = {−1 + 𝑦, 1 + 𝑦, 𝑥 + 𝑦, 𝑥2 + 𝑦, … , 𝑥𝑛 + 𝑦, … }  of ℝ[𝑥,𝑦]  is an 

independent weak base of ℝ[𝑥]. Where 𝑋 is independent, and  

𝑝(𝑥) = ∑ 𝛼𝑖𝑥𝑖𝑚
𝑖=0 = 𝛼0−𝑐

2
(1 + 𝑦) + −𝛼0−𝑐

2
(−1 + 𝑦) + ∑ 𝛼𝑖𝑥𝑖𝑚

𝑖=1   

for every 𝑝(𝑥) ∈ ℝ[𝑥]; 𝛼0,𝛼1,𝛼2, … ,𝛼𝑛 ∈ ℝ and 𝑐 = ∑ 𝛼𝑖𝑚
𝑖=1 , i.e., ℝ[𝑥] = 〈𝑋〉 𝑊. 

Corollary 5.2. Let 𝑉 be a vector space over a field 𝐹 and 𝑣 ∈ 𝑉 be a non-zero element. Then, {𝑣} is 

an independent weak base of the zero subspace. 

Now, we state the basic properties of an independent weak base of a proper subspace, with the 

following theorem. 

Theorem 5.3. Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be a proper subspace of 𝑉. Suppose that 

the subset 𝑋 = {𝑣𝑗}𝑗∈𝐽 of 𝑉 is an independent weak base of 𝑈. The following hold: 

i. 𝑋 ⊈ 𝑈. 

ii. Suppose that 𝑣 ∈ 𝑉 such that 𝑣 is expressed as a linear combination of elements of 𝑋 by the form 

𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  where 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 and ∑ 𝛼𝑖𝑛

𝑖=1 = 1, then 𝑌 = {𝑣𝑗 − 𝑣}𝑗∈𝐽 is a weak base of 𝑈. 

iii. Every element of 𝑈 is expressed in a unique way as a weak linear combination of elements of 𝑋. 

iv. 𝑤.𝑑𝑖𝑚 𝐹𝑈 = 𝐶𝑎𝑟𝑑 𝑋. 

v. 𝑋 is a minimal weakly generated set of 𝑈. 

vi. All independent weak bases of 𝑈 are equipotent. 

proof. 

i. Direct by Corollary 2.9 and Definition 5.1. 

ii. 𝑈 = 〈𝑌〉 𝑊  and 𝑌 ⊆ 𝑈  by Lemma 2.12. Moreover, 𝑌  is weakly independent by Lemma 3.2. 

Therefore, 𝑌 is a weak base of 𝑈. 

iii. Since 𝑋 is independent, 𝑋 is weakly independent by Lemma 3.2. Therefore, every element 𝑢 ∈ 𝑈 

is expressed in a unique way as a weak linear combination of elements of 𝑋 by Theorem 3.6. 

iv. Direct by (ii) since 𝐶𝑎𝑟𝑑 𝑋 = 𝐶𝑎𝑟𝑑 𝑌. 
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v. 𝑋 ⊈ 𝑈  by (i). Let 𝑣1, 𝑣2 ∈ 𝑋 , then 𝑣1, 𝑣2 ∉ 𝑈  by Lemma 2.14.Moreover, 𝑢 = 𝑣1 − 𝑣2 ∈ 𝑈  is 

expressed in a unique way as a weak linear combination of elements of 𝑋 by(iii). We suppose that 

𝑈 = 〈𝑋\{𝑣1}〉 𝑊, then 𝑢 can be expressed as a weak linear combination of elements of 𝑋\{𝑣1}, a 

contradiction. Therefore, 𝑋 is a minimal weakly generated set of 𝑈. 

vi. Direct by (ii) and Theorem 4.4. 

According to the last theorem, we can form the following corollary. 

Corollary 5.4. Let 𝑉 be a vector space over a field 𝐹 and 𝑋 be a weakly independent subset of 𝑉. 

Then 𝑤.𝑑𝑖𝑚 𝐹〈𝑋〉 𝑊 = 𝐶𝑎𝑟𝑑 𝑋, whether 𝑋 is independent or not. 

Corollary 5.5. Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be a proper subspace of 𝑉. Suppose that 

𝑋 is a non-empty subset of 𝑉 such that 𝑋 ⊈ 𝑈 and 𝑈 = 〈𝑋〉 𝑊. If 𝑋 is not an independent weak base 

of 𝑈, then 𝑋 is fully dependent by Theorem 3.7. 

Theorem 5.6. Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be a proper subspace of 𝑉. Suppose that 

the subset 𝑋 = {𝑣𝑗}𝑗∈𝐽 of 𝑉 is a weak base of 𝑈. The following hold: 

i. For any 𝑣 ∈ 𝑉\𝑈 the set 𝑌 = {𝑣𝑗 + 𝑣}𝑗∈𝐽 is an independent weak base of 𝑈. 

ii. Every proper subspace of 𝑉 has an independent weak base contained in 𝑉.  

proof. 

i. Since 𝑋 = {𝑣𝑗}𝑗∈𝐽 is a weak base of 𝑈, 𝑈 = 〈𝑋〉 𝑊. Let 𝑣 ∈ 𝑉\𝑈 and 𝑢 = −𝑣, then 𝑈 = 〈𝑌〉 𝑊 by 

Lemma 2.12. We suppose that 𝑌 is dependent, i.e., there exists a dependent finite subset of 𝑌 let it be 

𝑌′ = {𝑣𝑡1 + 𝑣, 𝑣𝑡2 + 𝑣, … , 𝑣𝑡𝑟 + 𝑣} , then there exist 𝛾1, 𝛾2, … , 𝛾𝑟 ∈ 𝐹  not all zero in 𝐹  such that 

∑ 𝛾𝑖(𝑣𝑡𝑖 + 𝑣)𝑟
𝑖=1 = 0. Since 𝑋 is a weak base of 𝑈, and 

∑ 𝛾𝑖(𝑣𝑡𝑖 + 𝑣)𝑟
𝑖=1 = ∑ 𝛾𝑖𝑣𝑡𝑖𝑟

𝑖=1 + (∑ 𝛾𝑖𝑟
𝑖=1 )𝑣 = 0  

then 𝛾 = ∑ 𝛾𝑖𝑟
𝑖=1 ≠ 0. Thus, 𝑣 = ∑ (−𝛾−1𝛾𝑖)𝑣𝑡𝑖𝑟

𝑖=1 ∈ 〈𝑋〉. Since 𝑈 = 〈𝑋〉 by Lemma 4.2, 𝑣 ∈ 𝑈, a 

contradiction. Therefore, 𝑌 is independent, i.e., 𝑌 is an independent weak base of 𝑈. 

ii. Direct by (i) since every vector space has a base by Corollary 4.5. 

Theorem 5.7. Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be a proper subspace of 𝑉. Let 𝑋 =

{𝑣𝑗}𝑗∈𝐽 be a non-empty subset of 𝑉 such that 𝑋 ⊈ 𝑈. If 𝑈 = 〈𝑋〉 𝑊, then 𝑋 contains an independent 

weak base of 𝑈. 

proof. Suppose that 𝑈 = 〈𝑋〉 𝑊. If 𝑋 is independent, then 𝑋 is an independent weak base of 𝑈. Suppose 

that 𝑋 is not independent. Since 𝑋 ⊈ 𝑈 by assumption, 𝑣𝑗 ∉ 𝑈 for any 𝑗 ∈ 𝐽 by Lemma 2.14. Let 

𝑣 ∈ 𝑋, then 𝑋′ = {𝑣𝑗 − 𝑣}𝑗∈𝐽 ⊆ 𝑈 and 𝑈 = 〈𝑋′〉 𝑊 by Lemma 2.12. Thus, 𝑋′ contains a weak base of 
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𝑈 by Theorem 4.7, let it be 𝑌′ = {𝑣𝑖 − 𝑣}𝑖∈𝐼. Therefore, 𝑌 = {𝑣𝑖}𝑖∈𝐼 ⊆ 𝑋 is an independent weak base 

of 𝑈 by Theorem 5.6. 

Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be a proper subspace of 𝑉. Suppose that 𝑋 is a 

non-empty subset of 𝑉 such that 𝑋 ⊈ 𝑈. If 𝑋 contains an independent weak base of 𝑈, then it is not 

necessary that 𝑈 = 〈𝑋〉 𝑊. This is shown in the following example. 

Example. With ℝ as the field of real numbers, let 𝑈 = {(𝑥,−𝑥, 0); 𝑥 ∈ ℝ} be a subspace of the vector 

space ℝ3  over ℝ . It is easy to show that 𝑋 = {(1,0,0), (0,1,0), (0,0,1)} ⊈ 𝑈  and 

𝑌 = {(1,0,0), (0,1,0)} ⊂ 𝑋 is an independent weak base of 𝑈, but 𝑈 ≠ 〈𝑋〉 𝑊. 

Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be a proper subspace of 𝑉. Suppose that the 

non-empty subset 𝑋 of 𝑉 contains an independent weak base of 𝑈. The following theorem shows the 

necessary and sufficient condition for 𝑋 to generate 𝑈 weakly. 

Theorem 5.8. Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be a proper subspace of 𝑉. Suppose that 

the subset 𝑌 = {𝑣𝑖}𝑖∈𝐼 of 𝑉 is an independent weak base of 𝑈 and 𝑣 ∈ 𝑉 can be expressed as a linear 

combination of elements of 𝑌 by the form 𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  where 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 such that ∑ 𝛼𝑖𝑛

𝑖=1 =

1. Let 𝑋 = {𝑣𝑗}𝑗∈𝐽 be a non-empty subset of 𝑈 such that 𝑋 ⊈ 𝑈 and 𝑌 ⊆ 𝑋. Then, the following are 

equivalent: 

i. 𝑈 = 〈𝑋〉 𝑊. 

ii. 𝑋1 = {𝑣𝑗 − 𝑣}𝑗∈𝐽 ⊆ 𝑈. 

proof. (𝑖) ⟹ (𝑖𝑖). Direct by Lemma 2.12. 

(𝑖𝑖) ⟹ (𝑖). Since 𝑌 = {𝑣𝑖}𝑖∈𝐼 is an independent weak base of 𝑈, 𝑌1 = {𝑣𝑖 − 𝑣}𝑖∈𝐼 is a weak base of 𝑈 

by Theorem 5.3. Since 𝑌1 ⊆ 𝑋1 , 𝑈 = 〈𝑋1〉 𝑊  by theorem 4.7. For 𝑢 = −𝑣 , then 𝑈 = 〈{𝑣𝑗 − 𝑣 −

(−𝑣)}𝑗∈𝐽〉 𝑊 by Lemma 2.12. Therefore, 𝑈 = 〈𝑋〉 𝑊. 

Theorem 5.9. Let 𝑉 be a vector space over a field 𝐹  and 𝑈 be an 𝑛-weak dimensional proper 

subspace of 𝑉. The following hold: 

i. Any subset 𝑌 of 𝑉 consisting of 𝑚 elements where 𝑚 > 𝑛 such that 𝑌 ⊈ 𝑈 and 𝑈 = 〈𝑌〉 𝑊  is 

fully dependent. 

ii. Let 𝑋 = {𝑣1, 𝑣2, … , 𝑣𝑛}  be a subset of 𝑉 such that 𝑋 ⊈ 𝑈  and 𝑈 = 〈𝑋〉 𝑊 , then 𝑋  is an 

independent weak base of 𝑈. 

proof. 
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i. Let 𝑌 = {𝑢1,𝑢2, … ,𝑢𝑚} where 𝑚 > 𝑛 be a subset of 𝑉 such that 𝑌 ⊈ 𝑈 and 𝑈 = 〈𝑌〉 𝑊 , then 

𝑌1 = {0,𝑢2 − 𝑢1, … ,𝑢𝑚 − 𝑢1} ⊆ 𝑈  by Lemma 2.12. Since 𝑚 > 𝑛 , then 𝑌1  is fully dependent by 

Theorem 4.8. Thus, there exist elements 𝛼1,𝛼2, … ,𝛼𝑚 not all zero in 𝐹 such that ∑ 𝛼𝑖(𝑢𝑖 − 𝑢1)𝑚
𝑖=1 =

0 and ∑ 𝛼𝑖𝑚
𝑖=1 = 0. Moreover, we have ∑ 𝛼𝑖(𝑢𝑖 − 𝑢1)𝑚

𝑖=1 = ∑ 𝛼𝑖𝑢𝑖𝑚
𝑖=1 − (∑ 𝛼𝑖𝑚

𝑖=1 )𝑢1 = ∑ 𝛼𝑖𝑢𝑖𝑚
𝑖=1 = 0. 

Then, ∑ 𝛼𝑖𝑢𝑖𝑚
𝑖=1 = 0 and ∑ 𝛼𝑖𝑚

𝑖=1 = 0. Since the elements 𝛼1,𝛼2, … ,𝛼𝑚 not all zero in 𝐹, 𝑌 is fully 

dependent. 

ii. Suppose that 𝑋 ⊈ 𝑈 and 𝑈 = 〈𝑋〉 𝑊, then 𝑋 contains an independent weak base of 𝑈 by Theorem 

5.7, let it be 𝑆. Since, 𝑆 ⊆ 𝑋, 𝐶𝑎𝑟𝑑 𝑆 ≤ 𝐶𝑎𝑟𝑑 𝑋. We suppose that 𝐶𝑎𝑟𝑑 𝑆 ≠ 𝐶𝑎𝑟𝑑 𝑋. Since 𝑆 is an 

independent weak base of 𝑈 , 𝑤.𝑑𝑖𝑚 𝐹𝑈 = 𝐶𝑎𝑟𝑑 𝑆  by Theorem 5.3. Thus, 𝑤.𝑑𝑖𝑚 𝐹𝑈 < 𝑛 , a 

contradiction. Thus, 𝐶𝑎𝑟𝑑 𝑆 = 𝐶𝑎𝑟𝑑 𝑋 . Since 𝑆 ⊆ 𝑋  and 𝑋  is finite, 𝑆 = 𝑋 . Therefore, 𝑋  is an 

independent weak base of 𝑈. 

Let 𝑉 be a vector space over a field 𝐹, and 𝑋 be a subset of 𝑉 such that 𝑋 ⊈ 〈𝑋〉 𝑊. If the subset 

𝑌 of 𝑉 is a base of 〈𝑋〉, then it is not necessarily that 𝑌 is an independent weak base of 〈𝑋〉 𝑊. 

Moreover, if the subset 𝑍 of 𝑉 is an independent weak base of 〈𝑋〉 𝑊, then it is not necessarily that 𝑍 

is a base of 〈𝑋〉. This is shown in the following example. 

Example. With ℝ as the field of real numbers, let 𝑋 = {(1,0,0), (0,1,0)} be a subset of the vector space 

ℝ3 over ℝ. Suppose that 𝑉 = {(𝑥,𝑦, 0): 𝑥, 𝑦 ∈ ℝ} and 𝑈 = {(𝑥,−𝑥, 0): 𝑥 ∈ ℝ}. 

It is clear that 𝑌 = {(0,0,1), (1,−1,1)} is an independent weak base of 𝑈, but it is not a base of 𝑉. 

Moreover, 𝑌1 = {(1,1,0), (0,1,0)} is a base of 𝑉, but it is not an independent weak base of 𝑈. 

Let 𝑉 be a vector space over a field 𝐹, and 𝑋 be a subset of 𝑉 such that 𝑋 ⊈ 〈𝑋〉 𝑊. Lemma 2.14 

shows that 〈𝑋〉 𝑊 is a maximal subspace of 〈𝑋〉. Now, we study the relationship between the bases of 

〈𝑋〉 and the independent weak bases of 〈𝑋〉 𝑊. We start with the following theorem. 

Theorem 5.10. Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be a proper subspace of 𝑉. Then, the 

following are equivalent: 

i. 𝑈 is a maximal subspace of 𝑉. 

ii. If 𝑋 ⊆ 𝑉 is an independent weak base of 𝑈, then 𝑋 is a base of 𝑉. 

proof. (𝑖) ⟹ (𝑖𝑖). Suppose that 𝑋 ⊆ 𝑉 is an independent weak base of 𝑈. Since 𝑋 ⊈ 𝑈 by Theorem 

5.3, 𝑈 ⊊ 〈𝑋〉 by Corollary 2.9 and 𝑈 is a maximal subspace of 〈𝑋〉 by Lemma 2.14. Moreover, 𝑈 is a 

maximal subspace of 𝑉 by assumption. Thus, 𝑈 ⊊ 〈𝑋〉 ⊆ 𝑉, i.e., 〈𝑋〉 = 𝑉. Therefore, 𝑋 is a base of 𝑉. 

(𝑖𝑖) ⟹ (𝑖) . Suppose that 𝑋 ⊆ 𝑉  is an independent weak base of 𝑈 , then 𝑋  is a base of 𝑉  by 

assumption, i.e., 𝑉 = 〈𝑋〉 . Since 𝑋 ⊈ 𝑈  by Theorem 5.3, 𝑈 ⊊ 〈𝑋〉  by Corollary 2.9 and 𝑈  is a 
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maximal subspace of 𝑉 = 〈𝑋〉 by Lemma 2.14. 

Theorem 5.11. Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be a maximal subspace of 𝑉. Suppose 

that the subset 𝑋 = {𝑣𝑗}𝑗∈𝐽 of 𝑉 is base of 𝑉 and 𝑣 ∈ 𝑉 can be expressed as a linear combination of 

elements of 𝑋 by the form 𝑣 = ∑ 𝛼𝑖𝑣𝑖𝑛
𝑖=1  where 𝛼1,𝛼2, … ,𝛼𝑛 ∈ 𝐹 such that ∑ 𝛼𝑖𝑛

𝑖=1 = 1. Then, the 

following are equivalent: 

i. 𝑋 is an independent weak base of 𝑈. 

ii. 𝑋1 = {𝑣𝑗 − 𝑣}𝑗∈𝐽 is a weak base of 𝑈. 

proof. (𝑖) ⟹ (𝑖𝑖). Direct by Theorem 5.3. 

(𝑖𝑖) ⟹ (𝑖). Direct by Theorem 5.6 where 𝑣 ∉ 𝑈. 

Let 𝑉 be a vector space over a field 𝐹, and 𝑋 be a subset of 𝑉 such that 𝑋 ⊈ 〈𝑋〉 𝑊. If 𝑉 ≠ 〈𝑋〉, 

then 〈𝑋〉 𝑊 is not a maximal subspace of 𝑉 by Lemma 2.14. Now, we study the basic property of 〈𝑋〉 𝑊. 

We start with the following Lemma. 

Lemma 5.12. Let 𝑉 be a vector space over a field 𝐹 and 𝑊,𝑈 be subspaces of 𝑉 such that 𝑈 ⊆ 𝑊. 

If every independent weak base of 𝑈 from 𝑉 is a base of 𝑊, then 𝑊 = 𝑉. 

proof. Suppose that 𝑈 ⊆ 𝑊 and let 𝑋 = {𝑣𝑗}𝑗∈𝐽 be a base of 𝑈, then 𝑌 = 𝑋 ∪ {0} is a weak base of 𝑈 

by Theorem 4.6. Moreover, for every 𝑣 ∈ 𝑉\𝑈, then 𝑍 = {𝑣𝑗 + 𝑣}𝑗∈𝐽 ∪ {𝑣} is an independent weak base 

of 𝑈 by Theorem 5.6. Since 𝑍 is a base of 𝑊 by assumption, then 𝑣 ∈ 𝑊, i.e., 𝑉 ⊆ 𝑊. Since 𝑊 is a 

subspace of 𝑉, then 𝑊 = 𝑉. 

Theorem 5.13. Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be proper subspace of 𝑉. Suppose that 

ℑ = {𝑌𝑖}𝑖∈𝐼 is the family of all subsets of 𝑉 such that 𝑌𝑖 ⊈ 𝑈 and 𝑈 = 〈𝑌𝑖〉 𝑊 for all 𝑖 ∈ 𝐼. Then, the 

following are equivalent: 

i. 𝑈 = ⋂𝑖∈𝐼〈𝑌𝑖〉. 

ii.  𝑈 is not a maximal subspace of 𝑉. 

proof. (𝑖) ⟹ (𝑖𝑖). Let 𝑌𝑖 ∈ ℑ. Since 𝑌𝑖 ⊈ 𝑈 and 𝑈 = 〈𝑌𝑖〉 𝑊, 𝑌𝑖 contains an independent weak base of 

𝑈 by Theorem 5.7, let it be 𝑋𝑖. We suppose that 𝑈 is a maximal subspace of 𝑉, then 𝑋𝑖 is a base of 𝑉 

by Theorem 5.10, i.e., 𝑉 = 〈𝑋𝑖〉 . Thus, 𝑉 = 〈𝑌𝑖〉  for all 𝑖 ∈ 𝐼 , then 𝑉 = ⋂𝑖∈𝐼〈𝑌𝑖〉 , i.e., 𝑉 = 𝑈 , a 

contradiction. Therefore, 𝑈 is not a maximal subspace of 𝑉. 

(𝑖𝑖) ⟹ (𝑖). Since 𝑌𝑖 ⊈ 𝑈 and 𝑈 = 〈𝑌𝑖〉 𝑊  for every 𝑌𝑖 ∈ ℑ, then 𝑈 ⊊ 〈𝑌𝑖〉 by Corollary 2.7. Thus, 

𝑈 ⊆ ⋂𝑖∈𝐼〈𝑌𝑖〉. Let 𝑋 ⊆ 𝑉 is an independent weak base of 𝑈, then 𝑋 ∈ ℑ, and 𝑈 is a maximal subspace 

of 〈𝑋〉 by Lemma 2.14. Since 𝑈 is not a maximal subspace of 𝑉, then 𝑋 is not a base of 𝑉 by 

Theorem 5.10, i.e., 𝑉 ≠ 〈𝑋〉. Moreover, 𝑈 ⊆ ⋂𝑖∈𝐼〈𝑌𝑖〉 ⊆ 〈𝑋〉. We suppose that 𝑈 ≠ ⋂𝑖∈𝐼〈𝑌𝑖〉. Since 𝑈 is 
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a maximal subspace of 〈𝑋〉, then ⋂𝑖∈𝐼〈𝑌𝑖〉 = 〈𝑋〉. Thus, every independent weak base of 𝑈 is a base of 

⋂𝑖∈𝐼〈𝑌𝑖〉. 

Then, 𝑉 = ⋂𝑖∈𝐼〈𝑌𝑖〉 by Lemma 5.12, i.e., 𝑉 = 〈𝑌𝑖〉 for all 𝑖 ∈ 𝐼. Thus, 𝑈 is a maximal subspace of 𝑉, a 

contradiction. Therefore, 𝑈 = ⋂𝑖∈𝐼〈𝑌𝑖〉. 

Theorem 5.14. Let 𝑉 be a vector space over a field 𝐹 and 𝑈 be proper subspace of 𝑉. Suppose that 

𝑋 = {𝑣𝑗}𝑗∈𝐽 is an independent subset of 𝑉 such that 𝑋 ⊈ 𝑈. Then, the following are equivalent: 

i. 〈𝑋〉 𝑊 ⊆ 𝑈. 

ii. 𝑋 can be expanded to an independent weak base of 𝑈. 

proof. (𝑖) ⟹ (𝑖𝑖). Since 𝑋 is independent, 𝑋 ⊈ 〈𝑋〉 𝑊 by Corollary 2.9 and 𝑋 is an independent weak 

base of 〈𝑋〉 𝑊. Then, 𝑋′ = {𝑣𝑗 − 𝑣}𝑗∈𝐽 where 𝑣 ∈ 𝑋 is a weak base of 〈𝑋〉 𝑊 by Theorem 5.3. Since 

〈𝑋〉 𝑊 ⊆ 𝑈 , 𝑋′  can be expanded to a weak base of 𝑈  by Theorem 4.4, let it be 

𝑌′ = {𝑣𝑗 − 𝑣}𝑗∈𝐽⋃{𝑢𝑖}𝑖∈𝐼. Since 𝑋 ⊈ 𝑈, 𝑣 ∉ 𝑈 by Lemma 2.15. Thus, 𝑌′ = {𝑣𝑗}𝑗∈𝐽⋃{𝑢𝑖 + 𝑣}𝑖∈𝐼 is an 

independent weak base of 𝑈 by Theorem 5.6. Therefore, 𝑋 can be expanded to an independent weak 

base of 𝑈. 

(𝑖𝑖) ⟹ (𝑖). Obvious. 

6. Geometric Interpretation of Weak Linear Independence 

With ℝ as the field of real numbers, it is known that for 𝑛 = 1,2 or 3 the vector space ℝ𝑛 over 

ℝ has a useful geometric interpretation in which a vector is identified with the directed line segment [3–4]. 

For 𝑛 = 1, the non-zero vector 𝑣 = (𝑥) is identified with the directed line segment on the real line 

that has initial point at the origin and its terminal point at 𝑥. Any subset 𝐴 = {𝑣1,𝑣2} of ℝ is dependent. 

For 𝑛 = 2 or 3, the non-zero vector 𝑣 = (𝑥,𝑦) or 𝑣 = (𝑥,𝑦, 𝑧) is identified with the directed line 

segment that has initial point at the origin and its terminal point with rectangular coordinates given by the 

components of the vector. The subset 𝐴 = {𝑣1, 𝑣2} of ℝ2 or ℝ3 is independent if and only if 𝑣1 and 

𝑣2 are not collinear. 

In making identifications of vectors with direct line segment, we shall follow the convention that any 

line segment with the same direction and the same length as the one we have described may be used to 

represent the same vector. If two vectors represent the same vector, then they are said to be equivalent. 

Thus, in ℝ for any points 𝐴,𝐵,𝐶,𝐷 of the real line, if the vectors 𝐴𝐵�����⃗ ,𝐶𝐷�����⃗  are not equivalent, then 

they are dependent . In ℝ2 or ℝ3 for any points 𝐴,𝐵,𝐶,𝐷 of the coordinate plane or coordinate space, 

the vectors 𝐴𝐵�����⃗ ,𝐶𝐷�����⃗  are independent if and only if 𝐴𝐵�����⃗ ∦ 𝐶𝐷�����⃗ , dependent if and only if 𝐴𝐵�����⃗ ∥ 𝐶𝐷�����⃗  and 
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equivalent if and only if 𝐴𝐵�����⃗ ≡ 𝐶𝐷�����⃗ . 

By Lemma 3.2 and Lemma 3.5, if the subset 𝐴 = {𝑣1,𝑣2} of ℝ𝑛;  𝑛 = 1,2,3 is dependent, then 𝐴 

is weakly independent. Moreover, if 𝐴 = {𝑣1,𝑣2} is independent, then 𝐴 is weakly independent by 

Lemma 3.2. 

According to the above, we can formulate the following corollaries, which show us the geometric 

interpretation of weak linear independence in the vector space vector space ℝ𝑛;𝑛 = 1,2 or 3. 

Corollary 6.1. Let 𝐴,𝐵,𝐶,𝐷 any points of the real line. The following hold: 

i. The vectors 𝐴𝐵�����⃗ ,𝐶𝐷�����⃗  are weakly independent if and only if they are not equivalent (𝐴𝐵�����⃗ ≢ 𝐶𝐷�����⃗ ). 

ii. The vectors 𝐴𝐵�����⃗ ,𝐶𝐷�����⃗  are fully dependent if and only if they are equivalent (𝐴𝐵�����⃗ ≡ 𝐶𝐷�����⃗ ). 

Corollary 6.2. Let 𝐴,𝐵,𝐶,𝐷 any points of the coordinate plane or coordinate space. The following hold: 

i. The vectors 𝐴𝐵�����⃗ ,𝐶𝐷�����⃗  are weakly independent if and only if they are not equivalent (𝐴𝐵�����⃗ ≢ 𝐶𝐷�����⃗ ). 

ii. If 𝐴𝐵�����⃗ ≢ 𝐶𝐷�����⃗ , then the vectors 𝐴𝐵�����⃗ ,𝐶𝐷�����⃗  are weakly independent and non-independent if and only if 

𝐴𝐵�����⃗ ∥ 𝐶𝐷�����⃗ . 

iii. The vectors 𝐴𝐵�����⃗ ,𝐶𝐷�����⃗  are fully dependent if and only if they are equivalent (𝐴𝐵�����⃗ ≡ 𝐶𝐷�����⃗ ). 
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