
Abstract. This paper introduces a symmetrization process for a given matrix

A ∈ Rn×n using elementary column(row) operations. Transformed symmetric
matrix S ∈ Rn×n, S = (sij) has a structure S = (sij); i, j = 1 : n, sik =

skj = skk; k = 1 : n for all i, j > k. This process is applicable to any matrix

A ∈ Rn×n in a generalized way. Existing equivalence symmetrization of A in

the literature is derived from it, providing identical result. Classical Cholesky
factorization in the literature is revisited in the context of this symmetrization

process. Elementary matrices apply equal scaling quantities with opposite

signs in resultant matrices so that column(row) entries are identical with the
corresponding diagonal entries. Because of this uniformity in scaling as well

as matrix S, it may be called elementary uniform matrix symmetrization.

Keywords: matrix symmetrization, equivalence symmetrization, matrix factor-
ization, linear systems
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1. Introduction

Symmetrizing associated asymmetric matrices of linear systems will be conve-
nient as it facilitates application of well developed analytical tools for handling sym-
metric systems[1]. Symmetrization of matrices has a long history. F. G. Frobenius 
[5] and J. Marty [7] were the pioneers who worked in the area of symmetrizing ma-
trices. In 1910, Marty introduced symmetrization of linear integral operators. Con-

temporaneously, Frobenius proved that any matrix A ∈ Rn×n can be decomposed as 
product of two symmetric matrices as A = S1S2, S1 = S1

T , S2 = S2
T , S1, S2 ∈ Rn×n. 

One of these can be nonsingular so that there exists a nonsingular symmetrizer ma-

trix S = ST , S ∈ Rn×n and product SA is symmetric [3].

Linear system solution finds application in many areas of science and technol-
ogy, economy and sociology. For example, positive linear system solution is associ-
ated with network of reservoirs, industrial process involving chemical reactors, heat 
exchangers, distillation columns, transport and accumulation phenomena of sub-
stances in human control systems, signal processing, spectral analysis, storage sys-
tems of memory and space, environmental pollution models, social network analysis 
etc [4]. With pertinent influence among such vast and dynamic areas, linear system 
solution plays a vital role. However, real world linear systems may appear with 
asymmetric coefficient matrices in many situations. Adhikari [1] gives references to 
typical examples such as gyroscopic and circulatory systems, aircraft flutter, ship 
motion in sea water, actively controlled systems, constrained multi-body systems 
etc that give way to asymmetric non conservative systems. Symmetrizing associ-
ated asymmetric matrices of these linear systems will be convenient as it facilitates
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extending the application of well developed analytical tools for symmetric systems
into such cases.

Frobenious result is known as Tauskky’s theorem [3]. Taussky and Zassenhaus
[10], and Taussky [9] contributed to strengthen further the fundamentals of sym-
metrizing a given matrix. Desautels[2] master’s thesis discusses basic aspects of
symmetrizers of A ∈ Rn×n. Such theoretical works were followed by many at-
tempts to numerically compute symmetrizers of a given matrix in 1960s and early
part of 1970s. Those previous attempts based on similarity transformation of ma-
trices were proved to be unstable and abandoned [3]. It is reported in [3] that
first successful numerical computation of symmetrizers was in 2013 by Frank Uh-
lig [11,12]. In Uhlig [11] some of those previous unfruitful attempts are discussed.
Thus the history of symmetrizing matrices spread across centuries. This underlines
the role of other type of equivalence and congruence transformations in this area.
Present work is an attempt in this direction.

Adhikari [1] introduced equivalence symmetrization for asymmetric systems in
year 2000. Adhikari [1] gives examples of matrices which cannot be symmetrized
by Taussky’s conditions [3] but is symmetrized by equivalence symmetrization.
The motivation behind [1] is that equivalence transformations are the most general
class of nonsingular linear transformations. Much generality can be achieved using
equivalence symmetrization compared to similarity transformations. In line with
this observation of Adhikari, this work is an attempt in symmetrizing a matrix by
elementary row and column operations.

Here for a given nonsingular matrix A ∈ Rn×n an equivalent symmetric matrix
S ∈ Rn×n is derived by applying elementary lower(upper) unit triangular matrices.
The matrix S = (sij), i, j = 1 : n has a structure, sik = skj = skk, k = 1 : n for all
i, j > k. Entries of lower and upper triangular blocks are equalized with respective
diagonal entries in resultant equivalent matrices. It is proved here that only one of
the blocks need be processed to derive S and an equivalent diagonal matrix D of A.
Generally equivalence and congruence transformations require both left and right
matrix multiplications as in [1]. Hence this feature of the process is an advantage by
reducing processing steps and computations by half of the theoretical requirements
for completion. Elementary matrices apply equal scaling quantities with opposite
signs. Because of this uniformity in scaling as well as in the structure of S, it may
be called elementary uniform matrix symmetrization. Zero is also a valid scaling
quantity of the process and accordingly a pivoting strategy is presented. Equiva-
lence symmetrization in the literature of symmetrizing A into equivalent symmetric
matrix Ã ∈ Rn×n is presented in a more generalized way.

When entries of D are positive, transforming A into S and its decomposition
are shown to be stable. This is a generalized application of Cholesky factors [6] of
symmetric positive definite matrices. When given matrix A is singular, these sin-
gularities are presented with visual patterns. For singular matrix A ∈ Rn×n, it is
shown that a corresponding symmetric matrix S ∈ Rn×n can be derived. Thus it is
generalized that A can be always symmetrized into an equivalent symmetric matrix.
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The paper is organized as follows. A briefing on classification of symmetrization
[1] is presented. Construction of operator triangular matrices, properties of scaling
factors, elementary symmetrization process and matrix S are narrated. When A is
singular, how the process treats those singularities are discussed. Finally numerical
illustration and conclusions are presented.

2. Notations and Definitions.

The upper bidiagonal matrix B = (bij); bii = 1, bi−1,i = −1; bij=0 elsewhere,
i, j = 1 : n is denoted by bd(1,-1). Its transpose is denoted as bd(-1,1). Its
inverse matrix U(1) denotes an upper triangular matrix U = (uij);uij = 1 for
i ≤ j; i, j = 1 : n. Transpose of U(1) is denoted as L(1). An equivalent matrix of

A ∈ Rn×n is represented as Ã and will be given by Ã = MT
1 AM2 for nonsingular

matricesM1,M2 ofRn×n. This transformation is called equivalence transformation.
When M1 = M2 it is a congruence transformation. When MT

1 = M−1
2 the transfor-

mation is called similarity transformation. A square matrix K ∈ Rn×n is called an
elementary matrix if it is obtained by applying exactly one elementary row(column)
operation to the identity matrix, In. Uniformly symmetric matrix S ∈ Rn×n is de-
fined as S = (sij); i, j = 1 : n, sik = skj = skk, k = 1 : n for all i, j > k. It is denoted
as uniform(s1, s2,...,sn); si = sii. First supra diagonal entries of A = (aij) are en-
tries ai−1,i; i=2,3,...,n and first infra diagonal entries are aj,j−1; j=2,3,...,n. Resul-
tant matrix of step-r is denoted as Ar = (aij(r)); r = 1 : n−1, ..., 2n−2; i, j = 1 : n.
Unit lower and upper triangular operator matrices are denoted as Lr = (lij(r)) and
Ur = (uij(r)) respectively; r=1:n-1; i, j = 1 : n. We call entries of Lr(Ur) as scaling
factors derived out of entries of column(row)-r of Ar−1; r = 1 : n− 1.

3. Classification of Matrix Symmetrization

Taussky and Zassenhaus introduced the concept of symmetrizability of an asym-
metric matrix[10]. According to that, for every A ∈ Rn×n there is a nonsin-
gular symmetric matrix S ∈ Rn×n transforming it into AT . In her later paper
Taussky[9] introduced the necessary and sufficient conditions for the symmetriza-
tion of A ∈ Rn×n as follows: A matrix A is symmetrizable if and only if any one of
the following holds:
i) A is the product of two symmetric matrices, one of which is positive definite.
ii) A is similar to a symmetric matrix.
iii)AT = S−1AS with S = ST � 0.
iv) A has real characteristic roots and a full set of characteristic vectors.

Taussky’s conditions were derived on the basis of similarity transformation of A
and are discussed in[1,3,7]. But in general, symmetrization of A can also be achieved
by other type of transformations such as equivalent[1], (A+AT )/2, AAT , ATA etc.
Adhikari[1] classified the similarity transformation based symmetrization as first
type. He introduced the equivalence transformation based symmetrization and
termed it as second type. The second kind of symmetrization is defined as follows:

v) A matrix A is symmetrizable of the second kind if and only if there exist two

nonsingular matrices L,R such that Ã = LTAR is symmetric.
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This is a more general classification. It includes the first type as a special case,
LT = R−1 = R−T . This elementary symmetrization also is of the second type.
Matrices L,R are nonsingular triangular matrices and are product of elementary
matrices.

Later we will prove that this elementary symmetrization is applicable to the
whole matrices of Rn×n in a more generalized way. We relax this requirement for
the existence of matrices L and R for equivalence symmetrization by Adhikari[1]
by deducing it from elementary symmetrization of A.

4. Construction of Operating Triangular Matrices

Time being assume A ∈ Rn×n be nonsingular. At step-r, operating matrix Lr is
derived from Ar = LrAr−1 as a linear system solution for applying into the same
system to obtain resultant matrix Ar of step-r.

Consider step-1. We have Ar−1 = A. Now to derive A1, we have to construct
L1. For this we proceed as follows.

A = (aij); i, j = 1 : n. (4.1)

m1 = ak1; |ak1| = max(|(ai1)|)); i = 1 : n. (4.2)

Exchange rows in A given by (4.1), appropriately such that m1 6= 0 in (4.2) and we
have

a11 = m1 (4.3)

Compute the n− 1 scaling factors ki1(1); i = 2 : n from the equation

ki1(1)m1 + ai1 = m1; i = 2 : n. (4.4)

so that from (4.3) and (4.4), we have

ki1(1) = (a11 − ai1)/a11; i = 2 : n. (4.5)

Equations (4.2) and (4.3) represent a pivoting strategy to satisfy ki1(1) ∈ [−1, 1]; i =
2 : n. Unit lower triangular matrix L1 derived from unit identity matrix In =
(eij), eii = 1; eij = 0, i 6= j; i, j = 1 : n can be now defined as below.

L1 = (lij(1)) = eij ; i, j = 1 : n. (4.6)

li1(1) = ki1(1), i = 2 : n; lij(1) = eij , elsewhere; i, j = 1 : n. (4.7)

With this construction of operating matrix L1 in (4.6) and (4.7) by applying scaling
factors (4.5), we can derive,

A1 = L1A. (4.8)

Thus resultant matrix A1 = (aij(1)) ; ai1(1) = m1, i = 1 : n is possible as in (4.8).
Consider step-2. Let,

m2 = max(a12(1), a22(1), a32(1), a42(1), ..., an2(1)) (4.9)

l2 = min(a12(1), a22(1), a32(1), a42(1), ..., an2(1)) (4.10)

It should be such that l2 6= m2 in (4.9),(4.10). Make appropriate row exchanges in
A1 among rows, row-1, row-2, ...., row-n to have

a12(1) = l2; a22(1) = m2 (4.11)

(4.11) is the pivoting for step-2. To derive the (n−2) scaling factors ki2(2); i = 3 : n
for step-2, consider the linear systems of equations for solving.

ki1(2)m1 + ki2(2)m1 +m1 = m1; i = 3 : n. (4.12)
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ki1(2)a12(1) + ki2(2)m2 + ai1(1) = m2; i = 3 : n, a12(1) = l2, a22(1) = m2. (4.13)

Solving system of equations (4.12) and (4.13) we get

ki1(2) = −ki2(2), i = 3 : n. (4.14)

ki2(2) = (a22(1)− ai2(1))/(a22(1)− a12(1)); i = 3 : n. (4.15)

Equations (4.9), (4.10) and (4.11) represent a pivoting strategy for step-2 so that
|ki2(2)| ∈ [0, 1]; i = 3 : n. Now the required scaling factors for step-2 are computed
as in (4.14) and (4.15) using (4.12) and (4.13). We can proceed to construct operat-
ing matrix L2 = (lij(2)) . It is first initialized to In as lij(2) = eij ; i, j = 1, 2, ..., n..
Now proceed as below.

li1(2) = −ki2(2); i = 3, 4, ..., n. (4.16)

li2(2) = ki2(2); i = 3, 4, ..., n. (4.17)

Thus column-1 and column-2 entries of L2 are updated as in equations (4.16) and
(4.17). Now we can complete step-2 by applying L2 to derive resultant matrix
A2 = (aij(2)); i, j = 1, 2, ...n. We have in A2, ai1(2) = m1; i = 1, 2, ...n and ai2(2) =
m2; i = 2, 3, 4, ...n.

A2 = L2A1 (4.18)

This completes step-2 with the construction of A2 as in (4.18). This process of
maintaining those scaling done with entries of previous columns 1,2,...,r − 1 at a
step-r and scaling entries of current column-r so that they become equal with the
diagonal entry arr(r−1) of resultant matrix Ar−1, we may call uniformity of entries
at step-r. Continuing with this uniformity of entries for step-3, step-4,..., we shall
now consider uniformity of entries at step-r. In this step-r also we shall do the row
exchanges as in previous steps so that |(kir(r))| ∈ [0, 1], i = r + 1 : r + n.

lr = min(ar−1,r(r − 1), arr(r − 1), ..., an,r(r − 1)) (4.19)

mr = max(ar−1,r(r − 1), arr(r − 1), ..., an,r(r − 1)) (4.20)

It should be that mr 6= lr in (4.19), (4.20). Exchange rows in Ar−1 among row-r-1,
row-r,....,row-n appropriately so that

ar−1,r(r − 1) = lr (4.21)

arr(r − 1) = mr (4.22)

(4.21) and (4.22) represent the general pivoting strategy for a setp-r, r = 2, 3, ...n−1.
For convenience, consider first three linear systems of equations at step-r derived
out of equation Ar = LrAr−1.∑

r
j=1kij(r)m1 +m1 = m1; i = r + 1, r + 2, ..., n. (4.23)

ki1(r)a12(r − 1) +
∑

r
j=2kij(r)m2 +m2 = m2; i = r + 1, r + 2, ..., n. (4.24)

ki1(r)a13(r−1)+ki2(r)a23(r−1)+
∑

r
j=3kij(r)m3 +m3 = m3; i = r+1, r+2, ..., n.

(4.25)
From system of equations (4.23), we get∑

r
j=1kij(r) = 0; i = r + 1, r + 2, ..., n... (4.26)

Using (4.26) we can substitute for ki1; i = r + 1, r + 2, ..., n in equation (4.24) to
get the result that

ki1(r) = 0; i = r + 1, r + 2, ..., n (4.27)
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Because of (4.27) we get∑
r
j=2kij(r) = 0; i = r + 1, r + 2, ..., n. (4.28)

Applying this results in (4.25) we can see that

ki2(r) = 0; i = r + 1, r + 2, ..., n. (4.29)

Proceeding in this manner, we can get the result

kij(r) = 0; i = r + 1, r + 2, ..., n; j = 1, 2, ..., r − 2. (4.30)

Thus for step-r as illustrated in (4.28), (4.29), (4.30), we need consider only multi-
plication of Lr with column-(r -1) and column-r of Ar−1. Linear system of equations
corresponding to column-(r − 1) of Ar−1 will be

ki,r−1(r)mr−1 + kir(r)mr−1 +mr−1 = mr−1; i = r + 1, r + 2, ..., n. (4.31)

From (4.31), we have

ki,r−1(r) = −kir(r); i = r + 1, r + 2, ..., n (4.32)

(4.32) makes it clear that scaling quantities are coupled as equal in magnitude but
opposite in sign. The last linear system of equations corresponding to column-r of
Ar−1 for computing the scaling factors kir(r); i = r + 1, r + 2, ..., r + n will be

ki,r−1(r)ar−1,r(r − 1) + kir(r)mr + air(r − 1) = mr; i = r + 1, r + 2, ..., n. (4.33)

From equation (4.33) we get

kir(r) = (mr − air(r − 1))/(mr − ar−1,r(r − 1)); i = r + 1, r + 2, ..., n;

ar−1,r(r − 1) = lr, arr(r − 1) = mr.
(4.34)

(4.34) gives the required scaling quantities for step-r. Now we can construct the unit
lower triangular operating matrix Lr = (lij(r)) = eij ; i, j = 1, 2, ..., n by updating
its column-r -1 and column-r as below.

li,r−1(r) = −kir(r); i = r + 1, r + 2, ..., n (4.35)

lir(r) = kir(r); i = r + 1, r + 2, ..., n. (4.36)

The last step is to complete uniformity of entries at step-r by deriving the resultant
matrix Ar as

Ar = LrAr−1 (4.37)

Equations (4.35), (4.36) and (4.37) compute the elementary operating matrix Lr

for deriving the resultant matrix Ar of step-r. We may continue this process with
steps, r+1, r+2, ...,n-1 to complete uniformity of entries for the lower triangular
block as

An−1 = Ln−1An−2 (4.38)

We may extend this process as in (4.35),(4.36),(4.37) and (4.38) to the upper tri-
angular block also. We should not make any row or column exchanges at this
upper block operations as this will affect the uniformity of entries. The pivoting
we followed during lower triangular block is an optional strategy to derive absolute
values of scaling factors from closed interval [0, 1]. For upper triangular block, we
can construct unit upper triangular matrices U1, U2, ..., Un−1 with respective similar
structures as transposes of L1, L2, ..., Ln−1 so that

S = Ln−1Ln−2....L2L1AU1U2...Un−2Un−1 (4.39)

kij(n) = (a11(n− 1)− a1j(n− 1))/a11(n− 1); j = 2, 3, ..., n. (4.40)
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Scaling factors corresponding to operator matrix U1 of (4.39) will be provided by
(4.40).

krj(n+ r − 1) =

(arr(n+ r − 2)− arj(n+ r − 2))/(arr(n+ r − 2)− ar,r−1(n+ r − 2));

j = r + 1 : n

(4.41)

Scaling factors corresponding to Ur of (4.39) r = 2, 3, ..., n − 1 can be computed
as in (4.41). The matrix S = (sij); sij = sji; i, j = 1, 2, ..., n, is symmetric. We
may call S uniformly symmetric as it has the additional structural simplicity that
sik = skj = skk; k = 1 : n, for all i, j > k; i, j = 1 : n. The matrix S may be
denoted as S = uniform(s1, s2, ..., sn) where si = sii; i = 1, 2, ..., n.

5. Properties of Scaling Factors

The matrices considered here are to be assumed from Rn×n, if not exclusively
stated. Some simple results are presented below, but are relevant in highlighting
salient aspects of the scaling factors. We shall, for convenience, recall here equation
(4.34) of generating scaling factors at step-r ;
kir(r) = (mr − air(r − 1))/(mr − ar−1,r(r − 1)); i = r + 1, r + 2, ..., n; ar−1,r(r) =
lr, arr(r) = mr.

Lemma 5.1. If an entry air(r − 1) = ar−1,r(r − 1) then

kir(r) = 1. (5.1)

Proof. (5.1) follows from equation (4.34). �

Lemma 5.2. Elementary uniform symmetrization of a nonsingular diagonal matrix
D ∈ Rn×n gives scaling factors kir(r) =1 ; i = r + 1, r + 2, ..., n; r = 1, 2, ..., n− 1.
Product of lower(upper) operating matrices will be L(1)(U(1)).

Proof. From Lemma 5.1, it follows that scaling factors, kir(r) =1 ; i = r + 1, r +
2, ..., n; r = 1, 2, ..., n−1. In Operating matrix Lr, entries of column-r-1 and column-
r are -1 and 1 respectively for r=2,3,...,n-1. In matrix L1, its entries of column-1
will be 1. Product of these will be L(1). Similarly product of upper triangular
operating matrices will be U(1). �

Lemma 5.3. If uniformity of entries of lower triangular block is considered first
for a given upper triangular matrix U ∈ Rn×n, kir(r) =1 ; i = r+1, r+2, ..., n; r =
1, 2, ..., n − 1. Similarly is the case with uniformity of entries of upper triangular
block of a nonsingular lower triangular matrix L ∈ Rn×n.

Proof. In both these situations, Lemma 5.1 will be applicable. Entries of a col-
umn(row) of the block being considered will be same as respective first supra(infra)
entry of the column(row) Hence the result. �

Lemma 5.4. If in Ar−1, an entry air(r−1) = arr(r−1) then in Kr, corresponding
sclaing factor kir = 0.

Proof. This is a direct result derived from equation (4.34). Since an entry of a
column(row) is already equal to the corresponding diagonal entry, it requires only
zero scaling. �
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Lemma 5.4 implies that for this symmetrizing process, zero is a valid scaling
quantity. It also implies how to pivot with this symmetrization process. It suggests
that for minimizing perturbations, we should minimize the absolute value of scaling
factor kir; i = r + 1 : n in [0,1] ; r = 1 : n− 1.

Lemma 5.5. If nonsingular matrix A is uniformly symmetric, then kir = 0; i =
r + 1 : n; r = 1 : n then Li; i = 1 : n− 1 will be the identity matrix In.

Proof. This follows from Lemma 5.4. �

Lemma 5.6. If A = const(c) is a constant matrix of a non-zero constant c, then
the symmetrization cannot proceed beyond step-1.

Proof. This is also a special case of Lemma 5.4. For step-1, we can compute scaling
factors k1r = 0; i = 2 : n. However, from step-2 onwards, ar,r−1(r) = arr(r) =
c; r = 2 : n and so equation (4.34) breaks down. Also no column or row exchange
will change the situation. �

While dealing with symmetrizing a given singular matrix, this will be again
discussed.

There are exceptions with triangular and diagonal matrices. If A is a nonsin-
gular triangular matrix with all non-zero entries a non-zero constant, or when A
is a nonsingular diagonal matrix with all diagonal entries as a non-zero constant,
then the symmetrization can be completed. Identity matrix is an example of this
situation.

It follows from equation (4.34) that if two or more entries of a column-r of
resultant matrix Ar−1, air(r−1) = ai+m,r(r−1) then corresponding scaling factors
kir(r) = ki+m,r(r); i = r + 1;m = 1, 2, ...(n − r − 1); r = 1, 2, ..., n − 1. In Lr, if
we interchange lir(r) = −kir(r) and li,r−1(r) = kir(r), we get L−1

r . We may
interchange the role of lr,mr so that lr, r = 1 : n − 1 are at pivot positions, the
entries in resultant matrices Ar, r = 1 : n−1 may be minimized as per requirements
of situations.

6. General Properties of Elementary Uniform Symmetrization

We shall introduce here some features, advantages etc. of this symmetrization
process of a given nonsingular matrix A ∈ Rn×n.

Lemma 6.1. Let A ∈ Rn×n be uniformly symmetrized into S ∈ Rn×n. Then diag-
onalization of S = (sij); i , j = 1, 2, ...,n is by a universal congruence transformation
given by D = bd(1,−1)T Sbd(1,−1).

Proof. The structure of S = (sij) is sik = skj = skk, k = 1 : n for all i, j > k; i, j =
1 : n. As bd(1,−1) and its transpose bd(−1, 1) reduce columns and rows, the
result follows. Corresponding diagonal matrix will be given by D = diag(s11, s22−
s11, ..., snn − sn−1,n−1). �

Corollary 6.1 From Lemma 6.1 it follows that

S = L(1)DU(1).

Lemma 6.2. Given a nonsingular matrix A ∈ Rn×n, equivalent uniformly sym-
metric matrix and diagonal matrix S,D ∈ Rn×n respectively can be derived in n−1
steps.
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Proof. We have

bd(1,−1)TAn−1 = U (6.1)

In equation (6.1), U is an upper triangular matrix and equivalent to A. The quanti-
ties, a11(n−1), a22(n−1)−a12(n−1), ..., ann(n−1)−an−1,n(n−1) will constitute its
diagonal. During the scaling process of An−1 using U1, U2, ..., Un−1 in (4.39), lower
triangular block columns will be still identically equidistant from coordinate axes.
So in An−1 and A2n−2 = S, aii(n−1)−ai−1,i(n−1) = aii(2n−2)−ai−1,i(2n−2); i =
2 : n − 1; a11(n − 1) = a11(2n − 2). We have D = bd(−1, 1)Sbd(1,−1) and hence
A2n−2 = L(1)DU(1), where D is derivable from An−1 itself at the midway of the
process. Hence the result. �

This makes it an easier way of symmetrizing a square matrix A compared to
Adhikari[1] or by diagonalization methods where both left and right matrix multi-
plications are involved. This convenience of selective bypassing of operations with
a triangular block minimizes computation, memory and time by half of that the-
oretically required in symmetrizing A into S. Also no eliminations are required.
These advantages are due to the scaling process.

Corollary 6.2 Matrix D−1 is equivalent to A−1.

Proof.

D−1 = U(1)S−1L(1) (6.2)

As S−1 is equivalent to A−1, from (6.2), the result follows. �

Lemma 6.3. Given a linear system of equations where A ∈ Rn×n is the nonsingular
coefficient matrix, then it can be solved using the resultant matrix An−1 of step-n−1
of elementary symmetrization of A.

Proof. Consider the resultant matrix at step-n− 1

Ln−1Ln−2...L1A. (6.3)

In (6.3), let

M = Ln−1Ln−2...L1. (6.4)

From (6.3) and (6.4)

An−1 = MA (6.5)

(6.5) can be presented as

U = bd(1,−1)An−1 (6.6)

In (6.6), U is an upper triangular matrix and is equivalent to A. Let Ax = b be the
given linear system. Then equivalent linear system will be given by

Ux = bd(1,−1)TMb (6.7)

Backward substitution in equation (6.7) will give the unknown solution vector x. �

Lemma 6.4. We can derive LU decomposition of A ∈ Rn×n from elementary
symmetrization of it.

Proof. Consider matrix M in (6.4). It is a unit lower triangular matrix. Hence
from (6.5) we get

A = M−1bd(1,−1)−TU (6.8)
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Now applying (6.6) in (6.8), we get

L = M−1bd(1,−1)−T = M−1L(1) (6.9)

Since L is a unit lower triangular matrix, we have from (6.9)

A = LU. (6.10)

�

(6.10) is the decomposition from elementary symmetrization of A.

Lemma 6.5. If P ∈ Rn×n is a matrix that transform A ∈ Rn×n into uniformly
symmetric matrix S ∈ Rn×n then P is idempotent.

Proof. Recall from Lemma(5.5) that when A is a uniformly symmetric matrix, all
operating matrices will be the identity matrix In. So we get

P (A) = A;P (PA) = P (A) = A;P 2 = P. (6.11)

(6.11) shows that P is idempotent. �

Lemma 6.6. Given a nonsingular matrix A ∈ Rn×n such that LAU = S;S =
L(1)DU(1) be its elementary symmetrization where L,U ∈ Rn×n are unit lower
and upper triangular matrices and D ∈ Rn×n is diagonal matrix. Then S will be
positive definite if entries of D are positive. The symmetrization will be extremely
stable.

Proof. From resultant matrix An−1 = (aij(n − 1)) of step-n − 1 of elementary
symmetrization of A, consider equivalent diagonal matrix

D = diag(d1, d2, ..., dn) = diag(a11(n− 1), a22(n− 1)− a12(n− 1), ...,

ann(n− 1)− an−1,n(n− 1).
(6.12)

Computed D in (6.12) from An−1 will be same as that from S of (4.39) and recalling
from (4.39), we have

Ln−1Ln−2....L2L1AU1U2...Un−2Un−1 = S = L(1)DU(1). (6.13)

In (6.13), as d1, d2, ..., dn > 0 , Let Q = L(1)diag(d
1/2
1 , d

1/2
2 , ..., d

1/2
n ). Then S =

QQT and recalling from [6], S is a positive definite matrix.

Ln−1Ln−2....L2L1AU1U2...Un−2Un−1 = QQT . (6.14)

Also from [6], in line with the classical Cholesky decomposition of symmetric posi-
tive definite matrices, symmetrization (6.14) is an extremely stable process. �

Equation (6.14) is a generalized extension of Cholesky decomposition into the
subspace of all non-singular matrices of Rn×n. It proves that any nonsingular
matrix A ∈ Rn×n which has all positive entries in its equivalent diagonal matrix,
has an equivalent symmetric positive definite matrix S in Rn×n. The matrix Q
in (6.14) has row(column)wise constant entries and has same structure of matrix
factors, Nair[8] derived from his non-unit bidiagonal decomposition of matrix A.

Lemma 6.7. The matrix W ∈ Rn×n

W = U(1)DL(1) (6.15)

is a symmetric matrix, where D = diag(d1, d2, ..., dn).

Proof. Let W = (wij). In (6.15) as U(1) = L(1)T , wij = wji; i, j = 1 : n . �
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Matrix W is in fact uniformly persymmetric matrix in the sense that wik =
wkj = wkk, k = 1 : n for i, j < k; i, j = 1 : n.

Lemma 6.8. Given a nonsingular and symmetric matrix A ∈ Rn×n, then from its
elementary symmetrization, it can be derived S = LALT where L ∈ Rn×n is a unit
lower triangular matrix and S is the equivalent uniformly symmetric matrix of A.
If A is also positive definite, then A = GGT , the Cholesky triangular decomposition
of A.

Proof. If A is uniformly symmetric, then L = U = In, U being unit upper triangular
component of A and the result is true. Now if A is symmetric, we have from (4.39),
Ln−1Ln−2....L2L1AU1U2...Un−2Un−1 = S. This can be written as LAU = S,L =
Ln−1Ln−2...L2L1;U = U1U2...Un−2Un−1; Let S = unifrom(s1, s2, ..., sn). From
consistency of linear systems for solving scaling factors to construct L,U , we have

LAU = (LAU)T = UTALT ⇒ L = UT ⇒ LALT = S. (6.16)

(6.16) is the decomposition of A.

A = L−1L(1)DU(1)L−T ;D = diag(d1, d2, ..., dn) = diag(s1, s2 − s1, ..., sn − sn−1)
(6.17)

Now ifA is also positive definite, then in (6.17), letG = L−1L(1)diag(d
1/2
1 , d

1/2
2 , ..., d

1/2
n )

so that

A = GGT (6.18)

In (6.18) lower triangular matrix G is the classical Cholesky Triangle derived from
the elementary uniform symmetrization (6.16) which is extremely stable[6]. �

Lemma 6.9. Given a nonsingular matrix A ∈ Rn×n such that LAU = S is its
elementary symmetrization, then S = unifrom(s1, s2, ..., sn) is nonsingular if and
only if for any two consecutive entries, si 6= si+1; i = 1 : n− 1.

Proof. Let S be nonsingular. Then from resultant matrix An−1, we have d1 =
a11(n− 1), di = aii(n− 1)− ai−1,i(n− 1); i = 2, 3, ..., n− 1 are non-zeros. Consider
their partial sums si = d1 + d2 + ...+ di; i = 1, 2, 3, ..., n. It cannot be possible that
si = si+1 for some i; i = 1, 2, ..., n−1. Conversely, if for some index i ≥ 2, si = si−1,
then di = si − si−1 = 0 = aii(n − 1) − ai−1,i(n − 1). So equivalent matrix A will
be a singular matrix. S is singular. This proves that when none of these entries
s1, s2, ..., sn, repeat consecutively, two adjacent entries will not become equal. Then
matrix S will be nonsingular. �

Lemma 6.10. Elementary symmetrization of a nonsingular matrix A ∈ Rn×n

into a uniformly symmetric matrix S ∈ Rn×n can be transformed as an equivalence
symmetrization.

Proof. Recalling from equation (4.39), we have

Ln−1Ln−2....L2L1AU1U2...Un−2Un−1 = S (6.19)

Let B ∈ Rn×n be a nonsingular matrix. Then consider nonsingular matrices
S1, S2 ∈ Rn×n deduced from (6.19) and given by

S1 = (Ln−1Ln−2....L2L1)TB (6.20)

S2 = (U1U2...Un−2Un−1)B (6.21)
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(6.20) and (6.21) represent the factors that Adhikari [1] requires for equivalence
symmetrization and so we have

Ã = ST
1 AS2 (6.22)

Ã = BTSB (6.23)

Equation (6.22) is an example of the equivalence symmetrization proposed by Ad-
hikari[1]. Equation (6.23) is a congruence transformation which also gives the same

symmetric matrix Ã derived from S. This is a generalization of the equivalence
symmetrization by congruence transformation on the uniformly symmetric matrix
S. This generalization also simplifies the process because of the easiness in deriving
S from the elementary symmetrization of A as well as the easiness of the congru-
ence transformation. In order to simplify the process further we can even consider
B ∈ Rn×n in (6.20), (6,21) as a nonsingular diagonal matrix. �

Lemma 6.11. Given matrix A ∈ Rn×n, there exists a nonsingular matrix B ∈
Rn×n to derive an equivalent symmetric matrix Ã ∈ Rn×n such that Ã = BTSB.

Proof. If A is nonsingular, then by Lemma 6.10 the result is true. Suppose A is
singular with rank r, n > r > 0. Then we can continue elementary symmetrization
up to step-r. Correspondingly we can derive from resultant matrix Ar(r) partial
sums s1, s2, ..., sr, and for the remaining n − r entries, we may repeat sr, n − r
times to obtain S ∈ Rn×n as S = uniform(s1, s2, ...sr−1, sr, sr, ..., sr). Now for

any nonsingular matrix B ∈ Rn×n we can derive Ã = BTSB. This equivalent

matrix Ã is also symmetric. If A is zero matrix, then S also will be zero and the
result holds for any nonsingular matrix B. �

In section-5, we discussed that if A is a constant matrix, elementary symmetriza-
tion procedure will fail after step-1. This is a special case of this lemma when rank
r = 1. We see that symmetrizing constant matrix also into an equivalent symmetric
matrix has no restriction in this manner. Thus we have shown that when it comes
to elementary symmetrization, any given matrix A ∈ Rn×n can be symmetrized
into an equivalent symmetric matrix in a more generalized way.

7. Singularities of a Matrix and its Elementary Symmetrization

Column(row) dependencies in elementary uniform symmetrization can be sum-
marized in this way. At step-r, in column-r of resultant matrix Ar−1, it can be
observed that ar−1,r(r − 1) = arr(r − 1) ; for some r = 2 : n − 1. Hence scaling
factors using equation (4.34) cannot be computed. The process breaks and such
dependencies will be reflected as visual patterns in appropriate resultant matrices.

Lemma 7.1. In matrix A ∈ Rn×n, A = (aij); i, j,= 1 : n if column-r is linearly de-
pendent on columns l and m, (n−1) ≥ r > m > l ≥ 1 so that air = αail+βaim; i =
1 : n;α, β ∈ R are scalars, then in the resultant matrices Am, Am+1, ..., Ar−1

aij(j−1) = αall(l−1)+βamm(m−1); i = m,m+1, ..., n; j = m,m+1, ..., r−1, (7.1)

are constant entries and the symmetrization process breaks at step-r.
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Proof. Column dependency air = αail + βaim; i = 1 : n will be preserved from
step-1 to step-(l− 1) in resultant matrices A1, A2, ..., Al−1. At step-l, in the matrix
multiplication, Al = LlAl−1, column-r entries will be scaled as

air(l) = αall(l) + βaim(l); i = l + 1, l + 2, ..., n. (7.2)

At step-m, in the matrix multiplication Am = LmAm−1 the scaling of entries in
column-r will be

air(m) = αall(l) + βamm(m); i = m+ 1,m+ 2, ..., n. (7.3)

These are constant entries in column-r during the processing of uniformity of entries
at a previous step-m. This out of turn uniformity of column-r extends to beyond the
lower triangular block to equalize upper block entries amm(m), am−1,m(m), ...ar+1,m(m)
with its diagonal entry arr(m) = αall(l) + βamm(m). This will be then a visual
strip of constant numbers which is an out of turn, isolated and extended to upper
triangular block uniformity of entries. This strip of constant entries of column-r
will be persistent through step-m+ 1, step-m+ 2,...,step-r− 1 because of the scal-
ing by ±kij(j); i = j + 1, j + 2, ..., n; j = m + 1,m + 2, ..., r − 1. While computing
scaling factors kir; i = r+ 1, r+ 2, ..., n at step-r, by applying equation (4.34), since
ar−1,r(r− 1) = arr(r− 1) = αall(l) + βamm(m), the equation fails and the process
breaks. �

Suppose that the column dependency is limited to air = αail +βaim; i = 1, 2, ..r
the leading principal submatrix of dimension r×r. Then also the above out of turn
uniformity of entries, isolated and extending to upper block can be observed, but
trimmed to diagonal entry arr(r). Also if a leading column 1 ≤ (r) < l < m < n
is dependent on succeeding column-l and column-m, at step-m this uniformity of
entries, extending to upper triangular block can be observed. The process will be
breaking at step-m.

Recalling from [6], rank of n × n matrix A is defined as the maximum number
of linearly independent rows(columns) of A. Suppose rank of A is r. Let it be
symmetrized up to step-r, by appropriate row(column) exchanges whenever an out
of turn uniformity of current column is encountered. Then remaining n−r columns
will form a block of zig-zag pattern of strips of constant entries in these columns.

The dependency of rows is handled in a different way. A dependent row is re-
placed by independent rows on turn to turn basis. This is like approaching closer to
the dependent row. Finally an independent row become adjacent to the dependent
row. In this way two adjacent rows become identical and the process breaks.

Lemma 7.2. In matrix A ∈ Rn×n, A = (aij); i, j,= 1 : n if row -r is linearly
dependent on row-l and row-m, (n − 1) ≥ r > m > l ≥ 1 so that arj = αalj +
βamj ; j = 1, 2, ..., n;α, β ∈ R are scalars, then

• arj(j) = αalj(j) + βarj(j); j = 1, 2, ...l, l + 1, ...,m− 1.
• At Step-m : arj(m) = aij(m); j = 1 : n; kr+1,m(m) = 1
• At Step-m+1 : arj(m+1) = aij(m+1); j = 1, 2, ..., n; kr+1,m+1(m+1) = 1
• At Step-m+2 : arj(m+2) = aij(m+2); j = 1, 2, ..., n; kr+1,m+2(m+2) = 1
•
•
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• At Step-r − 1 : ar,j(r − 1) = ar−1,j(r − 1); j = 1 : n; krr(r) = 1

The process breaks at step-r.

Proof. At step-l, the entry arl(l) = αall(l) + βaml(l). This is because of uni-
formity of entries at step-l. Other entries of row-r will be linear combination
of entries of these two rows. This will continue up to step-m − 1. At step-
m the entry arm(m) = amm(m). This is because of the uniformity of entries
of column-m. Because of uniformity of entries of previous columns, the entries
ar,j(m) = am,j(m); j = 1, 2, ...m− 1. Since row-r depends both on row-l and row-
m, l < m and as uniformity of entries of both the corresponding columns l and
m are completed, all remaining columns m + 1,m + 2, ....n of row-r are such that
arj(m) = amj(m); j = m+1, ..., n. In the next step-m+1, as ar,m(m) = am,m+1(m)
;we get kr+1,m+1(m+ 1) = 1; kr+1,m(m+ 1) = −1. Then in the matrix multiplica-
tion, Am+1 = Lm+1Am we get

arj(m+ 1) = −arj(m) + amj(m) + am+1,j ; j = 1 : n; (7.4)

Since arj(m) = amj(m); j = 1 : n, the row arj(m + 1) of Am+1 will be replaced
with the row-m+ 1 of Am. Thus

arj(m+ 1) = am+1,j(m)j = 1 : n. (7.5)

Again when we compute the scaling factors from column-(m+ 1) of Am+1, as row
entries arj(m+ 1) = am+1,j(m+ 1); j = 1 : n, the scaling factors kr,m+2(m+ 2) =
1; kr,m+1(m+1) = −1. Due to this, in resultant matrix Am+2, row-r will be replaced
with row-m+ 2. This turn by turn replacement of row-r in resultant matrices will
be continuing till step-(r − 1). At step-r, as row-r − 1 and row-r are identical in
Ar−1, scaling factors cannot be computed and the process will break. �

Above result will be true for the leading principal submatrix of dimension r × r
also when it is singular as stated above but trimmed to column-r. The difference is
that in the submatrix level column(row) dependency, we will be able to complete the
process by suitable row exchanges among row-r through row-n. In the full column
or row dependency also we may be able to appropriately exchange columns(rows)
and continue the process for row-r. But we will not be able to complete the process
through the required n− 1 steps.

Suppose all remaining rows, r + 1, r + 2, ..n are dependent rows of some of the
previous rows 1, 2, ..., r. Because of Lemma-7.2, all these rows, row-r+1, row-r+2,
..., row-n, will be identical with last processed independent row-r−1. Thus a patch
of column-wise constant entries will be visible across these remaining rows in the
resultant matrix Ar. This highlights that A is of rank-r − 1. Summarizing these
results we have

Lemma 7.3. If all n leading principal sub-matrices of nonsingular matrix A ∈
Rn×n are nonsingular then uniformity of entries of lower triangular block can be
completed without any column or row exchanges in n− 1 steps.

Had we started with the upper triangular block, the role will be exchanged and
whatever results stated for columns will be applicable to rows instead.
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8. Numerical Illustration of Elementary Symmetrization

Hilbert matrix H = (hij);hij = 1/(i + j − 1) of dimension 4 × 4 is considered
to illustrate the symmetrization process. It is ill-conditioned and incurable[10,16].
H is symmetric and totally positive. For H, by default, scaling factors will be in
closed interval [0, 1].

Example-1 Symmetrization of H-4
Step-1

L1 =


1 0 0 0

0.5 1 0 0
0.666667 0 1 0

0.75 0 0 1

 ;A =


1 0.5 0.33 0.25

0.5 0.33 0.25 0.20
0.33 0.25 0.20 0.17
0.25 0.20 0.17 0.14


Step-2

L2 =


1 0 0 0
0 1 0 0

1.33E − 15 −1.33E − 15 1 0
−0.1 0.1 0 1

 ;A1 =


1 0.5 0.3333 0.25
1 0.583333 0.416667 0.325
1 0.583333 0.422222 0.333333
1 0.575 0.416667 0.330357


Step-3

L3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0.5 −0.5 1

 ;A2 =


1 0.5 0.3333 0.25
1 0.583333 0.416667 0.325
1 0.583333 0.422222 0.333333
1 0.583333 0.425 0.337857


A3 =


1 0.5 0.3333 0.25
1 0.583333 0.416667 0.325
1 0.583333 0.422222 0.333333
1 0.583333 0.422222 0.33369


Diagonal entries from A3 : D = diag(1, 0.083333, 0.005556, 0.000357)

Symmetric matrix from D : S =


1 1 1 1
1 1.083333 1.083333 1.083333
1 1.083333 1.08889 1.08889
1 1.083333 1.08889 1.08889


Since S is also positive definite, by equation (6.15) S = QQT ; Q =


1 0 0 0
1 0.28867 0 0
1 0.28867 0.07454 0
1 0.28867 0.07454 0.018894

.

Nair [8] derived matrices of type Q with column(row) wise constant entries as fac-
tors for a given matrix. Whole processes on A are completed with step-3 itself as
against the total six steps. All diagonal entries are positive and so decomposition
QQT for S will be stable by Lemma-6.8.
Example-2 : Out of turn uniformity of entries of dependent columns.

1 0.50 2.00 2.50
0.5 0.33 1.00 1.67
0.33 0.25 0.67 1.25
0.25 0.20 0.50 1.00




1 0.50 2 2.5
1 0.583333 2 2.916667
1 0.583333 2 2.916667
1 0.575 2 2.875




1 0.5 2 2.5
1 0.583333 2 2.916667
1 0.583333 2 2.916667
1 0.583333 2 2.916667


Step-1 Matrix Step-2 Resultant Matrix Step-3 Resultant Matrix.
Column-3, 4 are dependent on column-1,2 respectively. At step-2, uniformity of
entries of column-3(Bold Font) is out of turn. At step-3, column-3 uniformity is
preserved, out of turn uniformity of entries of column-4(bold font) is displayed.
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Example-3 : Turn by turn replacement of dependent row by current independent
rows. Row-3, 4 are dependent on Row-1,2 respectively.
Step-1 Matrix Step-2 Resultant Matrix Step-3 Resultant Matrix.

1 0.50 0.33 0.25
0.50 0.33 0.25 0.20

2 1.00 0.67 1.25
0.75 0.50 0.38 0.30




1 0.50 0.333333 0.25
1 0.583333 0.416667 0.325
1 0.50 0.333333 0.25
1 0.625 0.458333 0.3625




1 0.5 0.333333 0.325
1 0.583333 0.41667 0.325
1 0.583333 0.41667 0.325
1 0.583333 0.41667 0.325


At step-2, dependent row-3(bold font) is replaced with independent row-1. At step-
3, both dependent row-3 and row-4(bold font) are replaced with independent row-2.

9. Conclusions

Symmetrization of a given nonsingular square matrix A ∈ Rn×n using elemen-
tary column(row) operations is introduced. The procedure progresses in a similar
way as classical Gauss elimination. Contrary to eliminating entries, here for sym-
metry, column(row)wise lower and upper triangular blocks are scaled to become
identical with corresponding diagonal entries. It is proved that in this way only
one triangular block, either lower or upper block need be processed for symme-
try. Entries of equivalent diagonal matrix D can be derived as differences of first
supra(infra) entries from diagonal entries of resultant matrix An−1 of step-n − 1.
It thus reduces the processing requirements to just half of the total 2(n− 1) steps.
As the symmetric matrix S is provided by a universal congruence transformation
S = L(1)DU(1), eliminations of row or column entries also can be avoided. In this
way S = (sij) has a simpler structure compared to symmetric matrices. Its struc-
ture is sik = skj = skk, k = 1 : n, for all i, j > k, i, j = 1 : n. General properties of
the symmetrization process and matrix S are discussed. Scaling factors applied by
operator matrices are coupled as equal in magnitude but opposite in signs. Because
of this property, it is called elementary uniform symmetrization. Zero is a valid scal-
ing quantity and based on this feature, a pivoting strategy is presented. It is shown
that this symmetrization is applicable to any given square matrix A ∈ Rn×n for
deriving its equivalent symmetric matrix S in a generalized way. When entries of D
are positive, classical Cholesky decomposition can be applied to such matrices for
deriving equivalent Cholesky triangular matrix components. The symmetrization
is extremely stable in such cases. A generalized extension of Cholesky decompo-
sition to the subspace of all nonsingular square matrices is presented. The type-2
equivalence symmetrization proposed by Adhikari[1] is also generalized in a more
simplified way as a congruence transformation. It is shown that dependencies of
columns(rows) are presented as visual patterns in appropriate resultant matrices of
the process.
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