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Abstract 

Carryover effects constitute a potential issue when using the crossover design. Multiple methods exist, 

both for modelling the carryover effect, and predicting adjusted means from these models. In the current 

paper, we investigated the reliability of the prediction methods for estimating the model adjusted means 

and their differences, using a simulation study. Our simulation data suggest that the most reliable 

estimates were obtained when modelling the carryover effect as a factor, and assuming a carryover of 

zero in the predictions. However, potential confounding effects can cause large bias when using this 

method, and in the author’s opinion it would be preferable to completely avoid presenting the model 

adjusted means. Most of the methods tested, as expected, provided identical and reliable estimates of the 

treatment differences from these model adjusted means, when a carryover was included in the model 

either as factor, or using a reduced carryover model. 

Keywords: Carryover effect, prediction, model adjusted means, LSMEANS, least square means, 

marginal means. 

1. Introduction 

Despite being criticized due to a number of potential shortfalls, the crossover design [1] still remains a 

common method of testing differences among treatments, and is in fact the recommended design for analysis 

for bioequivalence trials [2], drug abuse studies [3], and in certain circumstances for the thorough QT/QTc 

studies [4]. One of the most common arguments against the use of crossover designs, is that the effect of 

the treatment on a subject may be influenced by a previous treatment. In other words, a particular treatment 

may have what is known as a “carryover effect”.  

In order to reduce the impact of carryover effects in the design stage of the trial, an adequate washout 

period is chosen between treatments, to allow for residual effects of previous drugs to be removed from the 

system of the subjects. This washout period is chosen using available pharmacokinetic data from other 

studies, but is not necessarily always adequate to completely eliminate all carryover effects. In order to 

adjust for possible carryover effects, a lagged treatment effect, i.e. treatment in previous periods, may be 

included in the model, with the first order carryover effect usually being adequate [5].  

In clinical trials, model adjusted means are often used as a way to illustrate the treatment effect and 

treatment differences. These model adjusted means are obtained by predicting from the model, making some 



110 
 

assumptions about the “average” subject. Statistical packages like SAS® and STATA have automatic 

procedures, LSMEANS and MARGINS respectively, allowing the user to obtain such predictions when a 

mixed model is used. Although no difference usually exists in the definitions of most model adjusted means, 

when calculating the difference between treatments due to the carryover effects, different assumptions about 

the average subject can lead to different estimation of the actual treatment effect. Despite the difference 

between treatments being the outcome of interest in such trials, it is not unlikely for the adjusted means for 

each treatment to be used, either for metanalysis, or as priors in later trials.  

In this paper we investigated how model adjusted means should be calculated when carryover effects 

are included in a cross-over trial, using simulations. Additionally, for the adjusted means definitions, which 

would yield different treatment differences, the performance of alternative definitions was also assessed. 

2. Methods 

For this paper only the 4x4 crossover Williams design was examined, but results obtained can be 

generalized to other crossover designs, with the exception of the 2x2 design. The underlying reason for this 

is that for the 2x2 crossover design, the carryover effect cannot be modelled as a parameter in the model, 

due to collinearity with the other parameters. As such, carry over effects are usually investigated using an 

alternative methodology [6]. Additionally, for simplicity purposes, only first level carryover effects were 

considered for this paper. 

Modelling methods 

When modelling a crossover trial, a model with sequence, period and treatment as fixed effects, and 

subject nested in sequence as random effect is commonly considered. If we believe a carryover effect could 

exist, such a carryover effect is added to the model with one of the following methods: 

• Full carryover: Using the value of the previous treatment period (lag treatment), and setting all the 

Period 1 lag treatments to a non-missing new factor level (usually 0). This technique hence fits to 

the model, in a trial with “x” treatments “x” fixed effects. 

• Reduced carryover [7]: For the observations that have lag treatments that are non-missing (i.e. not 

Period 1), and not Placebo, create one variable for each with their value being 1 when they occurred, 

and 0 otherwise. For the lag treatments for Period 1, set all these variables to 0 and when lag 

treatment is Placebo, set them to -1. This method reduces the degrees of freedom taken by the model, 

by adding one carryover fixed effect for each treatment except Placebo, with 1 being the treatment 

occurred at the previous period, -1 if the treatment at the previous period was placebo, and 0 in all 

other cases. The author notes that although most commonly this method assigns the -1 when lag 

treatment is Placebo, any of the lag treatments could be selected to be assigned the -1, and this 

method can still be used when no Placebo treatment is used.   

In this paper we considered both models above, and also a model ignoring the carryover completely 

when calculating the adjusted means. 
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The author notes that the methodological origin of the reduced carryover model could not be identified. 

However, to the author’s understanding (and experience), the model works by confounding carryover with 

period, hence shifting the coefficient of carryover and period but not the others. The author hence expected 

that although the confounding cannot be eliminated when predicting the effects of treatments themselves 

(hence producing biased adjusted means), it is however limited when predicting the treatment differences 

as the effects of both period and carryover are subtracted out of the prediction, hence producing valid 

adjusted means differences. 

Model adjusted means methods 

When model adjusted means are obtained using a standard package such as least square means 

(LSMEANS) in SAS® software, the following procedure is applied: 

1. Allocate all possible values of the factors of interest (or treatment in this case) one at a time. 

2. Assign to the remaining covariates their “average” value as follows: 

a. For continuous variables, the mean value is used. 

b. For class variables, either: 

i. Assume balanced design and assign equal proportions to all categories (this is the 

default in LSMEANS), 

or  

ii. Check the actual proportions in our sample for each category (this is the observed 

margins option in LSMEANS). 

3. Predict using the specifications above. 

As explained above, the default options assume that for the factor variables that are not of interest, 

equal values between groups are used. This is not an unreasonable assumption in most cases, since we 

randomize in order to achieve a balanced design, and assume that even if the sample has some differences 

between the two groups in the population to be predicted, we can assume equal values. However, we need 

to consider if this assumption is reasonable when a carryover effect is included in the model. 

Looking at the literature [8] on how to implement LSMEANS in the SAS® software, we observed that 

the latter recommended using the 1st method for implementing the carryover effects, using a lag class 

variable, with the observed margins option. This method, adjusts for the fact that we do not expect equal 

proportions for each level; which is in fact the case here, since we expect more values to be assigned in the 

no-treatment group for the carryover variables than the other groups in the 4x4 crossover. However, this 

method ignores the fact that since this is a crossover design, a treatment cannot have a carryover effect from 

itself in practice, and hence the latter should be implemented as zero. The options for predicting for both the 

full carryover and the reduced carryover models above will be identified below, and the potential 

issues/limitations for each method will be presented. 
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Full carryover model (abbreviated FM): 

a) Marginal means: This is the default option of LSMEANS that would assume a (100/(x+1))% 

proportion for each treatment (with “x” being the number of treatments). Such a method has the 

limitation whereby it assumes that an equal number of observations had a carryover effect from 

each treatment and no-treatment. In fact, in a 4x4 crossover design, one would expect more 

observations to not have been impacted by a carryover effect, than to have a lag effect from a 

specific treatment, as all observations in Period 1 can have no carryover effect. This method 

produces non-estimable results when used in the SAS® software. 

b) Marginal means, observed margins: Although similar in spirit to (a) this method takes into account 

that not all carryover treatments were observed equally, as not all observations in Period 1 have no 

carryover effect. As mentioned above, this appears to be the method suggested by the SAS® 

software for predicting when a carryover is included in model [8].  

c) No carryover: This method works by assuming in the predictions that no carryover effects exist (i.e. 

all carryover effects will be set to zero). This method appears to make a reasonable assumption that 

in the population under consideration, we are not interested in any carryover effect, but only in the 

actual drug effect. However, even though that is a reasonable assumption, the problem appears in a 

theoretical level on our models, if we can assume that no confounding occurs between the treatment 

variables and carryover variables. This method produces non-estimable results when used in the 

SAS® software. 

d) Mean carryover: For each treatment, the observed proportions of the lagged treatment should be 

calculated and used in the estimates command. This approach may make sense, if we believe that 

confounding exists and the model estimates are biased because of confounding. If the model is 

estimated correctly, this method has a larger potential for bias as different carryovers are added in 

each group.  Another possible downside of this method is the increase in complexity as 

treatments/periods increase.  

The treatment differences of options a, b and c, are the same as the effects from carryover are eliminated 

when subtracting the treatments, despite providing different adjusted means. Only option d will yield 

different model adjusted mean treatment differences estimates, as it has different carryover effects for each 

treatment. 

The reason the SAS® software provides non-estimable results is not explicitly stated, and the most 

likely reason out of the reasons provided based on SAS® software documentation [9] for this, is that “There 

is a confounding problem that is associated with the data and the model”. The author’s understanding of this 

error, is that this is meant as a safeguard to avoid predictions where it should not predict. However, such 

automated checks are prone to errors, as they cannot fully conceptualize the study design (as a design issue 

would probably lead to non-estimable coefficients rather than predictions, and may not be applicable in the 

scenario described here). It has to be noted that other packages like STATA do not forbid such a prediction. 
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Reduced carryover model (abbreviated RM): 

a) No carryover: Similarly to the FM, this will plug in the model that no carryover effects exist. 

b) Marginal means: As the carryover effect is from a continuous variable, this will calculate the mean 

of each carryover variable and plug it in the model. 

The two options for the RM will be the same when no missing data exist (as the mean of all carry over 

variables will be zero), and due to the low numbers of missing data, little difference was expected between 

the two. Despite providing different adjusted means, their treatment differences are the same as the effects 

from carryover are eliminated when subtracting the treatments. 

No carryover model (abbreviated NCM) 

For completeness, a model ignoring the carryover effects completely was also implemented. The 

standard marginal means were used for the predictions from this model. 

Simulation methods 

The aim of the simulations was to assess the performance of the model adjusted means methods and 

their differences, in terms of prediction accuracy. Their performance was assessed using the mean bias, 

maximum absolute bias and MSE (Mean Squared Error). The simulation was performed in STATA 11 [8], 

and the modelling procedure used was xtmixed. 

Simulation design 

A 4x4 crossover study was conceptualized based on author’s experience. Results were simulated from 

a model with an intercept of 1.5 units, a “0 units” effect of Period 1, a “-1 units” effect of Period 2, “-0.5 

units” of Period 3, “-0.25” units of Period 4, “5 units” effect of Treatment 1, “4.5 units” effect of Treatment 

2, “3 units” effect of Treatment 3, and “1 unit” effect of Treatment 4. Random deviation was added from a 

Normal distribution; a 0.2 standard deviation was added at a subject level and 0.5 at the observation level. 

Sample size calculation 

The sample size in each simulation was calculated based on STATA 11 built-in sample size calculator 

[10], assuming the study wanted to detect a difference of 0.5, with 80% power and alpha=0.05 and needed 

19 subjects. As it is standard practice in clinical trials, a larger number was chosen based on a predicted 

missingness, and 20 subjects were used in each simulation. 

Number of replications 

The outcome of these simulations was the prediction bias of these methods; the accuracy to detect a 

0.01 bias was considered to be sufficient. Based on a test simulation design without a carryover effect, the 

maximum standard deviation detected for bias was 0.2. To estimate the coefficients of the model with 95% 

confidence, the number of replications needed as per [11] was calculated to be 1536.64. The number of 

replications for each Scenario at each carryover level was hence set to 1550. 
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Scenarios tested in the simulation 

The following 3 scenarios were examined individually in the simulation: 

• Scenario 1: Only one treatment had a carryover effect. 

• Scenario 2: Three of the four treatments had a carryover effect. This could be the case the trial 

includes a Placebo effect (which does not have a real effect to carryover). 

• Scenario 3: All four treatments had a carryover effect. This could be the case when all four 

treatments comprise active compounds, or the Placebo effect has a carry-over (such a “carry-over” 

could occur in a case of questionnaire data where a subject overestimated the effectiveness of the 

drug in the next treatment because of the lack of effect of placebo in the previous treatment).  

Each scenario above was investigated with and without missing data. For the scenarios with missing 

data, the data were set to missing under a missing completely at random assumption, with the relatively high 

proportion of 10% missingness. The reason missing data were investigated separately, is because some of 

the prediction methods above relied on the observed proportions, and could hence be affected by the 

imbalance caused by the missing data.  

For all scenarios above, the carryover effect was investigated as a percentage of its respective lag 

treatment effect, from 0 to 10% (tested at each 1% increment) of the real treatment effect at the last period.  

3. Results 

The MSE was considered the primary measure of the methods’ performance, with the results of the 

adjusted means shown in Figure 1. Assuming no carryover effect in the FM had a relatively flat MSE, which 

suggests a relative stability in its estimates, irrespective of the carryover effect and the Scenario. The 

marginal means and the marginal means observed margins of the FM model yielded very similar results in 

terms of MSE in the simulation, and both showed an increasing trend as carryover increased. As expected, 

these methods performed relatively better in Scenario 1, compared to Scenarios 2 and 3. Non-surprisingly, 

both methods of the RM produced almost identical results in terms of MSE, even in the case with missing 

data. These methods also showed an increasing trend, but they gave slightly lower MSE estimates when 

compared to the FM marginal means methods. The performance of the no carryover model was heavily 

reliant on the Scenario tested and the level of carryover effect. This technique outperformed the others in 

terms of MSE in cases with very low carryover.  

The mean bias results are shown in Figure 2. The FM with no carryover effect had a relatively flat 

mean bias of 0 in Scenarios 1 and 2 (with the exception of the Scenario 2 with missing for treatment 4). 

Even in the cases where the bias was not flat and instead showed an increasing trend, this method 

demonstrated a lower bias compared to the other methods. All other methods showed an increasing 

relationship with carryover proportion in terms of mean bias, with their performance varying between each 

scenario. 

The maximum absolute bias results are shown in Figure 3. The FM with no carryover effect had a 

relatively flat maximum absolute bias in most scenarios, but the maximum bias varied between scenarios 

and with the presence or absence of missing data. In Scenarios 2 and 3, and with high carryover, this method 
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appeared to have outperformed the others, especially when no missing data existed. All other methods 

showed an increasing relationship with carryover proportion in terms of maximum absolute bias, with their 

performance varying between each scenario. 

MSE estimates of the adjusted mean difference are shown in Figure 4. Both with and without missing 

data, the MSE of all the FM methods except the one with mean carryover and RM was flat, indicating that 

it was not impacted by the carryover effect. When no missing data existed, both the FM with mean carryover 

and the NCM showed an almost identical increasing relationship, with the MSE of the bias varying 

depending on the Scenario. When missing data existed, the FM with mean carryover exhibited a greater 

MSE to all other methods, and the NCM exhibited a similar behavior as with the no missing data scenarios.  

Similar relationships to the ones with MSE were observed for the mean bias and the maximum absolute 

bias, with FM methods except the one with mean carryover and RM having flat relationships with carryover 

for both measures, and the other two methods varying depending on the carryover. The results of the mean 

bias and maximum absolute bias for the treatment difference are shown in Figures 5 and 6 respectively. 

Most notably the average bias was zero for the FM methods, except the one with mean carryover and RM. 

4. Discussion 

The simulations have shown that the best model adjusted mean predictions were obtained in cases with 

high carryover effects, when the model using the lag treatment as fixed effect was used, assuming no 

carryover effect in the prediction. Other prediction methods from the same model, the model with reduced 

carryover, and the no carryover model, varied in terms of their performance depending on the Scenario, and 

were unsurprisingly more prone to error as the carryover effect increased. Based on the results of the 

simulation, the author believes that in cases of high carryover effect and sufficient sample size, this method 

has the highest chance to yield the best predictions. The limitation of the SAS® software to provide this 

prediction is not unreasonable, as this prediction showed a relatively flat maximum bias, which suggested 

that the confounding concern should not be taken lightly. However, further simulation work may be needed 

to investigate other scenarios, and especially cases with larger sample size, as the confounding problem 

could be reduced as sample size increases.  

The author believes that in light of this simulation work, presentation of model adjusted means should 

ideally be avoided, when there is reason to believe that carryover effect exists, or the reduced carryover 

effect method is used. Unlike in other contexts, the FM out of the package adjusted means estimates would 

probably yield a result with bias being quantifiable (quantified based on the model coefficients), and if 

presented, the bias should be acknowledged. The author finally notes that the best prediction method would 

be from the FM, assuming no carryover in the prediction, but its results should be presented with caution. 

When predicting the treatment differences of model adjusted means, all the FM methods except the 

one with mean carryover and RM methods, provided stable estimates and appeared to be unbiased on 

average. Despite RM providing biased predictions of the model adjusted means themselves, the estimates 

of the differences were identical for all Scenarios tested here to the ones of the FM as expected. Hence, the 

RM can be used to save degrees of freedom, if the model adjusted means themselves are not to be presented. 
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In conclusion, presentation of model adjusted means should be avoided when there is reason to believe 

carryover effects exist. If adjusted means are needed, but a carryover effect is present, the FM, assuming no 

carryover in the prediction, has the highest likelihood of providing valid estimates, but the potential bias 

should be acknowledged. Treatment differences of model adjusted means can be obtained with accuracy, 

for both the FM and the RM, as long as the adjusted means themselves used the same average values for the 

covariates between treatments in their predictions. 
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Figure 1: MSE of adjusted means per treatment as a function of carryover proportion for each 

Scenario, with and without missing data. 
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Figure 2: Mean bias of adjusted means per treatment as a function of carryover proportion for 

each Scenario, with and without missing data. 
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Figure 3: Maximum absolute bias of adjusted means per treatment as a function of carryover 

proportion for each Scenario, with and without missing data. 
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Figure 

Figure 4: MSE of treatment adjusted means differences as a function of carryover proportion for each 

Scenario, with and without missing data. 
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Figure 5: Mean bias of treatment adjusted means differences as a function of carryover proportion for each 

Scenario, with and without missing data. 
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Figure 6: Maximum absolute bias of treatment adjusted means differences as a function of carryover proportion 

for each Scenario, with and without missing data. 


