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Abstract. We propose an unsupervised machine learning algorithm for anomaly detection that exploits self-learnt features of mono-
dimensional time series. A Variational Autoencoder, where convolution takes place of dot product, is trained to compress each
input to a low-dimensional point from a normal distribution, detecting an anomaly as low probability and high density sequence.
We validate our work on different public datasets, obtaining results that shed new light on Variational Autoencoders applied to
anomaly detection.

I. INTRODUCTION

Forecasting and anomaly detection represent two critical research topics in the analysis of continuous phenomena
over time. These studies are applied to different disciplines: physics, healthcare, robotics, artificial intelligence,
finance, product analysis, etc. Each discipline employs its own corpus of knowledge [1, 2], build on the top of many
factors: from the nature of input variables and their relationships, to the presence of trends, seasonality in the time
series etc. [3, 4]. Often physical processes exhibit patterns that can be modeled with simple functions that repeat
themselves around their fundamental period, while for many others, like financial and economical series, random
walks models [5] are employed and their predictability is still an open issue [6]. A fundamental factor, in terms of
predictability of the process, is how information propagates through time. If from one side in Markovian processes
the information useful to forecast the next time period depends only on the previous state of the system, on the other
in chaotic system a small perturbation of the initial state may influence the behavior or the phenomenon in a remote
future.

Sequential models applied to time series have been widely used in recent years in many disciplines [8, 9, 13].
Particular attention has been devoted to explore learning methods [14, 15], enabled by the capacity of those models
to process unidimensional and multidimensional datasets, extract features autonomously [16] and model complex
systems’ dynamics. [17]. Malhotra et al. [20] use Long Short-Term Memory Networks (LSTM) [21] on physical time
series: once forecasting is reliable, anomaly detection is based on modeling the prediction errors. On the other hands,
Tsang et al. [22] provide a learning method applied to financial time series: after preprocessing data with a Symlet
Wavelet Thresholding, a Stacked Autoencoder (SAE) is used for a pre-train session and finally an LSTM is used to
forecast and identify anomalies. When it comes to financial time series forecasting, is often necessary a multivariate
dataset which provides the missing information about the stochastic process that is not present in the mono variate
market index. Laptev et al. [18] feed the features extracted from an autoencoder to a LSTM model, hence the model is
used for anomaly detection. Being able to extract only the relevant features for the process may also benefit extreme
event forecasting [19].

In this work, we use a Variational Autoencoder (VAE) [24], where dot product is replaced by convolution: this
operation has been used extensively [8, 9, 10] for signal processing, hence it can enhance VAE so the model learns
relevant features by compressing each input sequence to a point drawn from a low-dimensional gaussian distribution,
hence labeling as anomalous dense timesteps (i.e. they are close each other) whose probability is low. To the best
of our knowledge Convolutional VAE has been applied only recently to clustering problems [11, 12] while anomaly



detection applied to physical time series is an original contribute of this work.

The paper is organized as follows: in Section II the Convolutional Variational Autoencoder (CVAE) model is
described in details. In Section III the we present the results on several physical datasets, while the last Section is
dedicated to the conclusion and future directions of this work.

II. METHOD

We approach the problem of anomaly detection in mono dimensional time series with a Variational Autoencoder
[24] where the dot product, that involves the affine transformation between each stage input and the neural network’s
parameters, is replaced by convolution. The main idea behind this choice is that convolution is the state of the art
method in many challenges where signals are involved [7], mainly due to ability of convolutional networks to build
on top of the self-extracted features increasingly complex representations of the input that are used for tasks like
classification, outliers detection etc. Differently from simple dot product, convolution is characterized by weights that
are shared along the input, making it possible to spot patterns that are invariant to translations and rotations, i.e. robust
to noise and perturbations.

As the Variational Autoencoder learns to map each training input to a point belonging to a low-dimensional gaussian
distribution, the model emphasizes the local characteristics of each sequence. Figure 1. shows separately the key
points of both Variational Autoencoders and the convolution operation. In the next section the math behind the model
and the CViAE architecture are described in details, while the full source code for the models employed in this work
is provided'.
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FIGURE 1: The top image shows a VAE architecture where the neural network’s parameters are not shared (i.e. each
layer is dense). The encoder learns a compressed representation of each input sequence by learning the hidden distri-
bution’s parameters (in our case, being it a standard distribution, a vector for the mean and a matrix for the standard
deviation). From that representation, the decoder reconstructs the input through another step of affine transformations.
The bottom image shows how convolution is employed in our work to replace the neural network’s dense layers: in
the convolutional layers the parameters are locally connected, hence the model is expected to learn a representation of
the series which is invariant to translations and rotations.

! https://github.com/EmanueleLM/CVAE
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Convolutional Variational Autoencoder

A Variational Autoencoder is used to make inference and learning with a probabilistic based method characterized by
latent variables with a posterior intractable distribution.

By defining latent variables z that describe our data it is possible to obtain a generative model: formally, one can model
the probability of the input data as P(X) = f P(X|2)P(z)dz, where P(z) is the probability distribution function of the
latent variable z, also called prior, and P(X|z) the conditional distribution of data.

In order to obtain P(z), one can use the conditional probability P(z|X): unfortunately approximating this distribution
is often hard, hence variational inference approximates P(z|X) with another tractable distribution Q(z|X). This approx-
imation problem can be optimized by a convolutional neural network where the first half layers, i.e. the encoder, map
X to the low-dimensional gaussian distribution P(z) employing Q(z|X), while the second part of the network rebuilds
(hence the name decoder) the input by approximating P(X|z) from its low-dimensional representation z.

In order to rebuild the original input sequence, the deconvolution operation is employed [26], while the hidden repre-
sentation of each input sequence is obtained with the so-called reparametrization trick [27].

The network’s parameters are learnt through backpropagation, by minimizing the Kullback-Leibler (KL) divergence
between encoder and the intractable prior distributions, namely Dg;[Q(2)||P(z|X)]. The objective function, known
as Evidence Lower Bound (ELBO), takes the following form: logP(x) — Dk [Q(zX)||P(zX)] = E[logP(X|z)] —
Dk [0(zX)||P(2)]. In the last equation E[logP(X|z)] measures the reconstruction error from the input sequence, while
Dk [0(z]X)||P(z)] accounts for the divergence between the encoder and the prior function.

In our work we train the CVAE on data D,,,;, that does not contain anomalies and test it on unseen data D, that
instead may contain anomalies: in this way, when the compressed representation of an input sequence z from Dy, is
very different from the pool of patterns seen so far in the time series, it will be assigned a low probability and marked
as anomalous.

Since minimizing the CVAE loss is computationally expensive even in the condition of defining a trainable encoder
function, we explored several normalizations techniques: from 12 regularization, that is known to benefit CVAE [11],
to 11 (that induces sparsity in the solution), to a combination of both 11 and 12 regularizations. Moreover, we have
experienced that assigning importance weights to the different loss’ terms (reconstruction error and KL divergence
between decoder and prior) benefits the anomaly detection.
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FIGURE 2: The CVAE model proposed in this work: at each stage of the encoder (left part of the image), convolution
replaces dot product (fully connected layers), except for the layer before the bottleneck, i.e. where the reparametriza-
tion trick is used to sample from the latent distribution. At each stage of the decoder (right part of the image), decon-
volution is used to reconstruct the input sequence, except for the last layer that is dense. Fully connected layers are
necessary to make the input match the dimension of respectively its reconstruction and the latent variables distribution.
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II1. Anomaly Detection

We introduce a method to detect anomalies based on both probability and density of the candidate sequences: given a
series of input sequences s = (xy, .., X,), s is anomalous if the following two conditions on s hold. First, the probability
that CVAE assigns to each sequence is below a threshold 7, namely V x; € s Py(x;) < 7, for example the 5th
and 95 percentiles, being z drawn from a normal distribution. The density based condition requires that for each
sequence in s, the temporal distance between each couple (x;, x;;1) is a fraction of the entire sequence length, namely
Y X, Xis1 € sd(x;, xiy1) < klx|, s.t. k € (0, 1), where d(-,-) is a measure of the distance on the x-axis (the time axis)
between two candidate sequences, while |x]| is the length of each input sequence.

We test our model on three publicly available physical® datasets, plus a synthetic one. All the datasets are arranged
so the anomalies are not present in train/validation, while in the test part one or more anomalies need to be detected.
As regards the synthetic dataset, it is a sin function (the model for each data point is y = sin(t + p)) where some flat
zones are introduced in the test set, as it was thought to explicitly show how CVAE algorithm discovers and highlights
anomalies (see Figure 3 for respectively the train set (a), the test set (b) and each sequence’s likelihood (c)). Even if
all the 4 datasets come in the form of univariate quasi predictable time-series, they set different challenges: data from
Space Shuttle Marotta Valve (Figure 4) contain a localized anomaly which can be easily spotted when a sequence is
long enough to capture the unseen pattern, while in the Power Consumption dataset (Figure 5) the anomaly can be
spotted if the algorithm captures the 7 days periodicity, finally spotting in the test set that two out of five consumption’s
peaks are not present at the end of the sequence. Data are preprocessed with normalization methods and subsampled
(up to a factor of 5) when possible, to speedup computation.

The results obtained with CVAE algorithm are reported in following images .

(a) (b) (©)

FIGURE 3: Anomaly detection on the synthetic dataset: it is a simple sin function where in the test set (figure (b))
some flat lines has been substituted to the origin function (the green vertical bars highlight each anomalous zone).
The CVAE algorithm is able to spot the anomalies (green rectangles on figure (c), where on y-axis it is reported the
probability of each timestep) assigning low probability to each sequence that has been artificially modified.

IV. CONCLUSION

We have presented an unsupervised method for anomaly detection that exploits two different concepts: Variational Au-
toencoders and Convolutional Neural Networks. We have shown that anomalies are highlighted as high-density/low-
probability points. We reserve to extend the analysis to other datasets: in future works the aim is to apply those
methods also to multidimensional financial time series, to capture the highly complex relations between features and
hidden variables.

’http://www.cs.ucr.edu/~eamonn/discords.

3Since the algorithm is fully unsupervised, one may obtain the parameters 7 and k as the parameters that enhance anomaly detection on one
or more synthetic datasets. On the other hands, one may wish to find 7, k so they maximize the Fg score between anomalous and non-anomalous
sequences on validation, but this would make the problem partially supervised.
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FIGURE 4: Anomaly detection on the space shuttle dataset: as it is easy to spot the pattern in the train set (figure
(a)), in the test set (figure (b)) there’s a phase of decompression and compression that constitutes an anomaly that
is detected by the CVAE algorithm with certainty (green rectangles on figure (c), where on y-axis it is indicated the
probability of each timestep).
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FIGURE 5: Anomaly detection on the power consumption dataset: as it is easy to spot the pattern in the train set (figure
(a)), in the test set (figure (b), where the green vertical bar highlight the anomalous zone) the anomalous sequence is
identified by two out of five missing peaks of consumption. The CVAE algorithm spots it with a high density zone
of low probability sequences (green rectangles on figure (c), where on y-axis it is indicated the probability of each
timestep).

(@ (b) @

FIGURE 6: Anomaly detection on the ecg dataset: as it is easy to spot the pattern in the train set (figure (a)), in the test
set (figure (b), where the green vertical bars highlight the anomalous zone) there’s an anomalous sequence between
two non-anomalous peaks. The CVAE algorithm spots it with a high density zone of low probability sequences (green
rectangles on figure (c), where on y-axis it is indicated the probability of each timestep).
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