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Abstract. This paper addresses the problem of finding appropriate method for 

analysis of non-stationary time series with complex trends and possibly with 

distinct periodic components in power spectrum. A well established 

Multifractal Detrended Fluctuation Analysis (MDFA) combined with Singular 

Spectrum Analysis (SSA) used on several artificial examples to demonstrate the 

capabilities of the method. In this combined method SSA is used for nonpara-

metric periodic components extraction and for adaptive automatic nonparamet-

ric trend extraction. As usual, the local fractal characteristics of the signal are 

studied by utilizing the MFDFA algorithm. It is shown that combined method is 

capable of accurately extracting fractal features when signal is contaminated 

with broadband and narrowband noise. The main task that the author focused on 

when creating the method was the analysis of currents through ion channels in 

cell membrane. 
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1 Introduction 

The traditional fractal methods, such as fluctuation analysis (FA) [1], are developed 

as statistical tools to evaluate the fractal characteristics of the time series, most com-

monly the scaling exponent. However, FA requires stationarity of time series. To 

overcome this limitation, a new scale exponent calculation method named detrended 

fluctuation analysis (DFA) was introduced in [2]. DFA is extensively used to detect 

the long-range correlation and power-law properties in nonlinear and nonstationary 

time series, and it is suitable for extraction of precise intrinsic statistical features from 

the time series by removing external polynomial trends of different orders. Further-

more, detrending helps to avoid the spurious detection of correlations which are arti-

facts of nonstationary time series. 

However DFA deals only with so called monofractals. Monofractal is mainly a de-

scription of the overall average of the object of study, with the local characteristics of 

the signal being insufficiently characterized [3]. Multifractal analysis provides the 

ability to describe the local characteristics of the signal in detail. By combining 

multifractal and detrended fluctuation analysis, a multifractal detrended fluctuation 

analysis (MDFA) algorithm [4] was introduced. Since then, MDFA has been quickly 
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applied in a number of research areas, including turbulence, temperature, stock mar-

ket time series etc. However, despite its widespread use, it is known that the MDFA 

has several limitations [3]:  

1. When calculating a trend the order of approximating polynomials is not always

known a priori and may vary for different lengths of time series. So, several com-

putations with different trends approximations are recommended.

2. The distinct peaks in the power spectrum of the time series (for example, annual

harmonic) have a strong influence on the results of the algorithm, so they should be

removed by means of appropriate filter.

To solve the above-mentioned problems in present work singular spectrum analy-

sis (SSA) [5, 6] is used. It is a relatively new method of time series analysis that 

emerged in statistics, as well as in nonlinear dynamics and in classical spectral meth-

ods. The method is nonparametric, i.e. does not require an explicit specification of the 

time series model. SSA can be used for a wide range of tasks: trend or quasi-periodic 

component detection and extraction, denoising, forecasting, change-point detection. 

There are several modifications of original MDFA in terms of trend extraction [3], 

such as moving average or empirical mode decomposition (EMD), but approach with 

SSA has several advantages [6]: 

─ In SSA the type of the extracted trend is determined by the data itself, which re-

duces the influence of trend features on scaling exponent. 

─ Ability to control extracted frequencies. Ideally, when dealing with trend extraction 

in MDFA frequencies f ≤ 1/N should be extracted from time series, where N is the 

number of data points, f is frequency in arbitrary units [3]. In trend extraction by 

means of SSA such control is part of the algorithm and does not require additional 

efforts. 

─ The mathematical theory of SSA guarantees the asymptotic separability of the 

trend and other components of the time series, such as harmonics or broadband 

noise. 

─ For the task of periodic components extraction SSA allow amplitude modulation 

and, partially, frequency modulation. 

─ Procedure of trend and periodic components extraction in SSA can be automated 

[6-8]. 

Combined algorithm consists of the following steps: first by means of SSA re-

move narrowband (distinct harmonics) and broadband noise from time series by 

means of periodic and trend extraction respectively. Then apply MDFA to resulted 

time series where parametric trend extraction replaced by nonparametric. All required 

code was written in C++ language. 

The remainder of this paper is organized as follows: the principle of SSA, MDFA 

and combined method are described in Section 2. Section 3 describes test experiments 

and their results. Finally, conclusions and future directions are given in Section 4. 
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2 Theory Descriptions 

2.1 Singular Spectrum Analysis (SSA) 

Suppose we have a time series 

� = (��, ��, … , �	
�) (1) 

of lenght N, it is assumed that the measurements are carried out at equal time inter-

vals. The first step of the SSA algorithm is the so-called embedding, when a one-

dimensional time series is converted to a two-dimensional matrix. The main parame-

ter of embedding is window length 1 < m < N, which is a number of rows in con-

structed matrix X: 

X =


��

�� ���� �� ⋯ �	
��	
���⋮ ⋮ ⋱ ⋮��
� ��
���
� �� ⋯ �	
��	
� �
��. (2) 

Resulted matrix is Hankel matrix [6]. 

The next step is the Singular Value Decomposition [9] of the matrix X: 

� = �� + �� +⋯+ ��, (3) 

where d is the rank of the matrix X, 

�� = �
�� ∙  � ∙ !�"

is the k-th component of singular value decomposition, #� is the k-th singular value,

which is always nonnegative,  � is the k-th left singular vector, !�" is the k-th trans-

posed right singular vector. Set of values (#�,  �, !�) sometimes called eigentriple.

Next, one group different components and reconstruct the time series according to the 

following rule: average all elements in the sub diagonals: 

{%&' , ( + ) = *+,-.},
each such average corresponds to the value of the time series. Grouping of different 

components of singular value decomposition depends on the problem to solved. For 

example, for trend extraction all eigentriples in which "low frequencies" predominate 

(in the left or right singular vectors) are groped to produce trend. For distinct harmon-

ic extraction situation is different: one groups all eigentriples with similar singular 

values and similar predominated frequencies (in the left or right singular vectors). 

SSA algorithm can be automated [7, 8], and automated version is used in this 

work. An effective SSA algorithm, having practically linear complexity along the 

length of the time series was made in accordance with papers [10, 11]. 
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2.2 Multifractal Detrended Fluctuation Analysis (MDFA) 

MDFA is suitable for nonlinear and nonstationary time series and consists of several 

steps. Initially, one need to find the cumulative function of the time series defined in 

(1): 

01 = ∑ (�� − �)1�4� , (4) 

� = �
5∑ �6	
�64� . 

The next step is to divide the time series into disjoint segments of length s, their 

number is 78 = 	
8 . Often the length of the segments s does not divide the full length N

without a remainder, so, in order not to discard the remainder of the time series, the 

procedure of division into segments is repeated from the other end of the data. There 

are 278 segments in total.

On each of the 278 segments a local trend is computed and then the variation is

calculated: 

Ѱ�(-, ;) = �
8 ∑ (0(<
�)∙8�1 	− 	>1<)�8
�14� , (5) 

; = 1,… , 78,
Ѱ�(-, ;) = �

8 ∑ @0	
(<
	A)∙8�1 	− 	>1<B�8
�14� , (6) 

; = 78 + 1,… , 278,
where >1< is the local trend on a segment ν of length s, which is often calculated by the

least squares method, with possible variants including: linear, quadratic, etc. 

Further, the resulting variation on each segment is averaged and a fluctuation func-

tion is found: 

Ѱ'(-) = C �
�	A∑ Ѱ�(-, ;)DE�	A<4�

D
, (7) 

where the index q can take any values that are not equal to zero. 

Following [3], we redefine the fluctuation function (we raise it to the power) 

F'(-) = (Ѱ'(-))G. (8) 

Obviously, the function (8) increases with increasing length and depends on the 

order of the extracted trend. 

In the final step one tests the hypothesis of fractal properties (scaling properties) 

F'(-) ≈ sJ(G). (9) 

To test the hypothesis (9), a graph is plotted in the double logarithmic scale of the 

function F'(-) for each value of q from a certain range. If condition (9) is satisfied,

then the graph will have a straight line, the slope of which will give h(q) for a given q. 
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The function h(q) in this case is called the generalized Hurst exponent. After the cor-

responding value of h(q) was found for each q, a graph of the dependence of h(q) on q 

plotted. If the time series is a monofractal, then the graph will have a straight line, 

with  

ℎ()) = L ∙ (1 + )), (10) 

where H is the ordinary Hurst exponent. For h(q) to be non-linear (so-called 

multifractality), it is necessary that small and large fluctuations differ in their statisti-

cal properties [4]. 

2.3 Combined MDFA with SSA algorithm 

In this paper, it is proposed to replace the parametric method of detrending procedure 

in the mDFA by nonparametric using the automatic trend extraction by means of 

SSA. It is also used to automatically extract all periodic components from time series 

as well as broadband noise before applying MDFA. A full description of the algo-

rithm can be found in [7, 8]. We will briefly describe the algorithm of trend extrac-

tion. 

We first define disrete Fourier transform and the periodogram of time series (1): 

Ф� = ∑ N
1∙�∙π∙O∙�/		�O	
�O4� , 

Q	 R�	S = �
	 T 2|Ф�|, V�	0 < Y < 7/2|Ф�|, V�	Y = 0	+Z	Y = 7/2[, (10) 

∑ �O� = ∑ Q	 R�	S	/��4�	
�O4� . 

Then one introduce a measure showing the relative contribution of all frequencies 

less than the specified one in the periodogram of time series: 

\	(]) = ∑ Q	 R�	S�^�_^` , 

a(]�) = b_(`)b_(�.d), (11) 

where frequency ω is in arbitrary units and belong to the interval [0; 0.5]. Then all 

eigentriples (#� ,  �, !�) for which the condition on the left singular vectors is satis-

fied 

a(]�) ≥ C� (12) 

will be grouped in the trend. In order to separate colored noise from white noise for ]� we use the expression [8]:

]� = max�_,�j	�_	j�.d{�	 : Q	(0), Q	 R�5S , … , Q	 Rl5S < m	}, (13)
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where m	 is median of the periodogram. The reasoning behind (13) the following:

the median of values of the timeseries periodogram gives an estimation of the median 

of the values of the noise periodogram. So all frequencies ] > ]� correspond to a

broadband noise. 

The criterion for selecting threshold values for ]� and a� in condition (12) is de-

scribed in detail in [7, 8]. 

3 Experiment 

To test the technique, a fractional Brownian motion (with several Hurst exponent H) 

was generated with total of 10d points each. White noise was added to the generated

time series with a standard deviation that was two times smaller than for the fractional 

Brownian motion. In order to simulate narrowband noise two exponentially modulat-

ed harmonics with frequencies: 0.05 and 0.2 (in arbitrary units) was also added to the 

time series. 

The resulted time series with H = 0.65 and its periodogram calculated by (10) are 

presented in Fig. 1. The presence of harmonics and white noise is quite difficult to 

detect in the time series itself, however, additional patterns are clearly visible on the 

periodogram: two distinct peaks at frequencies of 0.05 and 0.2, as well as uniform 

broadband noise at high frequencies. 

Fig. 1 Sample of fractional Brownian motion with H = 0.65 (left) and its periodogram (right) 

We will first apply SSA to extract the periodic components. The result is shown in 

Fig. 2. It can be seen that despite the amplitude modulation, the extracted modulated 

harmonics are in good agreement with their true values. 

After narrow band noise have been removed, trend extraction with criterion (13) 

was applied to remove broadband noise. Fig.3 illustrate the influence of ]� to trend

extraction procedure in SSA. It is clear that when increasing the low frequencies 

threshold ]� in (12), the trend becomes more detailed.

Multifractal Detrended Fluctuation Analysis combined with Singular Spectrum Analysis

90



Fig. 2. Extracted periodic components (black) and their real values (grey) with frequencies 0.05 

(left) and 0.2 (right). 

Fig. 3. Example of trend extraction (black line) from Brownian motion (grey line) with ]� = 10
d (left) and ]� = 10
o (right), ]� in arbitrary units

When both narrowband and broadband noise have been removed MDFA is applied 

to the resulted time series. To calculate the fluctuation function and to test the hypoth-

esis (9), the values of q are taken from the interval [-10; 10] with step 0.33. The calcu-

lation results are presented in Fig. 4 for several values of q in double logarithmic 

scale. It can be seen that the points are well approximated by a straight line for all 

values of the partition lengths. However, for large values of q, the deviation of points 

from a straight line increases. 

For the time series shown in Fig.1 Hurst exponent H was calculated using MDFA 

and was found to be 0.64 ± 0.02. Similar results were obtained for the case of gener-

ated time series with H = 0.25 and H = 0.5, the computed Hurst exponent is equal to 0.24 ± 0.01 and 0.48 ± 0.02 respectively.
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Fig. 4. Fluctuation function for different q and straight line approximation (dashed grey). From 

left to right: -8, -3 (top); 3, 8 (bottom) 

4 Conclusion 

A variant of mDFA with an automatic non-parametric trend extraction using SSA has 

been tested. The capabilities of the method were shown on generated fractional 

Brownian motion and the method is capable of extracting fractal characteristics in the 

presence of wideband and narrowband noise. The main task that the author focused 

on when choosing a technique was the analysis of time series obtained in experiments 

on ion channels in cells [12]. 
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