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Abstract
The concept of semivalue of a transferable utility game has been introduced by Dubey, Neyman and Weber as 
weighted sum of marginal contributions. Later, Puente has introduced a particular class of semivalues, called 
binomial semivalues, where weights are obtained through a recursive procedure. In the present paper, we 
extend Puente's procedure to obtain an equivalent representation of semivalues that turns out to be useful 
to solve the inverse problem and the question of coalitional rationality.  
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1. Introduction

A transferable utility game specifies who are the players and what they can achieve when they form 
coalitions. If there is a potential gain for the players to get together and cooperate, the question that 
comes up immediately is how to divide this gain, that is how to remunerate the players for their 
participation to the collective endeavor.  

In 1953, Lloyd Shapley [1] introduced axiomatically the notion of value of a transferable 
utility game that specifies a rule for distributing the gain that the "grand coalition" can generate. A 
natural question is then the following: Given an allocation, can we identify the set of games whose 
Shapley value coincides with that allocation? This is the inverse problem that has first been 
addressed by Kleinberg and Weiss [2] and by Dragan [3].  

"At the foundation of the theory of games is the assumption that a player can evaluate in

terms of his utility scale every situation that can result from a play of a game." This quotation from 
Shapley [4] indicates that the concept of value was initially intended to answer the question of what 
a player may reasonably expect from playing a game. That point of view raises the question of 
efficiency: Are players' evaluations consistent? By requiring that the total gain be exactly allocated 
among the players, the Shapley value is actually efficient. Dropping efficiency opens the way to 
other classes of value, among which the semivalues introduced by Dubey, Neyman and Weber [5]. 
A semivalue allocates to players a weighted sum of their (marginal) contributions to coalitions. 
The weights only depend on coalition size and define a particular semivalue. The Shapley value 
happens to be the only efficient semivalue. The Banzhaf value is another well known semivalue 
derived from the power index introduced by Banzhaf [6]. The inverse problem for the Banzhaf 
value has been addressed by Dragan [7] and, later, for semivalues, by Dragan [8]. 

The core introduced by Gillies [9] is an other game theoretic concept that applies to 
transferable utility games. The core of a game is the set of efficient allocations such that no coalition 
globally receives an amount short of what it is worth. This is the question of coalitional rationality. 
Games often cover situations where it is impossible to satisfy all coalitions i.e. the core of a game 
may be empty. Furthermore, it carries no value judgment and therefore, when nonempty, it may 
contain unfair allocations: Coalitional rationality and fairness may be mutually inconsistent. For a 
given set of weights, looking at the set of games whose semivalue coincides with a particular 
allocation, we may ask whether there are games for which that allocation belongs to their cores. As 
such, that question makes sense only if efficiency applies. It has been addressed for the Shapley 
value by Izawa and Takahashi [10]. If instead efficiency does not apply, coalitional rationality is 
analyzed with respect to the core of an auxiliary game, the power game, a concept introduced by 
Dragan [7] in relation to the Banzhaf value. Dragan and Martinez-Legaz [11] have later generalized 
the analysis to semivalues. In the present paper, we reconsider the solution to the inverse problem 
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for semivalues and the associated question of coalitional rationality, using an equivalent 
representation of semivalues inspired by the concept of binomial semivalue introduced by Puente 
[12]. 1  

The paper is organized as follows. Section 2 introduces semivalues and their equivalent 
representation. Section 3 revisits the solution of the inverse problem using the notion of potential. 
Section 4 addresses the question of coalitional rationality. The last section offers concluding 
remarks.  

2  Semivalues 

A transferable utility game (hereafter "game") is a pair ( , )N v  where {1,..., }N n  is a set of 
players and v is a set function (a "characteristic function") that associates a real number ( )v S  to 
each subset (coalition) S of N. ( )v S  is the worth of coalition S, the best it can obtain by itself. By 
convention ( ) 0.v    We denote by G the set of all games. A characteristic function on a set N is 
defined by 2n – 1 numbers. Hence, the set ( )G N  of games on a player set N can be identified to 
the Euclidian space 2 1.

n   A game ( , )N v  is additive if ( ) ( )
i S

v S v i


  for all .S N  A game is 
monotonic if ( ) ( ).S T v S v T   2 

Notation. Set inclusion is denoted by   and strict inclusion by .  Upper-case letters denote 
finite sets and the corresponding lower-case letters denote their sizes: | |, | |, ...s S t T   For a given 
coalition S, \S i  denotes the coalition obtained by removing player i from coalition S. For a 
coalition T,  ( )i T S T i S   denotes the collection of subsets of T containing player i. We 
occasionally drop the braces to denote coalitions and omit the index set in summations, when no 
confusion may arise. 

The allocation of ( )v N   the worth of the "grand coalition"  among the players is the central 
question addressed by the theory of cooperative games. A payoff vector nx  specifies a payoff 
for each player, ix for player i. We will consider the following three properties of payoff vectors:  

Efficiency: ( ).i

i N

x v N




Individual rationality: ( ) for all .ix v i i N 

Coalitional rationality: ( ) for all .i

i S

x v S S N


 

Efficiency is a matter of collective rationality. Imputations are payoff vectors satisfying efficiency 

1 The inverse problem for binomial semivalues has been addressed by Dragan [13]. 
2 For more details on transferable utility games, see for instance Owen [14] or Maschler et al. [15]. Formally a game 
is a pair (N,v). When N is known, a game is identified with its characteristic function.  
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and individual rationality. The core is the set of imputations that satisfy coalitional rationality. 
Given a player set N, a value is a mapping : ( ) nG N  that associates a payoff vector 
 1( , ),..., ( , )nN v N v  to every game ( , ).N v  Semivalues form a family of values introduced by 
Dubey, Neyman and Weber [5] as mappings satisfying the following four properties: 

Linearity: ( , ) ( , ) ( , )N v w N v N w        for all , ( ) and , .v w G N     

Anonymity: ( , ) ( , )N v N v    for all permutations  on N where ( ) ( ).v S v S    

Positivity: for all monotonic game v, ( , ) 0 for all .i N v i N  

Dummy: ( ) ( \ ) ( ) for all ( , ) ( ).iv S v S i v i S N N v v i    

These four properties define semivalues as weighted average of marginal contributions: 

 
( )

( , , ) ( ) ( ) ( \ ) ( )
i

i n n

S N

SE N v p p s v S v S i i N


   (1) 

The weights only depend on coalition size and are given by: 
1

1

0

( ) (1 ) ( ) ( 1,..., )s n s

np s t t d t s n   

where  is a probability measure on the interval [0,1]. The interpretation is the following. Given a 
player i, pick t at random according to the probability distribution defined by the measure  and let 
players independently join player i with probability t. Coalition S containing player i then forms 
with probability 1(1 ) .s n st t  Dubey, Neyman and Weber [5] prove that the weight vector 

( (1),..., ( ))n n np p p n can be any non-negative vector satisfying the following normalization 
condition: 

1
1

1
( ) 1

n
s

n n

s

C p s





 (2) 

where 1
1

s

nC 

  is the number of coalition of size s containing a given player. In an additive game, all 
players are dummies. Hence, for all weight systems np satisfying (2), ( , , ) ( )i nSE N v p v i for all i 
if ( , )N v  is additive. 

As far as terminology is concerned, for a given player set, weights define a particular 
semivalue and that semivalue associates payoff vectors to games. There are two well known 
semivalues. The Shapley value is the semivalue defined by:3 

( 1)!( )!( ) ( 1,..., )
!n

s n s
p s s t

n

 
 

3 The Shapley value is indeed obtained when  is the Lebesgue measure on [0,1]. 
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The Banzhaf value is the semivalue defined by 1( ) 1/ 2 ( 1,..., ).n

np s s t   We denote these two 
semivalues by ( , )SV N v  and ( , )BV N v  respectively. Semivalues are generally not efficient. 
Actually, the Shapley value is the only efficient semivalue. 

A semivalue defined on a game ( , )N v  by weights np induces semivalues on the t-player 
subgames ( , )TT v obtained by restricting the characteristic function v to subsets :T N  

( ) ( )Tv S v S for all .S T From now on, we drop the subscript T : ( , )T v  will denote the subgame 
on the subset T. The corresponding weights are given by the inverse Pascal triangle formula: 

1 1( ) ( ) ( 1) ( 1,..., )t t tp s p s p s s t     (3) 

If np satisfies the normalization condition (2), the weights tp derived from (3) automatically 
satisfy the normalization condition for all 1,..., 1.t n   In the 3-player case, the normalization 
condition reads 3 3 3(1) 2 (2) (3) 1p p p   and the weights of the 2-player subgames are given by 

2 3 3(1) (1) (2)p p p  and 2 3 3(2) (2) (3).p p p  They satisfy the equation 2 2(1) (2) 1.p p 

Moreover, 1 1( ) 1.p 

Binomial semivalues have been introduced by Puente [12]. They form the subfamily of 
semivalues defined by 1( ) (1 )s n s

np s p p   for some [0,1].p  The binomial semivalue of a game 
( , )N v associated to p is therefore given by:

 1

( )

( , , ) (1 ) ( ) ( \ ) ( 1,..., )
i

s n s

i

S N

BE N v p p p v S v S i i n 



   

For p = 0 or 1, we have respectively ( , ,0) ( )iBE N v v i  and ( , ,1) ( ) ( \ ).iBE N v v N v N i  4 The 
Banzhaf value corresponds to the case where p = 1/2. The Shapley value instead is not a binomial 
semivalue. Binomial semivalues are semivalues where the ratios ( 1) / ( )n np s p s  are constant, the 
constant being given by / (1 ).p p    Let's consider the case where these ratios are allowed to 
vary:  

1 2
(2) ( )(1) , ,...,
(1) ( 1)

n n
n n

n n

p p n
p

p p n
    



or (4) 
1 1 2 1 2(1) , (2) , ..., ( ) ...n n n np p p n       

In terms of the s normalization condition then reads:  

1
1 1

1

... 1
n

s

n s

s

C  





 (5) 

4 Assuming 00 = 1. 
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This gives rise to an equivalent formulation of semivalues: 

 1 2
( )

( , , ) ... ( ) ( \ ) ( 1,..., )
i

i s

S N

SE N v v S v S i i n   


   (6) 

This equivalent formulation will be specially useful in solving coalitional rationality. For 3-player 
games, (4) becomes 3 1 3 1 2 3 1 2 3(1) , (2) , (3)p p p        and the normalization condition (5) 
then reads 1 1 2 1 2 32 1.         Weights of the 2-player subgames are given by 2 1 2(1) (1 )p   

and 2 1 2 3(2) (1 ).p     The weights  = (1/3, 1/2, 2) and  = (1/4, 1, 1) produce the Shapley 
value and Banzhaf value, respectively. They are obtained from the original weights (1/3, 1/6, 1/3) 
and (1/4, 1/4, 1/4). In general, we have:  

1
1 1and for all 2

1t

t
t

n n t
 


  

 

for the Shapley value. For the Banzhaf value, we have: 

1 1

1 and 1 for all 2
2 tn

t 


  

3  The inverse problem 

Given a player set N, the inverse problem relative to the semivalue defined by weights np can be 
stated as follows. Given an arbitrary payoff vector ,nL  characterize the set 

 ( , , ) ( ) ( , , )n nG N L p v G N SE N v p L   (7) 

Given N and ,np the operator SE is a linear map from 2 1 to
n n  and ( , , )nG N L p  is nonempty:

It contains the additive game ( , )LN v defined by ( ) .L iv i L  Notice that, at this stage, non-negativity 
of L is not imposed. Payoffs will be assumed to have non-negative components when discussing 
coalitional rationality. 

3.1 The potential basis 

The potential of a game relative to the Shapley value has been introduced by Hart and Mas-Colell 
[16,17]. More generally, a potential relative to a value  is a function :P G   such that a 
player's payoff according to   is equal to his marginal contribution to the grand coalition computed 
in terms of :P  ( , ) ( , ) ( \ , ).i N v P N v P N i v     The potential of a game, relative to a semivalue, 
has been introduced by Dragan [7] and by Calvo and Santos [18] as follows. Consider the game 
( , )N v and the semivalue associated to the weight vector .np The potential of the subgame ( , )T v  
is then given by: 

( , , ) ( ) ( ) for allt t

S T

P T v p p s v S T N


  (8)
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where the weights tp of the subgames are derived by the inverse Pascal triangle rule. Indeed, using 
(1) and (3), we have:

1( , , ) ( \ , , ) ( , , ) ( 1,..., )n n i nP N v p P N i v p SE N v p i n   (9) 

The most popular bases of the vector space of games on a given set of players are the standard 
basis and the unanimity basis. The latter was used by Shapley to prove the unicity of his value. The 
concept of potential may be used to define another basis as shown by Dragan [3]. Given a player 
set N, a basis 2 1{ , }

n

Tw T N T   of G(N) is the potential basis relative to the semivalue
associated to weights np if  

( , , ) for all ( )t T

T N

v P T v p w v G N


  (10) 

where the weights tp  of the subgames are obtained from (3). In words, the coordinate T of v relative 
to this basis is the potential of the subgame ( , ).T v  Dragan [8] proves the following important
theorem that specifies the potential basis associated to a given weight system.  

Theorem 3.1 Given a player set N and weights ,np the family of 2 1n  games defined by: 

0

1( ) ( 1) for all
( )

s t
h h

T s t

h t h

w S C S T
p t h





 

  




and ( ) 0 for all other ,Tw S S is the potential basis relative to the semivalue 
associated to .np

We observe that { }Tw  defines a diagonal matrix whose diagonal elements are given by 
( ) 1/ ( ).T tw T p t Hence, it is a regular matrix and consequently ( )Tw is a basis of G(N). We denote 

it by ( ).nW p  It will be used to solve the inverse problem. Notice that the weights that appear in the 
formulation of the basis are all of the form 1/ ( ).tp t  The potential basis for the 3-player case is 
given by Table 1. The following theorem specifies the semivalues of the games that are part of the 
potential basis. 

Theorem 3.2  Given weights np satisfying the normalization condition (2), the semivalues of the 
potential basis ( )nW p are given by: 

\

( , , ) 1 for all 1,...,

( , , ) 1 for all 1,...,

( , , ) 0 for all other

i N n

i N i n

i T n

SE N w p i n

SE N w p i n

SE N w p T N

 

  

 
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Proof  For a given player i in S and coalition T in N, we apply (9) to get: 

1( , , ) ( , , ) ( \ , , )i T T n T nSE N v w P N w p P N i w p  

where P is the potential defined by (8). If ,T N  the first term is equal to 1 while the second is 
equal to 0: 

1
\

1( , , ) ( ) 1
( )

( \ , , ) ( ) ( ) 0

N n n

n

N n n N

S N i

P N w p p n
p n

P N i w p p s w S



 

 

The reverse applies if \ :T N i

\
1 1

1

\ 1
1

1 1 1( , , ) ( 1) ( )
( 1) ( 1) ( )

( 1) ( ) 1 0
( 1)

1( \ , , ) ( 1) 1
( 1)

N i n n n

n n n

n n

n

N i n n

n

P N w p p n p n
p n p n p n

p n p n

p n

P N i w p p n
p n

 







 
    

  

 
  



  


Finally, if or \ ,T N N i  both terms are equal to 0.  

1
2 2 2 3

2
2 2 2 3

3
2 2 2 3

12
2 2 3

13
2 2 3

23

{1} {2} {3} {1, 2} {1,3} {2,3} {1,2,3}
1 1 2 11 0 0 1 1 0 1
(2) (2) (2) (3)
1 1 2 10 1 0 1 0 1 1
(2) (2) (2) (3)

1 1 2 10 0 1 0 1 1 1
(2) (2) (2) (3)

1 1 10 0 0 0 0
(2) (2) (3)

1 1 10 0 0 0 0
(2) (2) (3)

0

w
p p p p

w
p p p p

w
p p p p

w
p p p

w
p p p

w

   

   

   





2 2 3

123
3

1 1 10 0 0 0
(2) (2) (3)

10 0 0 0 0 0
(3)

p p p

w
p



Table 3.1: The 3-player potential basis 3( )W p
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3.2 Solution to the inverse problem 

The following theorem gives a solution to the inverse problem. It characterizes the set ( , , )nG N L p

defined by (7). 

Theorem 3.3 The games in ( , , )nG N L p are of the following form:  

\ \
: 2

( )T T N N N j j N j

T t n j N j N

v w w w L w 
   

      (11) 

where and theN T  are 2    –1 n n arbitrary constants.  

Proof  Assume that (11) holds. By linearity of the operator SE and Theorem 3.2, we have: 

 \ \( , , ) ( , , ) ( , , ) ( , , )i n N i N n i N i n i i N i n iSE N v p SE N w p SE N w p L SE N w p L   

Conversely, by Theorem 3.1 and (10), we know that any game ( , )N v  can be written in the basis 
( )nW p  as T Tw where T  is the potential of the restriction of v to the subset T. Therefore, 

following (9), ( , , )nSE N v p L implies \( , , ) ( \ , , )i n n N N iL P N v p P N i v p       for all i. Hence 

\ .N i N iL      

As a consequence of Theorem 3.3, the rank of the linear operator SE is equal to n and the 
null space ( ,0, )nG N p is a subspace of dimension 2    –1  ,n n the nullity of SE. The basis of 

( ,0, )nG N p  is indeed formed by the 2    – 2n n  vectors ( )Tw  for all T such that 2,t n  together 
with the vector \ .N N iw w  We observe that the games defined by (11) are such that ( ) iv i  for 
all i. In the 3-player case where {1,2,3},N   (11) reads: 

3 3 3

123 123 \ \
1 1 1

( ) ( ) ( ) ( ) ( ) ( )j j N j j N j

j j j

v S w S w S w S L w S S N 
  

 
     

 
  

Referring to Table 3.1, we have: 

1 2 123 3
2 2

1 3 123 2
2 2

2 3 123 1
2 2

1 2 3 123
2 3 2

( ) ( 1, 2,3)

1 1(1,2) ( ) 1 ( )
(2) (2)

1 1(1,3) ( ) 1 ( ) (12)
(2) (2)

1 1(2,3) ( ) 1 ( )
(2) (2)

2 1 3(1,2,3) ( ) 1
(2) (3)

iv i i

v L
p p

v L
p p

v L
p p

v
p p p



  

  

  

   

 

 
     

 

 
     

 

 
     

 

 
      

  3 3 2

2 1 1
(2) (3) (3) (2) iL

p p p

   
     

   

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For the Shapley weights 3 (1/3,1/6,1/3)p   and 2 (1/2,1/2),p  the game defined in (12) becomes: 

1 2 123 3

1 3 123 2

2 3 123 1

1 2 3

( ) ( 1, 2,3)

(1,2) ( ) 2( )

(1,3) ( ) 2( )

(2,3) ( ) 2( )

(1,2,3)

iv i i

v L

v L

v L

v L L L



  

  

  

 

    

    

    

  

(13) 

As expected, efficiency applies for Shapley. For the Banzhaf weights 3 (1/4,1/4,1/4)p  and

2 (1/2,1/2),p  it turns out that, with three players, only the worth of the grand coalition changes:  

1 2 3 123 1 2 3(1,2,3) 2 2( )v L L L          (14) 

4  Coalitional rationality 

The payoffs defined by a semivalue may fail to satisfy some or all of the following properties, 
efficiency, individual rationality and coalitional rationality. Given a player set N and weights ,np

consider an arbitrary payoff vector L. Question: Can we identify games in ( , , )nG N L p such that L
satisfies some or all of the above properties relative to these games? There is a trivial answer: The 
additive game ( , )LN v satisfies all three properties, independently of the weights. However, we are
interested in non-additive games. Individual rationality is no problem. It suffices to impose i iL 

for all i in (11). Coalitional rationality instead is a problem. When efficiency holds, the question of 
coalitional rationality can be raised directly, while in the absence of efficiency, we need an 
appropriate redefinition of coalitional rationality.  

4.1  The family of almost null games 

From now on, we assume that .nL   To solve the question of coalitional rationality, consider the 
subsets of games in ( , , )nG N L p  defined by 0T  for all coalition T of size 2t n  in (11). 
They are of the following form: 

\ \( )N N j j N j

j N j N

v w w L w 
 

   

This set of games is called the family of almost null games. It depends on a single parameter, namely 
.N  By construction, ( , , ) .nSE N v p L  Referring to Theorem 1 and expressing the 

components \andN N iw w  of the potential basis ( )nW p  in terms of the parameters s  we have 
successively: 
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1 2

\
1 1 2

\
1 1 2 1

1 1( )
( ) ...

1 1 1( )
( 1) ( ) ... (1 )

1 1( \ )
( 1) ... (1 )

N

n n

N i

n n n n

N i

n n n

w N
p n

w N
p n p n

w N i
p n

  

   

   



 

 


  

 

 
 

and \( ) ( ) 0 otherwise.N N iw S w S  The games ( , )N v  are therefore given by: 

1 2 1

1 2

( \ )
... (1 )

(1 )
( )

... (1 )

i

n n

n j

n n

L
v N i

n L
v N







   

 

   








  





(15) 

and ( ) 0 for all other .v S S   

We have to consider two situations: either efficiency applies, ( ),jL v N  or it does not. 
Efficiency holds for all values of  if and only if the following conditions are satisfied: 

1 2 1

11 ( )
1( 1) ... 1 ( 1)

( 1)

n n

n n

n p n
n

n n p n
n n



   

  


   


(16) 

They are verified in the case of the Shapley value. We will see later that, in the 3-player case, they 
define uniquely the Shapley value, together with the normalization condition (5). From (15), we 
obtain the following game:  

( \ ) ( 1) ( )

( )
i

j

u N i n L

u N L





  


(17) 

Because only the marginal contributions to the coalitions N  and \N i  are concerned, its Shapley 
value coincides with L: ( , )SE N u L   for all . We now look for the values of the parameter  
such that: 

( \ ) for allj

j i

u N i L i N


 

Because 0,L   the other core conditions are automatically satisfied. Hence, coalitional rationality 
applies under efficiency if and only if: 

1 for all
1i j

j i

L L i N
n




  

 (18)
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If instead efficiency does not apply, coalitional rationality is evaluated with respect to the 
power game associated to a semivalue. The power game associated to a game ( , )N v  and weights 

np is the game ( , )N  defined by:5

 
( )

( ) ( , , ) ( ) ( ) ( \ )
i

i t t

i T i T S T

T SE T v p p s v S v S i T N
  

     

where the intermediary weights tp are derived from (3) and ( ) ( , , ).i nN SE N v p  Coalitional
rationality then holds if L belongs to the core of the power game, called the power core. Following 
Dragan and Martinez-Legaz [11], the power game associated to a game ( , )N v  and weights np can 
be conveniently written as: 

 ( ) ( ) ( ) ( 1) ( )t t

S T

T sp s t s p s v S


    (19) 

Provided that ( ) 0,np n   is a bijection from G(N) onto itself.  If ( , , )nSE N v p defines an efficient 
semivalue – i.e. it is the Shapley value – we have: ( ) 1tp t   for all t and ( ) ( ) ( 1) 0t tsp s t s p s   

for all 1,..., 1.s t   The power game is then the game itself, so that it is a proper extension. 
Furthermore, the Shapley value of the power game associated to a semivalue is the semivalue itself. 
In order to define the power game ( , )N   associated to the game ( , )N v  defined by (15), we only 
need to specify ( \ )N i for all i. Indeed, ( ) jN L  and ( ) 0S  for all \ or .S N i N  It
turns out that the power game coincides with the game ( , )N u  defined by (17) under efficiency, 
independently of the weights. Indeed, we have: 

 1

1 2 1

( \ ) ( 1) ( 1) ( \ ) ( 1) ( 1) ( ) ( \ )

( 1) ... (1 ) ( \ ) ( 1) ( )

n n n

n n i

N i n p n v N i n p n p n v N i

n v N i n L

  





    





      

     

Therefore, the same inequality, namely (18), guarantees coalitional rationality in the absence of 
efficiency. The following theorem summarizes our findings, knowing that the definition of 
coalitional rationality depends on efficiency.   

Theorem 4.1 Given a player set N, a payoff vector nL   and weights ,np  the games ( , )N u  
defined by (17) are such that ( , ) .SV N u L   Furthermore, for  satisfying (18), L 
belongs to the core of the game ( , )N u  and thereby L satisfies coalitional 
rationality. 

Example 4.1 Consider the 4-player case, with the payoff vector L = (3, 5, 9, 13) and the weights 
(1/10,2/15,1/12,1/4).np   The corresponding s are given by (1/10, 4/3, 5/8, 3).   The weights 

5 Notice that we have left implicit the dependance of  on the game and the weights. 
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satisfy (16) and therefore  efficiency holds and the game ( , )N u  defined in (17) is then given by: 

(1, 2,3) 3( 13)

(1,2, 4) 3( 9)

(1,3, 4) 3( 5)

(2,3,4) 3( 3)

(1,2,3, 4) 30

u

u

u

u

u



















 

 

 

 



(20) 

Its Shapley value is equal to L for all value of  and it belongs to its core for all 12.   Now 
consider a different set of weights, for instance the Banzhaf weights (1/8,1/8,1/8,1/8)np   or 

(1/8,1,1,1).  The game ( , )N v  defined in (15) is then given by: 

(1,2,3) 4( 13)

(1,2,4) 4( 9)

(1,3,4) 4( 5)

(2,3,4) 4( 3)

(1,2,3,4) 4(30 2 )

v

v

v

v

v





















 

 

 

 

 

Its Banzhaf value is equal to L and its power game is given by (20). Coalitional rationality therefore 
follows for all 12.     

4.2  The 3-player case 

The case where n = 3 is of a particular interest and deserves to be treated apart. Efficiency holds if 
and only if the semivalue is the Shapley value. Indeed, (1/3,1/2, 2)   is the unique solution of 
(16) together with the normalization condition (5). The game ( , )N v  defined in (15) is given by: 

1 2 3

( \ ) 2( ) for 1,2,3

( )
iv N i L i

v N L L L





  

  

It corresponds to the game defined in (13) for 1 2 3 0.     Coalitional rationality then holds 
for  satisfying (18):  

 1 2 3 1 2 3 1 2 3
1 2 , 2 , 2
2

Min L L L L L L L L L       

Now consider the case where (1/4,1,1)   which defines the Banzhaf value. Only the worth 
of the grand coalition changes:  

1 2 3( ) 2( )v N L L L    

Alternative Representation of Semivalues, the Inverse Problem and Coalitional Rationality

80 



It corresponds to the game defined in (14) for 1 2 3 0.      Looking at ( ),v N we observe that 
it is possible to obtain both efficiency and coalitional rationality for the Banzhaf value by setting 
 = (1/ 2) .iL The resulting game ( , )N u  is given by: 

1 2 3

1 3 2

2 3 1

1 2 3

(1, 2)

(1,3)

(2,3)

(1, 2,3)

u L L L

u L L L

u L L L

u L L L

  

  

  

  

Computation confirms that the Shapley value and the Banzhaf value both coincides with L. 
Furthermore, because  satisfies (18), L belongs to the core of the game ( , ).N u  This is a 
particularity of 3-player games that does not carry over to a larger n. In the 4-player case, with 
Shapley weights  = (1/4, 1/3, 1, 3), L satisfy coalitional rationality if: 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 4 , 4 , 4 , 4
4

Min L L L L L L L L L L L L L L L L             

With Banzhaf weights  = (1/8, 1, 1, 1), we get: 

 

( \ ) 4 ( )

( ) 4 2

i

j

v N i L

v N L









 

 

Setting (3 / 8) jL   the game becomes: 

3( \ ) 4
2

( )

j i

j

u N i L L

u N L

 







By construction, L equals the Banzhaf value. However, coalitional rationality cannot be obtained 
in general as the following example shows.  

Example 4.2 Let L = (3, 5, 9, 13). In the case of Shapley, L satisfies coalitional rationality if
9.75.   For instance, setting 9,   we obtain the following game: 

(1,2,3) 12

(1,2,4) 0

(1,3,4) 12

(2,3,4) 18

(1,2,3,4) 30

u

u

u

u

u

 








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In the case of Banzhaf, setting 45/4,  we obtain the following game: 

(1, 2,3) 7
(1, 2, 4) 9
(1,3, 4) 25
(2,3, 4) 33
(1, 2,3, 4) 30

u

u

u

u

u

 









By construction its Banzhaf index equals L. It fails coalitional rationality: the coalitions {2,3,4} 
and {1,3,4} do not get their worth. The core is actually empty.  

5. Concluding remarks

The quest for games that reproduce any given non-negative payoff vector that belongs to their cores 
can be used to answer the following question: How to modify a game with an empty core in such 
a way that its Shapley value satisfies coalitional rationality. This is illustrated by the following 
example.  

Example 5.1 Consider the 3-player simple majority game defined by  

(1) (2) (3) 0

(1,2) (1,3) (2,3) 1

(1,2,3) 1

v v v

v v v

v

  

  



This game has an empty core. It is a symmetric game and therefore the Shapley value is the 
egalitarian payoff that allocates 1/3 to each player. With Shapley weights, the games in the family 
of almost null games are given by (13): 

(1) (2) (3) 0
1(1,2) (1,3) (2,3) 2( )
3

(1,2,3) 1

u u u

u u u

u

  

  





  

   



Setting 2/3   to satisfy (18), we obtain the following game: 

(1) (2) (3) 0
2(1,2) (1,3) (2,3)
3

(1,2,3) 1

u u u

u u u

u

  

  



Its core is nonempty and reduces to the singleton (1/3, 1/3, 1/3). 
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Semivalues are symmetric in the sense that players contributing identically to coalitions obtain the 
same amount. The inverse problem for efficient and asymmetric values has been addressed 
by Dragan [19]. Asymmetric values include the weighted Shapley values, random order values 
and values derived from arbitrary distributions of Harsanyi dividends.6 The related 
question of coalitional rationality will be the object of further research.   

References 

1. Shapley, L.S.: A value for n-person games. Annals of Mathematical Studies No. 28, Princeton
University Press, 307-317 (1953)

2. Kleinberg, N., Weiss, J.: Equivalent n-person games and the null space of the Shapley value.
Mathematics of Operations Research 10, 233-243 (1985)

3. Dragan, I.: The potential basis and the weighted Shapley value. Libertas Mathematica 11, 139-
150 (1991)

4. Shapley, L.S.: Notes on the n-person game II: The value of an n-person game. RAND Research
Memorandum 670 (1951)

5. Dubey, P., Neyman A., Weber R.J.: Value theory without efficiency. Mathematics of
Operations Research 6, 122-128 (1981)

6. Banzhaf, J.F.: Weighted voting doesn’t work; a mathematical analysis. Rutgers Law Review,
19, 317-343 (1965)

7. Dragan, I.: New mathematical properties of the Banzhaf value. European Journal of
Operational Research 95, 451-463 (1996)

8. Dragan, I.: On the inverse problem for semivalues of cooperative TU-games. International
Journal of Pure and Applied Mathematics 22, 539-555 (2005)

9. Gillies, D.B.: Some theorems on n-person games. Ph.D. Thesis, Princeton University (1953)
10. Izawa, Y., Takahashi, W.: The coalitional rationality of the Shapley value. Journal of

Mathematical Analysis and Applications 220, 597-602 (1998)
11. Dragan, I., Martinez-Legas, J.E.: On the Semivalues and the power core of cooperative TU-

games. American Journal of Operations Research 3, 127-139 (2001)
12. Puente, A.M.: Contributions to the representability of simple games and to the calculus of

solutions for this class of games. Ph.D. Thesis, Technical University of Catalonia, Spain (2000)
13. Dragan, I.: Coalitional rationality and the inverse problem for binomial semivalues.

Contributions to Game Theory and Management, (L. Petrosjan, N. Zenkevich, eds.). St.
Petersburg University, Russia, vol.VII, 24-33 (2014)

14. Owen, G.: Game Theory (3rd ed.). Academic Press, San Diego (1995)
15. Maschler, M., Solan, E., Zamir, S.: Game theory. Cambridge University Press, Cambridge

(2013)

6 See Dehez [20] for a synthesis. 

Alternative Representation of Semivalues, the Inverse Problem and Coalitional Rationality

83 



16. Hart, S., Mas-Colell, A.: The potential of the Shapley value. The Shapley Value (A.E. Roth,
ed.), Cambridge University Press, 127-138 (1988)

17. Hart, S., Mas-Colell, A.: Potential, value and consistency. Econometrica 57, 589-614 (1989)
18. Calvo E., Santos, J.C.: Potentials in cooperative TU games. Mathematical Social Sciences 34,

173-190 (1997)
19. Dragan, I.: On the inverse problem for multiweigthed Shapley values of cooperative TU-

games. International Journal of Pure and Applied Mathematics 75, 279-287 (2012)
20. Dehez, P.: On Harsanyi dividends and asymmetric values. International Game Theory Review

19, (2017)

Alternative Representation of Semivalues, the Inverse Problem and Coalitional Rationality

84 




