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Vanishing Hermite Polynomials in Global 
Optimization 

George A. Vazmin 

Abstract 
Weighted Hermite polynomials row for function symmetrized around objective (unknown) point opens a 
way for a localization of the global maximum position. This approach creates subsidiary function guiding 
to the most prominent extrema  (up to 3). The guidance function is  generalized to multi-dimensional 
space. Several analytical tools (suppression of noise, space constriction, etc) are described in this 
technology. 

Keywords: Hermite polynomials, symmetrization, guidance, multi-dimensional, noise suppression, scaling, 
space collapse, recursive iterations, poor statistics. 

Hermite Polynomials Series for Symmetrized Function

        The rising importance in analysis of multi-extreme functions for maxima initiates a variety of methods 
[1]. The significant part of the methods can be defined as an art of algorithms, some of them build analytical 
auxiliary functions, some are based on an implementation of well working Taylor series [2]. 
        This variety creates undoubtedly effective tools for global optimization. One can't say however they 
have mathematical background as the local methods have it in the Taylor series (nearby an objective point u): 

𝑓(𝑥) ≈ 𝑓(𝑢) + 𝑓′(𝑢) ∙ (𝑥 − 𝑢) + 1
2
𝑓"(𝑢) ∙ (𝑥 − 𝑢)2 + ⋯  (1) 

        Moreover the coefficients in (1) are defined in a small vicinity of u (as the derivatives). i.e. ”locally” 
whereas the searching for global maximum of a multi-extreme function has rather non-local character. 
        The coefficients of Hermite series (Laurent, Fourier, etc as well) are defined by integrals “observing” 
entire region of analyzed function  f(x) however such a row doesn’t  give a clue what to do then … 
        The idea was found in symmetrization of a function around objective point u : 

𝐹(𝑥,𝑢) = 1
2

[𝑓(𝑥) + 𝑓(2𝑢 − 𝑥)]     (2) 

… it’s obviously but very useful: 

𝐹(𝑢,𝑢) ≡ 𝑓(𝑢)    (3) 

        The series in weighted Hermite polynomials for function (2): 

𝐹(𝑥,𝑢) = 𝑒−2𝑡2 � 𝑎𝑛

∾

𝑛=0

𝐻𝑛(𝑡)  (4) 

where  

𝑡 ≡
𝑥 − 𝑢
𝑆(𝑢)√2

(5)
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(𝑆(𝑢)𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎 𝑏𝑖𝑡 𝑙𝑎𝑡𝑡𝑒𝑟) 
is transformed into a bit promising view (NB (3)!): 

𝑓(𝑢)  ≈ 1 + 𝟎 ∙ 𝐻2(0) +
1

192
 𝑬(𝒖) ∙ 𝐻4(0) +

1
46080

 𝑷(𝒖) ∙ 𝐻6(0) +∙∙∙   (6) 

        Where: 

𝐸(𝑢) ≡ −
𝑅4(𝑢) − 2𝑅(𝑢) ∙ γ −  𝜎2 ∙ 𝑅02

𝑆4(𝑢)   (7) 

is defined by the parameters integrally characterizing  f(x): 

 q≡𝜇 o, c≡𝜇1 ,𝜎2≡𝜇2,  γ≡𝜇3 , ε≡𝜇4/𝜇22-3        (8) 

       𝜇𝑛 ≡ 𝑞−1 ∫𝑑𝑥 𝑓(𝑥)(𝑥 − 𝑐)𝑛  (9)       
and: 

 𝑅(𝑢) ≡ 𝑐 − 𝑢        (10) 

 𝑆2(𝑢) ≡  𝜎2 + 𝑅2(𝑢)        (11) 

    𝑅𝑜2 ≡ 𝜎2 ∙  ε/2        (12) 

        Function (7) plays role of excess in Hermite row but to distinguish it from proper excess ε(8) of 
objective function f(x) , the name “Guidance Function”(GF) will be used in searching for global 
maximum. 

        Really the naive example of  f(x) and GF shown in fig.1  demonstrates GF as a pointing one to main 
maximum of  f(x).  

        The extreme points of (7) are determined in essential requirement dE/du=0 that leads to cubic 
equation for R(u): 

 2𝜎2𝑅3 + 3𝛾𝑅2 + 𝑅۰𝑅𝑜2𝜎2 − 𝜎2 𝛾 = 0  (13) 

This equation has either one or tree real roots,       (14) 

that is seen in example of fig.1 The two roots may indicate sub-regions of the biggest maxima. The third 
one is typical resided at center of function c(8) that means E(u) comprises a solution of Mean Least 
Squares u=c that is effective for symmetrical functions (nothing to do more if it is known).  

        The definition of P(u) in (4)  is not given… it has similar form as def.(7) of  ~𝑢6. There was a hope 
this P(u) may feel more than 2 big maxima, however, a scrutiny of P(u) revealed behavior almost identical 
to  E(u), P(u) doesn’t see more roots than E(u) does.  
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to variable t(def.5) playing a key role in a detaching MLS  from multi-extreme E(u). Thus taking also  into 
account the numerical coefficients in (4) one can write 

 𝑓(𝑢)  ∼ 𝑐𝑜𝑛𝑠𝑡 +   𝐸(𝑢)  (15) 

that can be used as the Guidance Function (GF(u)) really in a location of the main maxima positions. Thus 
the Hermite polynomials gave (15) and disappeared from this task.  

Fig.1 The main maximum of GF (in red color) points to the main maxima of objective function. 

Convergence

        It is seen from previous consideration the GF(def.15) provides only three (14) roots. An iterative 
procedure can be developed for any (unpredictable) function and statement (14) indicates important  rule 
of termination of iterations: if the cubic equation (13)  has one root only that means f(x) is of unimodal 
character and the local method (based  on (1)) can be applied. 

        Thus the number of roots of GF plays determinative role in a convergence to global maximum 
position. 

Multi-dimensional Functions 

        Direct expansion of 𝒇(𝒓�⃗ ) into Hermite polynomials series along each variable xn of  𝑟 ≡ {𝑥𝑛;𝑛 =
1, … ,𝑁} complicates the task significantly. 
        One can nevertheless step toward experimental mathematics and generalize the definition GF(u) for 
objective vector  𝒖��⃗  : 

𝐺𝐹(𝑢�⃗ ) = 𝐶𝑜𝑛𝑠𝑡 + 𝐸(𝑢�⃗ )  (16) 

where: 

𝐸(𝑢�⃗ ) ≡
𝑅4 − 2𝑅�⃗ ∙ 𝛾⃗ + 𝑅�⃗ 𝑇 ∙ 𝐾� ∙ 𝑅�⃗ + 𝜎2 ∙ 𝑅𝑜2

(𝜎2 + 𝑅2)2 (17)
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 𝑅�⃗ ≡ 𝑅�⃗  (𝑢�⃗ ) ≡  𝑐 − 𝑢�⃗  (18) 

𝑐  is the weighted center of 𝑓(𝑟) 

  𝜎2  ≡  ∫𝑓(𝑟)(𝑟 − 𝑐)2 𝑑𝑣(𝑟)          (19) 

 𝛾⃗  ≡  ∫𝑓(𝑟)(𝑟 − 𝑐)3 𝑑𝑣(𝑟)               (20) 

 𝐾𝑚𝑛 ≡ 2(𝛿𝑚𝑛𝜎2 − ∫𝑓(𝑟)(𝑥𝑚 − 𝑐𝑚)(𝑥𝑛 − 𝑐𝑛) 𝑑𝑣(𝑟))               (21) 

  𝑚,𝑛 = 1, … ,𝑁 

 2𝑅𝑜2  ≡  3𝜎2 − 𝜎−2 ∫ 𝑓(𝑟)(𝑟 − 𝑐)4 𝑑𝑣(𝑟)            (22) 

        Illustration in fig.2 confirms possibilities of experimental mathematics: GF(16) points to main 
maxima of a test function.  

        The determination of the positions of the GF(𝑢�⃗ ) extrema by ∇��⃗ 𝐺𝐹(𝑢�⃗ )=0 leads to nonlinear vector 
equation: 

        𝑄(𝑅�⃗ ) ∙ 𝑅�⃗  =𝛾⃗ −  𝐾� 𝑅�⃗ (23) 

where 

𝑄�𝑅�⃗ � ≡ 2
𝜎2 ∙ 𝑅2 + 2𝑅�⃗ ∙ 𝛾⃗ − 𝑅�⃗ 𝑇𝐾�𝑅 ���⃗  −𝜎2 ∙ 𝑅𝑜2

𝜎2 + 𝑅2
 (24) 

        There is a way to transform eq. (23,24)  to the searching for zeros of ONE dimensional function. 

It’s based on orthogonality of eigenvectors ℎ ���⃗  of symmetrical matrix 𝐾� (21). Expansion of 𝑅�⃗  into the
eigenvectors row 

𝑅�⃗ (𝑄) = �𝑡𝑛

𝑁

𝑛=1

(𝑄) ∙ ℎ�⃗ 𝑛  (25) 

deduces eq.(23)  to equation for t : 

𝑡𝑛(𝑄) =
𝛾⃗  ∙ ℎ�⃗ 𝑛
𝑄 + 𝜆𝑛

 (26) 

λn is the eigenvalue of 𝐾� (21), and finally the searching for Q-zeros of function: 

𝜙(𝑄) = 𝑄 − 𝑄 �𝑅�⃗ (𝑄)�   (27) 

may simplify significantly the big dimensional task , just NB (24)  has discontinuity of the 1st type at  
𝑄 = −𝜆𝑛  which is easy resolved. 

        The example of 𝜙(𝑄)  is shown in fig.3; the defined Q-zeros allow to find vectors 𝑅�⃗  related to 

extremal points of GF(𝑢�⃗ )  that is seen in fig.4. 
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Fig.2 The main maxima of GF(def.16) (red ) indicate the two big maxima of objective function (shown in blue). 

 Fig.3 The ϕ(Q) (def.27) built for objective function and GF shown in fig.2  has the three Q-zeros ( (ϕ(Q)=0) . 
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Fig.4 A superposition of  GF contour (in red) and  the three box-points of 𝑅�⃗ (Q-zeros) (in violet) is shown. 

        Thus ONE dimensional  𝜙(𝑄)  substantially simplifies MULTI dimensional searching for global 
maximum position. 

Equalization of Scales 

       A measure of each “n-th” variable is the dispersion  𝜎𝑛 . The total dispersion  𝜎2  (def.19) 

comprises linearly all these 𝜎𝑛2, so an unbalance variables (106 𝑎𝑛𝑑 10−6 )  may lead to numerical 
inaccuracy. 

        For an avoidance of such problems it is useful to normalize all the variables to any base scale (𝜎𝑏): 

𝑥𝑛′ =  
𝜎𝑏
𝜎𝑛

(𝑥𝑛 − 𝑐𝑛) 

        Moreover due to nonlinear character of GF(𝑢�⃗ ) this re-scaling can improve the guidance, as it seen 
in fig.5. 

Fig.5 The left plot: a test function (in blue) with 1 main maximum and 2 “mountain range” is recognized by main 
maximum of GF  (in red); the GF(right plot)  for the same GF but scaled one has only one maximum and even 
sees “prongs of mountain rages”. 
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Suppression of a Noise (subtraction of a background) 

        One can see in fig.5 (left plot)  a feature of GF : a background,  noise  imitates fake peak for GF.  It 
can be excepted from an incompleteness of (15,16) but level of noise can’t be predicted in any precise 
mathematics. 
        A nose (background) was added to the test functions (fig. 2) and the GF doesn’t recognize the 
global maximum position at all (fig.6) 

Fig.6 GF  (in red color, also in contour view on top) points to a vast zone of a noise and doesn’t see any big 
maxima of  f(x) (blue). 

However, the GF has noteworthy resource in a suppression of noise.
        A presence of a noise can be embodied in analyzed 𝜙(𝑟) additively: 

 (29) 

where 𝑓(𝑟)  is objective function and  𝐵(𝑟)  is a background function. 
        The integral momenta (9,19-22) defining GF  are shown as the “centered” ones. These centered 
momenta can be relatively easy recalculated form non-centered ones. Supposition (29) allows to 
reconstruct non-centered momenta of  𝑓(𝑟) 

�𝑓(𝑟)𝑥𝑘𝑚𝑥𝑙𝑛 𝑑𝑣 = �𝜙(𝑟) 𝑥𝑘𝑚𝑥𝑙𝑛 𝑑𝑣 −  �𝐵(𝑟)𝑥𝑘𝑚𝑥𝑙𝑛 𝑑𝑣  (30) 

𝑘, 𝑙 = 1, … ,𝑁;   0 ≤ 𝑚 + 𝑛 ≤ 4 
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        The integrals over 𝜙(𝑟)  represent the measured momenta. A known type of the background 
function may simplify these reconstructions, however, generally, the background type is unknown so it 
can be a constant A in analyzed space V(𝑟). 
        Thus 

      𝜇(𝑓) = 𝜇(𝜙) − 𝐴 ∙ 𝜇(1)  (31) 
where 

𝜇(𝑔) ≡  ∫𝑔(𝑟) 𝑥𝑘𝑚𝑥𝑙𝑛 𝑑𝑣                                                    (32)
        The level of noise A can be estimated approximately at requirement: all the even non-centered 
momenta (and derived centered ones) must be > 0.  
        Fig.7 shows the effect of such approximate estimation of background (rather “noise” in bigger 
dimension), -  the GF maxima are very close to the vicinities of the main maxima of objective function. 

Fig.7 GF  (in red color, also in contour view on top) points to vicinities of  the main maxima due to background 
subtraction. The objective function (blue) was reduced on the calculated background level 𝐴 ≈ 0.8  for 
demonstration purposes. 

Space collapse (Black Hole)
        A vast sub-region must get a prior  some characteristics like value of dispersion, proper excess etc. 
A suspected zone can be simply excluded, or be analyzed in details, that increases processing time. 
        There is an exotic possibility: such zone can be compressed into point (into nothing). For a Black 
Hole center placed in 𝑎⃗  at size D  one can define new variable of constriction: 

𝑧(𝑟) ≡ 𝑟 + 𝐷
𝑟 − 𝑎⃗

|𝑟 − 𝑎⃗|                      (33) 

        The compressed objective function (i.e. 𝑓(𝑟) → 𝑓(𝑧) )  is deformed significantly nearby Black 
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Hole (D, 𝑎⃗) that is seen in fig.8,9 but the 𝑓(𝑧) GF   sees already the vicinity of main maximum of 𝑓(𝑧). 

Fig.8   Compressed function saves the main peak on the Black Hole edge which absorbed the nose plateau seen in 
fig.6. The global maximum position of objective function is shifted  but in controlled position. Black Hole expands 
small “island” of noise from left into big one so GF (in red color, also in contour view on top)  marks it. Small 
parallel ridges demonstrate a deformation of 𝑓(𝑟) 

Fig.9  Just  a comparison in contour view of scene  fig.6 and fig.8 where all the distortions are seen and a fate of the 
2nd  big maximum f(𝑟) swallowed by Black Hole as well. 

Iterations in Real Example 

        Obviously some efforts should devoted to a definition of Global Maximum: an estimation of minimal 
level of amplitude, size, shape, etc. 
        The number of three possible roots of Guidance Function establishes an iterative procedure of a 
dividing of initial region of 𝑟 into 3(for instance) smaller ones. Such iteration can be repeated until one root 
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is reached at a fulfilment to the Global Maximum requirements. Otherwise this procedure can be continued 
until entire region will have to be analyzed.  
        Such iterations have been realized in analysis of experimental data of nuclear interactions in recursive 
form. Fig.10 demonstrates so called vertex function [3] determining points of interactions of the ions with the 
beam pipe. It is good example of multi-extrema function produced by accidentally defocused beam. The 
peaks of small amplitude (<2) were declared as a noise; the global maximum should have as much associated 
trajectories as possible (not known exactly, but ≥ 2). The contour view of vertex function is shown in fig.11 
with superposition of GF in the 1st iteration. If a maximum fulfills requirements then iterations are 
terminated to avoid big recursive depth  (huge memory consumption);  the pattern is cleared out:  the origin 
of  the determinate peak is eliminated, that reduces also a combinatorial background. And iterations begin 
from initial region. Fig.12 illustrates these steps. The GF of most high amplitude took the priority in the 
iteration queue i.e. “wise iterations”. The background subtraction (31) was applied in this analysis. 

Conclusion 

        The described technologies of analysis of multi-extreme functions may be used in arsenal of Global 
Optimization.  Moreover, the Guidance Function itself  can be applied in a prediction for the most probable 
events in poor statistics. 
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Fig.10 The big maxima of vertex function represent the interaction points of ions on the pipe walls. The 
background  has combinatorial and hardware nature. 
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Fig.11  The superposition of  contour view of vertex function (fig.10) and GF (red contour) is shown. The violet squares 
represents the extremal points of GF used then as the start points for local searching for maximum (dark blue squares) . 

Fig.12 Several recursive iterations of pattern shown in fig.10,11 are demonstrated. The left top picture shows result of 
the 1st iteration: the global maximum was found which comprises 5 emitted trajectories (shown as red lines) ,… then the 
6th iteration gets 2 tracks and analysis has been completed (the noise is only reminded).
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