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Abstract

Residual spatial correlation in linear models of environmental data is often attributed to spatial

patterns in related covariates omitted from the fitted model. We connect the nonunique decom-

position of error in geostatistical models into trend and covariance components to the similarly

non-unique decomposition of mixed models into fixed and random effects. We specify spatial

correlation induced by missing spatial covariates as a function of the strength of association and

(spatial) covariation of the missing covariates. The connection with variance components models

provides insight into estimation procedures. We showed how missing covariates in spatial linear

models actually induces spatial autocorrelation in the covariates. This finding was confirmed

through the use of simulated data and the Binary Steve dataset.

Keywords: geostatistics, spatial regression, variable selection, semi-variogram, spatial auto-

correlation

Introduction

An underpinning of much of spatial statistics is the notion of positive spatial autocorrelation, i.e.

measurements of the same quantity in nearby locations are positively correlated. Indeed, such

autocorrelation enables most geostatistical methods for prediction (e.g. kriging) since observed

measurements provide information for prediction at unmeasured locations. The “First Law of

Geography” (Tobler, 1970) summarizes the philosophical basis for positive spatial autocorrela-

tion: “everything is related to everything else, but near things are more related than distant

things.” We consider this law in the framework of linear models with correlated error terms.

In this setting, we assume spatial autocorrelation is induced by unmeasured or unmeasurable

covariates, an assumption based on the idea that nearby measurements are similar due to shared

local environmental factors. Such a conceptual model is appropriate in an observational setting,

wherein covariate values represent observed values of random variables rather than values fixed

by an experimental design. This set of assumptions has a long history in quantitative geog-
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raphy, leading Ripley (2005) to remark: “Indeed, the philosophy adopted seems to have been

that if ‘spatial autocorrelation’ is found more explanatory variables should be introduced until

it disappears!” (p. 98).

Research that focuses on potential unknown spatial error in model residuals has been sparse

in recent years. Previous work by Hodges and Reich (2010) proposes a restricted spatial regres-

sion model to eliminate spatial confounding in spatially-correlated error terms. Other researchers

have studied the relationship between spatially misaligned data by characterizing the Berkson

error induced from kriging a spatially misaligned dataset. Some authors characterize the total

measurement error as part of a broader class of Berkson error models and develop an estimated

generalized least squares estimator using estimated covariance parameters (Lopiano et al., 2011,

2013, 2014). Various authors have modeled known spatial error by applying a Berkson-type mea-

surement error on the error structure. Gryparis et al. (2009) and Szpiro et al. (2011) employed

a “parameter bootstrap,” a computationally effective method using nonlinear optimization to

solve for exposure model parameters.

An apparent argument in geostatistics is that accurate modeling of the spatial covariance

structure obviates the need to include relevant covariates. Most “trends” removed in geostatistics

are simple linear or quadratic functions of coordinates rather than measured covariates. Here,

however, the goal is accurate prediction rather than accurate estimation of particular covariate

effects. The statistical mechanism for accounting for induced spatial autocorrelation is not well

understood and has received little research effort to date. We outline the connection between

missing covariates and induced spatial autocorrelation in the dependent variables. Next we frame

this relationship in terms of variance components and illustrate a convenient partitioning of error

terms into independent error and spatially correlated components. The variance components

formulation provides links to established estimation techniques, which we illustrate on the Binary

Steve dataset.
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Simple case: Autocorrelation induced by a missing spatial

covariate

Consider a very simple example to fix ideas. Let Yi denote the dependent variable measured at

spatial location i, i = 1, . . . , n. Let Xi denote an independent variable observed at the same

location. We restrict attention to observational studies and assume that Xi is a random variable

(a covariate, in the truest sense of the word), and is not a design variable set at a particular

value by the experimenter. Suppose the model

Yi = µ+ βXi + εi (1)

holds, where the εi are independent, identically distributed Gaussian random variables. Note

that the Yi | Xi are independent. Now restructure the model as follows:

Yi = µ+ φi, (2)

where φi = βXi + εi. We see that

Cov(Yi, Yj) = Cov(φi, φj)

= Cov(βXi + εi, βXj + εj)

= β2Cov(Xi, Xj), (3)

i.e. the covariance of Y = (Y1, . . . , Yn)T is induced by the spatial covariance ofX = (X1, . . . , Xn)T ,

modified by the strength of association between Y and X (i.e. β). Such examples evolve from

correlation induced by linear filters of random sequences outlined for time series by Diggle (1990).

We can consider Equation (2) as a version of Equation (1) wherein a main (fixed) effect

is recast as a random effect (with a correlation structure) in the language of mixed models.

Equivalently, Equation (2) shifts the effect of covariate X from an explicit “large-scale” or trend

error component to a “small-scale” or covariance error component in partitioning of errors in

spatial models as described in Cressie (1993). As noted by Cressie (1993), partitioning of the

variation in Y between main (trend) effects and correlation is not unique once we allow model
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errors to be correlated. Here we see a conceptual connection between mixed and spatial models,

a connection we formalize in the next section.

General linear case

Suppose we consider a linear model for Y , the vector of dependent variables, and a n×p matrix of

covariate values X. Again, we limit consideration to an observational setting where the observed

values of Xij , i = 1, . . . , n; j = 1, . . . , p are realizations of random variables observed at different

spatial locations (some of which may exhibit spatial autocorrelation themselves).

Following the notation of Draper and Smith (1998), suppose we can partition the covariate

matrix X and parameter vector β into two components (i.e. X1 and X2, and β1 and β2,

respectively) such that

X = (X1|X2) and β =

 β1

β2

 .

Further, suppose that one postulates the model relationship to be Y = X1β1 instead of Y =

X1β1 +X2β2. Letting Y be normally distributed with mean X1β1 +X2β2 and variance σ2V ,

let PX1 = I −X1(X ′1X1)−1X ′1 denote the projection/hat matrix that projects onto the n− k

dimensional space that is orthogonal to the k < p dimensional space spanned by the columns of

X1. Thus, we find that the residuals stemming from misidentifying the proper model structure

have the following mean and variance:

E(PX1
Y ) = PX1

E(Y )

= PX1(X1β1 +X2β2)

= PX1(X1β1) + PX1(X2β2)

= 0 + PX1
(X2β2) = PX1

X2β2,

and

V ar(PX1
Y ) = PX1 V ar(Y )(PX1 )

′ = PX1 (σ
2V )(PX1 )

′ = σ2PX1
V (PX1 )

′. 
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Results

Data simulations

Simulated data were created to understand the impact of misspecifying a spatial model. To

better understand such an impace, we simulated data having the form

Y = X1β1 +X2β2 + ε (4)

in the following manner. We created a data frame representing a 10× 10 grid of 100 (i, j) point

pairs where i, j = 1, . . . , 10, respectively. Using this data set, we made a distance matrix of

size 100 × 100 that represents the distance from each point {(i, j); i, j = 1, . . . , 10} to all point

combinations {(k, l); k, l = 1, . . . , 10} in the 10× 10 grid. Next, we simulated two covariates X1

and X2, where X1 has a forced column trend with values from 1 to 10, and X2 has multivari-

ate normal distribution with parameters µ100 = 0100 and Σ100×100, which has an exponential

correlation structure of the form for distance, h,

γ(h) =


0, h = 0

c0 + ce[1− exp(−h/ae)], h > 0;

(5)

we simulated Σ where c0 = 0, ce = 1, ae = 10. The error term, ε, was simulated as having

a random normal N(0, 1) structure. We tested different values of β1 and β2 to see if β1 was

biased for different values of β2 and determined that values of 0.5 for both led to the most

accurate prediction of expected values. The data were next simulated 1500 times so that the

semivariograms could be fitted with the average values of the parameters from the resulting

model runs. We considered three postulated linear models: one that contained only y-intercept

parameter, γ0; one that contained γ0 and a parameter γ1 associated with variable X1; and one

that considered the full postulated model such that the expectation of the response variable

equals γ0 + γ1X1 + γ2X2. After, we examined the semivariograms of the residuals from each of

the models (Figure 1 (a)-(c)). We found that, as the covariates were respectively added to the

model, the points on the semivariogram decreased in terms of semivariance towards values of 1.
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Further, properly considering the full model resulted in a semivariogram whose points converged

to a semivariance value of 1 (Figure 1(c)).
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Real data: Binary Steve

We used the Binary Steve dataset to see if the results found in the simulation were replicated

in a real data example. This is an ecological dataset collected in the Negev Desert in Israel

with variables related to the borrows which are the residences of the species called isopods.

Some burrows can last through a generation of the isopods, while others cannot (Banerjee et al.,

2003). We created a linear regression model to explain burrow survival (Y ) with various variables,

including slope, shrub density, rock density, and dew duration. To increase the spatial correlation

in this dataset, we simulated a variable with strong spatial structure and added it to the response

variable, burrow survival. We meanwhile considered the reduced model that did not include the

slope nor shrub density at 15m in order to illustrate the impact of misspecifying a model that

doesn’t account for variables demonstrating a significant spatial component. Our full model was

determined via a stepwise linear regression model, namely

Y = β0 + β1Dew5m + β2Dew15m + β3Slope15m + β4Shrub5m + β5Shrub15m + β6Rock5m + ε, (6)

where Dew5m and Dew15m, respectively, denote the time in minutes (from 8 a.m.) to evaporation

if the morning dew are five and 15 meters away from the burrows, Shrub5m denotes the density

of shrubs five meters away from the burrows, and Rock5m measures the density of rocks five

meters away from the burrows. Thus, removing Slope 15m and Shrub 15m from the full model,

we establish the postulated model,

Y = γ0 + γ1Dew5m + γ2Dew15m + γ3Shrub5m + γ4Rock5m + ε∗ (7)

and examine the resulting semivariograms associated with the residuals from the respective

models; see Figure 2 (a)-(b). Consistent with our results from the simulated data analysis, model

misspecification resulted in semivariograms containing larger semivariance. Including the missing

covariates (i.e. going from the reduced model to the full model) produced a semivariogram whose

range of point values decreased (Figure 2).
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Discussion

Typically, in geostatistics, the spatial covariance structure is seen to make any covariates in a

linear model obsolete, thus all do not need to be accounted for. We reject this notion, and

instead focus on creating spatial linear models that prioritize correct outcome prediction rather

than precise covariate estimates. We showed how missing covariates in spatial linear models

actually induces spatial autocorrelation in the covariates. Through the use of semivariograms

of the residuals, we found that in comparing reduced models to the full postulated model, the

semivariance is higher in the reduced models and decreases as the model is more accurately

specified. Essentially, larger semivariance is found when misspecification of the model is present.

This finding was confirmed through the use of simulated data and the Binary Steve dataset.

This work focused on linear models, but future work should include extending this to gen-

eralized linear mixed models (GLMM). Other limitations to the study include the choice of

correlation, and dependence of the spatial structure and its impact on the semi-variogram. We

used an exponential correlation to represent the spatial structure. As is often the case for spatial

data analysis, a different correlation structure will impact the results of any such study. Further,

the results in the semi-variogram may depend on the strength of the spatial structure. Future

work will likewise consider variations of the above choices for correlation and spatial structure

to better understand model robustness.
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