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Abstract
In this work, we investigate one class of three-dimensional integral equation by tube domains, are in
power basis and lateral surface and way have super-singularity. In depend of the roots of the characteristic
equations (2), (3) integral representation manifold solution is obtained in an explicit form. In the case,
when parameters present in kernels, such that general solution integral equation contain arbitrary
functions, invers formula is found. On basis obtained integral representation and its invers formula , in the
case when general solution integral equation contain arbitrary functions, determined correct stand
Dirichlet boundary valued problem and found its solution.

Keywords: Integral representation, super-singular kernels, invers formula, three-dimensional integral
equations, Dirichlet type boundary value problem.

1. Integral Representation Manifold Solution

Let Q denote the cylindrical domain Q = {(t,z):a < t < b, |z| < R}. The base of this cylinder will be
denoted by D = {t = a, |z| < R} and the lateral surface will be denoted by S={a<t<b, |z| =R}, z=
x +iy.

We consider the integral equation in the domain Q of the form

o(t,z) +f (tl(t 2 ~ (T, 2)dt +— ff explif 16, (r, p) o(t,s)ds +

R-pPis-27
1.t explif)Ks(t,T;T,p) _
a(z- a)a ff R-p)F(5-2) o(t,8)ds = f(t,z), (1)

where 8 = args, s = &+ in, ds = d&dn, p?> = & +n?r* = x* + y?,

K(60) = Dy 4 (00 — 0§ @) T K0 p) = B2 By (0f () - of (p))l_l, K3(t,77,p) =
K1 (t, 0K, (r,p), Aj(1 < j <n), Bi(1 <1 <m) —, are given constants, f(t, z) —are given functions,
¢(t, z) —uncnoun functions, wg(r) = [(,B —1(R - p)(ﬂ‘l)]_l, a = const > 1,8 = const > 1.

The solution of the integral equation (1) is sought in a class on functions ¢(t, z) € C(ﬁ) ,9(a,z) =0,
o(t,Re?®) =0 ,0 = argz, and its asymptotic behavior for t > a and r - R is given by the formula
o(tz) = 0[(t — a)‘sl] >Mm+D(a—1) at t-a, otz = o[(R — r)‘gz] 6,>m+1)(B—-1) at

r —> R.
In this work in depend of the roots of the characteristic equations
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Y A G = DAY =0 )
and
W+ X B - D™ =0, ®3)

integral representation manifold solution is obtained. The research in this directions has a history , see [1- 12].
Let in integral equation (1) K;(t,7),K,(r,p), Ks3(t,T;7,p) among themselves by formula
K;(t,T; 7, p) = K;(t,T)K,(r, p). Then introducing in consideration new function ¥ (t, z) by formula

tKl(tr)

¥(t,z) = ¢(t,2) +f 29T, 2)dt = Ko (9), (4)

we arrive to solution following I. N. Vecua type integral equation [14]

1 explif 1K, (r,p) _
lzu(t,Z) + T‘[‘UD mlp(t, S)dS —f(t, Z). (5)

So, in this case the problem found solution integral equation (1) reduce to problem found solution
splitting system integral equation (4) and (5).

Investigating special cases, integral equation (3) and (4) was dedicate in [1]-[11].

In the case, when the roots of characteristic equation (2) is different , real and positive , and exist
solution integral equation (4), corresponding to [3] , general solution integral equation (4) represent able in
form

0(62) = ) G@exp[-Lg©] + ¥t +
=1

t n
> O el @) - wf O] { LD dr =
j=1

X G(@exp[-Lwi ]+ K)T@) (6)
where A, is a Vandermond determinant,corresponding parameters , 4;(1 <j <n), Aj, is minor of
(n — 1) —order, which is obtained from A, by dividing n —th lines and j —th column ,C;(z)(1 < j < n) are
arbitrary function the domain D.

Integral in right part formula (6) converges, if ¥(t,z) € C(ﬁ) , Y(a, z) = 0 with asymptotic behavior

Y(t,z) = o[exp[-AwZ ()]t —a)Y],y >a—1att > a, (7

where 1 = max(1y, 43, ... ... ... An)-
The function ¥ (t, z) have property (7), if f(t,z) € C(ﬁ) , f(a, z) = 0 with asymptotic behavior

f(t,z) = o[lexp[-AwE ()]t —a)Y],y >a—1att > a, (8)
where A = max(14, 15, ... ... ... An)-
Note that
KZ(r p)'ll)(t p) — [f KZ(rlpl)lp(t'pl)d eig — KZ(r'p)Ip(trp) eig
azl R-pF R—p)P M (R —p)F
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From here

KZ (T'p)lp(th) i0 :i [KZ (T:P)ll)(tlp)]
(R—p)B ol ®r-pF T

Then in integral equation (5) ¥(t,z) = ¥(t,r), we have

explif 1K, (r, p) ff explif 1K, (r, p)
(t,p)ds =
H R-pPG-2" R-pFPG-2)"""
1 9 R KZ(Tvpl) ds — R KZ(rlp)lp(tlp)
A 72Uy GG p0dp) o = - e dp

Then integral equation (5) has the following form

R B ,
(o) — [ dp = f(6,1), ©)

If f(t,z) =f(t,7r).

Assume that, the solution of the equation (9) is the function ¥ (t,7) € C™ (D) at variable r. Besides
let the function f(t,7) € C(™ (D) at variable r in equation (9). Then differentiating integral equation (9) m
times and every time multiplying by (R —r)# , we obtained the mth order degenerate differential equation

(DEYmp(t,7) + By (DPYm=19(t,7) + By (DPYm24(t,7) + 2! Bs(DPY™ 39 (6, 7) + vt
(m—1)!B,, =0, (10)

where Df = (R — )P ;—r .

The homogeneous differential equation (10) is corresponding to the characteristic equation(3).

The case of equation (9), when the parameters B;(1 <j <m) are such that, the roots of the
characteristic equations (3) are real, different and positive, the solution homogenous differential equation (10)
is given by formula

Y(e,r) = Ty exp |wj0h ()] ;@) (11)

where 1;(¢)(1 < j < m) —arbitrary function variable ¢, u; —the roots of characteristic equation (3).
Function of the type (11) also will be general solution of the homogeneous integral equation (9) . For
obtained general solution non homogeneous integral equation (9), necessary is found particular solution non
homogenous integral equation (9).
Assume that in the integral equation (9) , the function f(t,r) on the right hand side can be represented
in the following uniformly convergent functional series form

f(t7) = Ticoexp |~k + Y)wh (O] £ (12)

where fi(t)(k =0,1,2, ...... ) — are known functions on S. The solution function ¥ (t,r) to the integral
equation (9) will be sought in the class of function y(t,r) representable in the generalized convergent
functional series form

(t,7) = Siig exp |~ (k + Y)wh (0] ¥i(0), (13)

where ¥, (t)(k = 0,1,2, ... ... ) are unknown function on S.
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Let us substitute these expressions f(t,r) and W(t,r) using equalities (12) and (13) into integral
equation (9), after calculating the corresponding integrals , we arrive to following equality

Tieq exp |[~(k + f (0] #(© |1+ T, 2] = Tiecg exw [~k + Df 0] u©)

From here we equate the coefficients in exp [—(k +y)w{j(r)] at k =0,1,2,....., for determining

unknown functions ¥, (t)(k = 0,1,2, ... ... ), so that we obtained the following equality we

|1+ 21 285 | 0 = o).

From here get

(k+y)™
(k+y)™+32, Bi(1-1)!

w,(t) = [ ] £ (k=012,....) (14)

Substituting value ¥, (t) in (13) we have

(k+y)™
(+Y)™+3 2, Bi(1-1)!

W(er) = Zicgexn [~k + Nl @) | AO=K( (9

This function will be particular solution integral equation (5), at f(t,z) = f(¢t, 7).
Directness verification it is possible, that in the case when. the roots of the algebraic equation (3)
1 (1 < j < m) real, different and positive , then function

Wo(t,2) = X7y exp |k ()| @ (2, 2),

where @;(t, z)(1 < j < m) — arbitrary functions two variable continuously by variable t and analytical by
variable z will be general solution homogeneous integral equation (5).
Then function

Y(t,z) =Xt exp [yja)g(r)] ®;(t, 2z) + Kg(f) (16)

will be general solution integral equation (5) in the case , when function f(t,z) = f(t,r) representable in
form (16).
Substituting the value ¥(t,z) from formula (16) to formula (6) we have

062 = ) G@exp[-Lef®]+ ) expmwl ()] K@) +
j=1 =1
(K) Ky () (17)

Integrals in second same at the right part expression (17) converge, if @,(t,z) € C(Q), ¢,(a,z) =
0(1 < I < m) with asymptotic behavior
®,(t,z) = olexp[—AwZ (O)](t — a)Y] , att - a (18)

where A = max(A4, 45, e .. A), ¥ > @ — 1.
Integrals in third expression the right part of (17) converge, if f.(t) € C(§), fr(a) = 0 with asymptotic
behavior
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f@) = olexp[-Awg (O]t —a)¥] ,at t—a (19)

where 1 = max(A4,4,, .. ....dp), y >a—1,fork =0,1,2, ...... ...

So, we proof the following confirmation

Theorem 1.Let in integral equation (1) functions present in kernels connected among themselves by
formulaks; (¢, 7;7,p) = K1 (¢, 1)K, (r, p). In K1 (¢, 7) parameters A;(1 < j < n) such that, the roots of the
characteristic equation (2) 4;(1 < j < n) real, different and positive and parameters B;(1 < j < m) such
that the roots of the characteristic equation (3) real, different and negative. Function f(t,z) = f(t,r)
representable in the uniformly convergent functional series form (12), where f,(t) are given functions,
where f;(a) = 0 with asymptotical behavior (19). Then any solution of the integral equation (1) from class

¢ (Q)representable in form

o(t,1) = Tizoexp [~k +Vf )] @i (®), (20)

we can be represented in the form (17), where C;(z)(1 < j < n) is an arbitrary continuous functions in the
domain D , moreover C;(Re®®) =0 (1 <j <n), with asymptotic behavior
Ci(@)=o[R-TY]A1<j<n),y>p—1latr - R,
@,(t,z)(1 < I < m) —arbitrary functions domain Q analytically by variables zin D, continuous by t in
S, moreover @;(a,z) = 0 with asymptotical behavior (18) and &;(t,Re’®) = 0 with asymptotical
behavior
&,(t,z) =o[(R—7)Y](1<j<n),y>p—1latr - R.

Remark 1. Statement similar of the theorem 1, obtained in the following cases:

1. When the parameters A;(1 < j < n) such that , the roots of the characteristic equation (2) real,
different and positive, besides of one , which have negative sign , and parameters B;(1 < j < m) such that,
the roots of the characteristic equation (3) real, different and negative, besides of one, which have positive
sign ;

2. When the parameters A;(1 < j < n) such that the roots of the of the characteristic equation (3) real,
different and positive, besides of two, which have negative sign and so on.

Moreover in the case, when all the roots of characteristic equation (2) have positive signs besides one,
which have negative signee and the roots of characteristic equation (3) have negative sign, besides one,
which have positive sign, general solution integral equation (1) depend from (n — 1) arbitrary function
Ci(z)(1<j<n-—1) and from (m — 1) arbitrary functions @;(t,z)(1 <1 <m—1), continuously by
variable t and analytically by variable z and so on.

In the case, when all the roots of the characteristic equation (2) is real, different and negative and all the
roots of characteristic equation (3) is real, different and positive, we have the following confirmation

Theorem 2. Let in integral equation (1) functions present in kernels connected among themselves by
formulaK; (¢, 7;7, p) = K1 (¢, ©)K,(r, p). In Ky (¢, 7) parameters A;(1 < j < n) such that, the roots of the
characteristic equation (2) 4;(1 < j <n) real, different and negative and in K,(r, p) parameters B;(1 <
j < m) such that, the roots of the characteristic equation (3) real, different and positive. Function f(t, z) =
f(t,r) representable in the uniformly convergent functional series form (12), where f,(t) are given
functions, where f, (a) = 0 with asymptotical behavior
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fi®) =o[(t—a)'] y>a—1lat t-a,

forany k =0,1,2,.......... Then any solution of the integral equation (1) from class C(ﬁ) representable in
form (20) is uniquely and given by formula

@(t,2) = (K) "' Kp(f).

The case of equation (9) when the parameters B;(1 < j < m) are such that the roots of the characteristic
equation (3) are real , different and negative we have the following confirmation

Lemma 1. Let in integral equation (9) the parameter B;(1 <j <m) such that the roots of the
characteristic equation (3) real, different and negative, let the function f(t,r) € C(ﬁ) , f(t,R) = 0 with
asymptotic behavior

f(t,r) =o[exp[ uwR(r)] (R - r)‘s] 6>a—1latr >R (21)

where p > max(luql, |z, ooroon oo [tm D).

Then integral equation (9) in the class of function ¥(t,z) € C(ﬁ) , vanishing in lines r=R is always
solvability and its solution is given by the formula

W(t,2) = ) @t Dexp [-mof ()] + fEr)+
=1

e SR D™ Bexp [ (0f () — W O]} 2425 dp,

where A} is Vandermond determinant for parameters gl <j<m, A}m is minor of (m-1)-order, which
obtained from A} by dividing m-th lines and j-th column , @;(t,z)(1 < j <m) are arbitrary function two

variables continuously by variables t and analytically by variables z.
Note that

Rexp[ujwﬁ(p)]f(t,p) 1 exp[i9+ujwf§(p)]
I (R-p)F dp=—2l; (R-p)B(s—2)

f(t, p)ds,

we have

Y(t,z) = 2 @;(t, z)exp [—,uja)g (r)] + f(t,r)—
j=1

ax Z( 8 [y @AW - b ) 2P a5 =

Sy (e Dexp |[—pwh ()] + T (22)

Atpu;>0(1<j<m) the solution type (21) exist, if f(t,r) € C(D), f(t,R) = 0 with asumptotic
behavior

fit,r)=o [exp [ — e (r)] (R - r)‘sl] 8, >a—1atr >R, (23)

where p = max(uiplz, oo ooty )-
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Substituting obtained value ¥ (t, z) from equality (21) to formula (6), we have
0(t,2) = By G (2)exp[-Lwd ()] + T exp [ujwh (1] (K) ™ (26, 2)) +

(K) ™ Tp(f) - (24)

Integrals in equality (22) is converges, if f(a,r) = 0 with asymptotic behavior (8).

So, we proof the following confirmation

Theorem 3 . Let in integral equation (1) functions present in kernels connected among themselves by
formulaK;(t,7;7, p) = K1 (¢, ©)K,(r, p). In Ky (t,7) parameters A;(1 < j < n) such that, the roots of the
characteristic equation (2) 4;(1 < j < n) real, different and positive and parameters B;(1 < j < m) such
that , the roots of the characteristic equation (3) real , different and negative, let the function f(t,r) €
c(2), f(t,R) = 0 with asymptotic behavior (21),f(a,) = 0 with asymptotic behavior (8). Then any
solution of the integral equation (1) from class C(ﬁ)representable in form (23), where Cj(z)(1 <j <n)is
an arbitrary continuous functions in the domain D, moreover G (Reie) =0 (1 <j <n), with asymptotic
behavior

(@) =o[R-T)Y]A<j<n),y>p-1at r >R, (A)

@;(t,z)(1 < j <m) are arbitrary function two variables continuously by variables t and analytically by
variables z. Moreover @;(a, z) = 0 with asymptotic behavior

&,(t,z) =o[t—a)],y>a—-1 at t-oa (B)

In depend from signs the roots of the characteristic equations (2) and (3) we obtained different
integral representation manifold solution, containing various number arbitrary function C;(z) domain
D and different various number arbitrary function two variables ®;(t, z), continuously by variables t and

analytically by variables z.
In particular, if the parameter A;(1 < j < n) such that, the roots of the characteristic equation (2)

Aj(1 <j<n) real, different and negative and parameters B;j(1 <j < m) such that the roots of the
characteristic equation (3) real, different and positive have the following confirmation

Theorem 4. Let in integral equation (1) functions present in kernels connected among themselves by
formula K3(t, 7; 7, p) = K1 (t, DK, (r, p). In Ky (¢,7) , parameters 4;(1 < j < n) such that, the roots of the
characteristic equation (2) 4;(1 < j < n) real, different and negative and in K,(r, p) , parameters B;(1 <
j < m) such that the roots of the characteristic equation (3) real, different and positive, functionf (t, z) =
f(t,r) € C(Q), f(a,z) = 0 with asymptotic behavior (8), £(t, R) = 0 with asymptotic behavior

ft,r) = 0[(R —r)51] ,00>pB—1atr » R,
Then, integral equation (1) in class C(ﬁ) have unique solution is given by formula

o(t,2) = (K) ™' Tp(f).
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2. Invers Formula

New let us assume that in integral representation (22) function ¥(t,z) = K, (¢) is well-known
function, than behave how [12], we found

exp [ukwg (r)]

d)k(t, Z) = A(l)

™ (DR AL DI Ko (@) — T(H)] (1 < ke < m), (25)

where D; = 2exp[—if] %, A} is Vandermond determinant for parameters u].(l <j<m), Al-lm is minor of

(m-1)-order , which obtained from A} by dividing m-th lines and j-th column.

Theorem 5. Let fulfillment any condition of the theorem 3 and function £ (¢, z) ,unknown function
@(t, z) differentiability (m — 1) time. Then in integral representation (22) , the functions @, (t,z)(1 <k <
m) by valued ¢(t,z), f(t,z) and its derivatives (m — 1) —th order is found by formula (25).

Now in integral representation (24) functions f(t,z), ®y(t,z)(1 < k < m), ¢(t, z) well-known, we
found valued C;(z)(1 <j < n).

To this end of the formula (24) we represented in following form
n m
Z Ci(2)exp[-AwE(®)] = ¢(t,2) - z exp | (0] K) ™ (2,6, 2)) = K Tp(f) =
j=1 j=1

T[f(t, z),0(t,2), D1(t,2), e cee oo, @, (t,2) ] (26)

Assume that, in (26) known function f(t, z), unknown function ¢(t, z) and function @;(t,z)(1 < j <
m) by variables t, differentiable (n — 1) —time, and every time obtained expression to (t — a)* for finding
functions C;(z)(1 < j < n), we obtained following algebraic system

Z C(Dexp[-Lwl(®)] = T[f(t,2), @(t,2), By (t,2), e ., D, (£,2) ]
=
Z C(@exp[-LwE (O] = DL T[f(t,2), (t,2), D1t 2), o . ., Dy (£, 2)]]
=
z Cj(z)exp[—/lng(t)]ljz = (sz)z[T[f(t, z),¢(t,z), D.(t,2), ... ... ....,@m(t,z)]]
=1
i Cj(z)exp[—)lng(t)]/ljn_l = DOV T[f(t, 2), p(t,2), Dy (t,2), e vvv v, Py (£, 2)]],

d
where D¢ = (t — a)“a.

Solving this system, we found
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exp|A;wl(t
60 = p[]Aoa()]
n_ (DKM T[f(6,2), 9(t,2), @1 (6,2), e e, @ (8, D]], (27)
1< j < n, where
1,11, 01 e 1
;11/1;3 . irll AiAg Ay, o iy Aigt, o
Do=| 22,22,23,.22 |, Al= /1;{_1,12,1]":11/1,'1_1,15—1 1< k,j <n.
A e e e e

Theorem 6. Let fulfillment any condition of the theorem 3 and function f(t, z), unknown function
@ (t, z) differentiability (n — 1) time by variables t. Then in integral representation (24), the functions
Cx(z)(1 <k <n) byvalued ¢(t,2), f(t,z), @;(t,z)(1 < k <n) and its derivatives (m — 1) —th order
is found by formula (25).

Integral representation obtained in theorem 3 and its invers formula obtained in theorems 5 and 6 give
possibility for integral equation (1) explain correct stand different boundary value problems and its
investigation.

Problem D. Is required found solution integral equation (1) from class C(ﬁ) at fulfillment any
condition of the theorems 3,5,6 by boundary condition

Re [exp [ukwﬁ(r)Dj;l[Ka((p)]” = E],.((t, 0) (1<j,k<m), 0<0<2m (28)
r=R

In boundary domain D, condition
[exp [mwﬁ(rm;‘l[xa(«p)]]] = Fi () (1< j,k < m) (29)
z=0

in principal axis cylinder and conditions

|exw [pos @@ @] =Wi@asjksm GO

t=a

in lateral surface cylinder , where E’,"(t, 0) (1< j,k < m)- are given functions the boundary lower
ground of the cylinder, F},(t) (1< j, k < m) —are given functions in principal axis cylinder and W’ (z)
(1< j, k < n) — are given functions lower ground of the cylinder.

Solution problem D. Let fulfillment any condition of the theorem 5 and 6. Then from formula ( 25)
we found

[Re®(t, D= = 37 S (~DM 8} K o [ Re [exp w0 ()] _ |=
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i S (DAL K [E (£ 0)] = Wi(t,0) (1= k < m). (30)

So, for determined unknown functions @, (t,z)(1 < k < m), we have m Shivers problems the
complex analysis theory [13]. According to [13] solution problems (30) is given by formula

Py (t,2) = - [, T(T:—_ZZ)Wk(t,O)dT +id (1) (1< k <m), (31)

where @, (t) —arbitrary functions point t.

From formula (25) we have

i(t,0) = 5 XL, (~ D), [Ka [{exp [maf ] DI @) _||=

zZ=

A—l(l) ™ (—Dk*iAL [Ka[ij (t)]] = E,(t),(1 < k <m) (32)
From formula (31) we find
Dy (t,0) = 5- I, W (t, 0)dr + i (t) (1< k < m), (33)
Compared formula (32) and (33) we have
= I, W (t,0)dT + i®,(t) = E(t) (1< k <m).
From here, we found
0 (t) = By (t) —5- I, W, (t,0)dr.

Substituting obtained valued @, (t) in formula (31), we found explicit form @&, (t,z) In following
form

1 T+z
2 Y t(1-2)

@, (t,z) = Wie(t, 0)dT + Ei (£) — - I, W (t,0)dr (1< k < m). (34)

For discover C;(z)(1< j < n), we use formula (27) and conditions (30). From this formula we have

6(2) = 5 Shas D8 [expl B (O] 0D ()], =

Sk GO W@ =@ < <) (35)

So, if solution of the problem D exist, then it may be represented in form (24), (34), (35). In this
connection property from equality (A) and (B) follows that functions ¥;(z)(1 < j < n) vanishing in
boundary domain D with following asymptotic behavior

Pi(z) =o[(R-7)"](1<j<n),y>p—1atr >R, (36)
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and functions E, (t) , Wi (t, 0) vanishing in lateral surface of the cylinder with following asymptotical
behavior

Ex(t) ==o[(t—a)],yy >a—1 at t-a, (37)
So, we proof the following confirmation

Theorem 7. Let any condition of the theorems 3,5,6 fulfill. Besides in problem D functions
E{c(t, 0),F{‘(t) (1<j,k <m, W{‘(z) (1< j, k < m), such that ¥;(Re'®) = 0(1 < j < n)with asymptotical
behavior (36) and Ej(a) = 0 (1< k < m) with asymptotical behavior (37).Then problem D have unique
solution, which is given by formulas (24), (34), (35).

3. One Special Case

Let m =n =2 and K;(t,7;17,p) = K, (t,7)K,(r, p). Then, corresponding characteristic equations
have the following form

A2+ AA+4,=0, 0
u? + Byu+ B, = 0. (1

Lower, we reduce to the results, in the case when the roots of the characteristic equation (I1) real,
different and positive, but the roots of the characteristic equation (I) may be real, different and negative;
real, equal and negative; complex-conjugate with negative real part (4; < 0,44, — A,% >0).

Theorem 8. Let in integral equation (1) the roots of the characteristic equation (I1) real, different and
positive, that is w; >0, u, > 0(B; >0, B, > 0) and the roots of the characteristic equation (I) real,

different and negative , that is 4; < 0,1, < 0(p <0, g > 0). Functionf(t,z) € C(Q), f(a,z) = 0 with
asymptotic behavior

f(t,2) = o[exp[LwZ (It —a)®], 8, >a—1 att>a
and, f(t, Re'?) = 0 with asymptotical behavior
ft,z)=o [exp [ullwf(r)] (R - r)‘sz], 5, >B—1 atr > R. (111)
Then integral equation (1) always solvability, and its solution is given by formula
9(t,7) = exp[L0E (DG (2) + expll0 (D]C(2) + exp [—pwf ()]
IO (D] + exp [~pp0f (] (T D] + (1) THF,

where
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()" () = f(&,2)

ff = e;))?ﬁl(es 3 [,u%exp [Mz (wf(r) —wf (p)) — uiexpuy (wf (r) — wf(m)]],

TS = £0.2) ~ i fo [Bexp[22(05(0) - 0§ )] = Hexpl (00 - g @)]] L2,

Ci(t,z)(j = 1,2) — arbitrary functions domain Q , continuously by variables ¢ and analytically by variables
z , moreover C;(a,z) = 0(j = 1,2) with asymptotically behavior

Ci(t,z2) =o [exp[lla)g‘(t)(t - a)53]] G=12) 63>a—1 at t-a,

Ci(2)(j = 1,2) —arbitrary continuously functions domain D. Moreover Cj(Rexplif]) = 0(j = 1,2) with
asymptotically behavior

Ci(z)=o[(R—-71%|(=12),6,>p—-1 at r-R

Theorem 9. Let in integral equation (1) the roots of the characteristic equation (I1) real, different and
positive, that is u; > 0, u, > 0(B; > 0, B, > 0) and the roots of the characteristic equation (1) real, equal

and negative, that is A; =, A, =1 = % <0(p <0, g>0). Functionf(t,z) € C(ﬁ), f(a,z) =0 with

asymptotic behavior
f(t,z)=o0 [exp [gwg‘(t)] (t— a)54], 6 >2(a—1) at t—a

and f(t,Re'®) = 0 with asymptotic behavior (I11). Then integral equation (1) always solvability, and its
solution is given by formula

0(t,2) = exp [Lwg (D] (Cs(2) + 0 () Co(@)) + exp [-mwf ()]
(T2)Cy(t D] + exp [—up0f (] (T2 C, (6 D] + () T F,

where C;(t,z)(j = 1,2) — arbitrary functions domain Q , continuously by variables t and analytically by
variables z , moreover C;(a,z) = 0(j = 1,2) with asymptotically behavior

Gi(t,z) =o [exp Ea)g‘(t)(t — a)55” (G=12) 65>2(a—1_ at t—oa,

Ci(2)(j = 1,2) —arbitrary continuously functions domain D. Moreover Cj(Rexp[if]) = 0(j = 1,2) with
asymptotically behavior

Ci(2)=o[(R—7)%](j=12),66>p—-1 at r-R,

I = £(6.2) = fi |exp [2 (050 — 0§ @) + a(0§© - 0§ @)]| L2 ax,



To Theory One Class of Three-Dimensional Integral Equation with Super-Singular Kernels by Tube Domain

Theorem 10. Let in integral equation (1) the roots of the characteristic equation (I1) is complex and

\/4q p?

conjugate, that isAy =A+iB, A, =A—iB(A= %, B =Y——"p<0, 4q —p?> > 0) and the roots of

characteristic equation (1) real, different and positive , that is p; > 0, u; > 0(B; > 0, B, > 0). Function
f(t,2) € C(Q), f(a, z) = 0 with asymptotic behavior

f(t,z) =0 [exp [%wg(t)] (t— a)57], 6,>(a—1) at t—a

and f(t,Rei") = 0 with asymptotic behavior (I1l). Then integral equation (1) always solvability, and its
solution is given by formula

£ eos [ [P 00| oo} + exp [-maf @],

@(t,z) = exp [ (t)] C,(2) + sin

THMCE D] + exp|—pof O] CE D] + (1) TH TS,

where C;(t,z)(j = 1,2) — arbitrary functions domain Q , continuously by variables t and analytically by
variables z, moreover Cj(a,z) = 0(j = 1,2) with asymptotically behavior

Ci(t,z) =0 [exp [gwg‘(t)(t — a)55” G=12) 63> (a—1) at t—a,

Ci(2)(j = 1,2) —arbitrary continuously functions domain D. Moreover Cj(Rexp[if]) = 0(j = 1,2) with
asymptotically behavior

Ci(z) =o[(R—7)%]|(j=12),66>p—-1 at r->R
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