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Abstract

A left (right) zero divisor a ∈ R is called right (left) ∗−reversible if ax = 0(xa = 
0), for x ∈ R,x 6= 0, then xa∗ = 0(a∗x = 0). In this note we prove that a ∗−prime 
involution ring is a ∗−compressible if and only if it has no ∗−reversible element. 
Moreover, we show that semiprime ring with involution R is a subdirect product 
of ring without ∗−reversible elements if and only if R is ∗−compressible. Several 
results related to ∗−compressible ring are obtained.
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1 Introduction and Preliminaries
Throughout the paper R denotes an associative ring with identity. Recall that

an involution on a ring R is an additional binary operation ∗, such that (a + b)∗ =
a∗+ b∗,(ab)∗ = b∗a∗,(a∗)∗ = a, for all a,b ∈ R. Let S,T,N,K denote the set of all
symmetric elements (x = x∗), the set of all traces (x+x∗), the set of all norms (xx∗) and
the set of skew-symmetric elements (x∗ = −x) in R respectively. Not that T ∪N ⊆ S.
A ring R is called ∗−prime ring if AB = 0 implies A = 0 or B = 0 where A and B are
∗−ideals of R (e.g., I∗ ⊆ I) [2]. It is obvious that prime rings are ∗−prime. Some
characterizations of ∗−prime rings can be found in [2]. A ring R is called semiprime
if A2 = 0 implies A = 0 where A is an ideal of R. Let R be a ring with involution, a left
zero divisor a∈ R is called right ∗−reversible if ax = 0 implies xa∗ = 0 for x∈ R. Right
∗−reversible element and ∗−reversible element are defined analogously [3]. W.Fakieh
and S.K.Nauman proved that if R has no ∗−reversible element then R has no nonzero
symmetric divisors of zero [7]. Further work on ∗−reversible elements appears in [4],
[3], [7].

A ring R is called ∗−compressible if for any y ∈ T ∪N,aynb = 0 implies ayb = 0,
where n is a power of 2 [1]. In early work, Andrunakievic and Rjabuhin have shown
that a ring R is without nilpotents if and only if R is a subdirect product of skew do-
mains [5]. In [1, Proposition 2 and Theorem 2], Tao-Cheng Yit has proved that if R
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is ∗−prime then R is ∗−compressible if and only if every nonzero symmetric element
in T ∪N is a nondivisor of zero, and if R is a semiprime ring with involution then
R is ∗−compressible if and only if R is a subdirect product of rings without nonzero
symmetric divisors of zero.

In this note, we shall prove T.C.Yit results by considering the ∗−reversible ele-
ments instead of the symmetric divisors of zero in T ∪N. Moreover, we study some
properties of ∗−reversible elements in ∗−compressible ring; In particular, we show
that if R is ∗−compressible ring then the set of ∗−reversible elements is closed under
multiplication and we prove that if the involution ∗ is proper involution (e.g. aa∗ = 0
implies a = 0) and s1s2s3 = 0, where si is ∗−reversible elements of ∗−compressible
ring R, then the products of the si’s is zero in any order.

2 Results
First, we recall some properties of ∗−compressible ring in [1].

Proposition 2.1. [1,proposition 1] Let R be a ∗−compressible ring, x ∈ R.

1. If s ∈ T ∪N with sn = 0, then s = 0.

2. If xx∗ = 0, then x∗x = 0.

Proposition 2.2. [1,proposition 2] Let R be a ∗−prime ring. Then R is ∗−compressible 
if and only if every nonzero symmetric elements in T ∪ N is a nondivisior of zero.

The following proposition shall be useful in the proof of the results of this note.

Proposition 2.3. Let a be a square zero element in ∗−compressible ring, then a is a 
skew symmetric element.

Proof. Let a2 = 0, then

a∗a(a + a∗)2aa∗ = 0.

Since R is ∗−compressible, we have

a∗a(a + a∗)aa∗ = 0.

Thus a∗aa∗aa∗ = 0 and so, (aa∗)3 = 0. Hence aa∗ = 0 by proposition 2.1. Con-
sequently, (a + a∗)2 = 0 and so (a + a∗) = 0 since R is ∗−compressible, hence a =
−a∗

Proposition 2.4 and Theorem 2.5 are analogous to [1, proposition 2] and [1, theo-
rem 1] respectively, by considering ∗−reversible elements instead of symmetric zero 
divisors under the same conditions.

Proposition 2.4. Let R be a ∗−prime ring. Then R is ∗−compressible if and only if R 
has no ∗−reversible elements.
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Proof. Let x ∈ R be a nonzero ∗−reversible element of R, then there exists 0 6= y, such
that xy = 0 and this implies that yx∗ = 0.
Then we have the following equality for r ∈ R:

x(x∗ry∗+ yr∗x)2y∗ = x[(x∗ry∗)2 +(yr∗x)2 + x∗ry∗yr∗x+ yr∗xx∗ry∗]y∗ = 0.

Since R is ∗−compressible, it follows,

x[x∗ry∗+ yr∗x]y∗ = 0

Therefore, xx∗ry∗y∗ = 0. Since R is ∗−prime, we have xx∗ = 0 or (y∗)2 = 0. If xx∗ = 0,
then rxx∗ = 0. Since x is ∗−reversible element we have, xrx = 0 then x∗x∗ = 0⇒
x∗(x∗r) = 0, so x∗rx = 0. Again, R is ∗−prime ring, it follows x = 0.

If (y∗)2 = 0 then (yr∗ry∗)2 = (yr∗ry)2 = 0 as y∗ =−y by proposition 2.3, then we
have yr∗ry∗ = yr∗ry = 0 since R is ∗−compressible. Hence y = 0 or yr∗ = 0 by [2,
Theorem 5.4], thus y = 0 and R has no ∗−reversible element.
Conversely, let R has no ∗−reversible element. By [7, theorem 1] R has no nonzero
symmetric divisor of zero. Thus R is ∗−compressible ring by preposition 2.2.

Theorem 2.5. Let R be ∗−compressible and Q is the prime radical of R, then Q =
{∩P′ : P′a∗−prime ideal such that R/P′ has no ∗−reversible element}.

Proof. Let P be a prime ideal, then N = C(P) is an m-system. By [1, Proposition 3]
there exist a ∗−prime ideal P′ such that R/P′ is ∗−compressible and P′∩N = φ . Thus
for such a ∗-prime ideal P′, we have P′ ⊆C(N) = P and R/P′ is ∗-prime ring. So R/P′

has no ∗-reversible element by proposition 2.4.
Therefore Q ⊇ ∩{P′|P′ is ∗−prime ideal and R/P′ has no ∗−reversible elements}

and since Q is the minimal semiprime ideal, it follows Q = ∩{P′|P′ is ∗−prime ideal
and R/P′ has no ∗−reversible elements}.

Now, we can derive our main theorem.

Theorem 2.6. Let R be semiprime with involution, then R is ∗−compressible if and
only if R is a subdirect product of rings without ∗−reversible elements.

Proof. Let R be ∗−compressible ring then by theorem 2.5, R is a subdirect product of
rings without ∗−reversible elements. Conversely, let R be a subdirect product of rings
without ∗−reversible elements. Therefore, R has no nonzero symmetric zero divisor
by [7, Theorem 1]. So R is ∗−compressible by [1, theorem 2].

Recall that the involution ∗ is proper involution if aa∗= 0 implies a= 0 [6]. Lemma
2.2 and lemma 2.8 below give us some properties of the set of ∗−reversible elements
of ∗−compressible ring with proper involution.

Lemma 2.7. Let R be a ∗−compressible ring and ∗ is proper involution then the set of
∗−reversible elements is closed under multiplication.

Proof. Let a,b are ∗−reversible elements in R then there exists y 6= 0,x 6= 0, such that

ax = 0⇒ xa∗ = 0.
yb = 0⇒ b∗y = 0.

3
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Hence, xa∗b∗ = 0⇒ b(xa∗) = 0⇒ (ab)x = 0, thus (ab) is a left zero divisor and since
b∗y = 0 ⇒ a∗b∗y = 0 ⇒ b∗ya = 0 ⇒ y(ab) = 0. Therefore (ab) is a zero divisor.
Now, let (ab)h = 0, then [h(ab)]2 = 0 and by proposition 2.3, h(ab) = −(ab)∗h∗,
so h(ab)(ab)∗h∗ = 0, and h(ab) = 0 since ∗ is proper involution. Thus a∗b∗h =
a∗b∗hb∗a∗ = b∗hb∗a∗a = 0 and hb∗a∗ab = 0 since a,b are ∗-reversible elements. So,
h(ab)∗(ab)h∗ = 0. Again ∗ is proper involution then h(ab)∗ = 0 and (ab) is a right
∗−reversible element.

To prove that (ab) is a left ∗−reversible element, let h(ab) = 0. By the same
argument above it follows, (ab)hh∗(ab)∗ = 0 and (ab)h = 0, hence ha∗b∗ = 0 and
b∗a∗ha∗b∗ = bb∗a∗ha∗ = h∗(ab)(ab)∗h = 0, thus h∗(ab) = (ab)∗h = 0. So, (ab) is a
left ∗−reversible element and the set of ∗−reversible elements are closed under multi-
plication.

Lemma 2.8. Let a be a ∗−reversible element in a ∗−compressible ring R, with proper
involution ∗, then:

1. If (ar)h = 0 then h(ar)∗ = 0 for r,h ∈ R.

2. If h(ar) = 0 then (ar)∗h = 0 for r,h ∈ R.

3. If h(ra) = 0 then (ra)∗h = 0 for r,h ∈ R.

4. If (ra)h = 0 then h(ra)∗ = 0 for r,h ∈ R.

Proof. (1) Let (ar)h = 0, so arhr∗ = rhr∗a∗a = 0 since a is a ∗−reversible element.
Hence [h(r∗a∗)(ar)]2 = 0. By proposition 2.3, h(r∗a∗)(ar) =−(r∗a∗)(ar)h∗ and
we have, h(r∗a∗)(ar)(r∗a∗)(ar)h∗= 0. Since ∗ is proper involution, h(r∗a∗)(ar)=
0 , it follows h(ar)∗(ar)h = 0 and again ∗ is proper involution, h(ar)∗ = 0.

(2) Let h(ra) = 0, so r∗h(ra) = aa∗r∗hr = 0 and [(ra)(a∗r∗)h]2 = 0. By the same
argument above we have (ra)(ra)∗h= 0, thus h∗(ra)(ra)∗h= 0. Since ∗ is proper
involution, h∗(ra) = (ra)∗h = 0.

(3) If h(ar) = 0 then (rha)2 = 0 and rha = −a∗h∗r∗ = a∗h∗r∗ = 0 since R is ∗-
compressible. Thus 0= r∗rha= a∗r∗rha∗, it follows ha∗(a∗r∗r)∗= ha∗r∗rah∗=
0 by (1). So h(ra)∗(ra)h∗= 0 and since ∗ is proper involution, (ra)h∗= h(ra)∗=
0, so ((ra)∗h)2 = 0 and (ra)∗h=−h∗(ra), thus ((ra)∗h)(−h∗(ra))= ((ra)∗h)(h∗(ra))=
0 and we get (ra)∗h = 0.

(4) Let (ra)h = 0, it follows, (ahr)2 = 0 and ahr =−r∗h∗a∗, then (ahr)(r∗h∗a∗) = 0.
Since ∗ is proper involution, a∗r∗h∗a∗ = 0 and aa∗r∗h∗ = 0, by (1) h∗(aa∗r∗)∗ =
0 and we have, h∗(ra)(a∗r∗)h = 0. Thus h∗(ra) = 0 and [(ra)h∗]2 = 0, hence
(ra)h∗h(ra)∗ = 0, so (ra)h∗ = h(ra)∗ = 0.

We conclude this note by the following theorem which is analogous to theorem 4 
and remark 4 of [1].

Theorem 2.9. Let R be a ∗−compressible and ∗ is proper involution. Then
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1. If s1s2s3 = 0 where si are ∗−reversible elements, then the product of the si’s is
zero in any order.

2. If sxdyt = 0, where s,d, t are ∗−reversible elements and x,y ∈ R, then :

dytsx = tsxdy = xdyts = ytsxd = 0

sxytd = dysxt = sytxd = dsxyt = 0

Proof. (1) By lemma 2.7, sis j is ∗−reversible element for i, j = 1,2,3. Since s1s2s3 =
0, it follows, s∗3s1s2 = s∗2s∗3s1 = s∗1s∗2s∗3 = s3s2s1 = 0. Also, s∗3(s1s2) = (s1s2)

∗s∗3 =
s∗2s∗1s∗3 = s3s1s2 = 0, by similar way we can deduce that s2s3s1 = s1s3s2 = s2s1s3 =
0.

(2) Since s, t,d are ∗−reversible elements and by lemma 2.8, we can get the following:

dytsx = tsx(dy)∗ = (dy)∗(tsx)∗ = tsxdy = 0

tsxdy = dy(tsx)∗ = (tsx)∗(dy)∗ = dytsx = 0

xdyts = yts(xd)∗ = (xd)∗(yts)∗ = ytsxd = 0

also, we can have,

xdyts = yts(xd)∗ = s(xd)∗(yt)∗ = (xd)∗(yt)∗s∗ = sytxd = 0

tsxdy = (dy)∗tsx = (sx)∗(dy)∗t = t∗(sx)∗(dy)∗ = dysxt = 0

ytsxd = sxd(yt)∗ = d(yt)∗(sx)∗ = (yt)∗(sx)∗d∗ = dsxyt = 0

Conclusion

In this note we proved that semiprime ring R is a subdirect product of rings with-
out ∗-reversible elements if and only if R is ∗-compressible. We proved some results
related to ∗-compressible ring.
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