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Abstract

An optimal control problem for a semilinear elliptic equation with infinite order is investigated, where pointwise
constraints are given on the control. First order necessary optimality conditions are derived, second-order sufficient
optimality condition is established that consider strongly active constraints.
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1 Introduction

Optimal control problems governed by a semilinear elliptic partial differential equations have already been
considered by many authors. We refer only to the papers of Casas [1], to the book of Tröltzch [19], and the
reference there in. Meanwhile, the existence of an optimal control and the first order necessary optimality
conditions are well investigated. It is known that in the case of nonlinear equations the first order conditions
are not in general sufficient for optimality so that we are going to derive a second order conditions. In this
paper, we study an optimal control problem for a class of semilinear elliptic distributed control problem
governed by elliptic operator of infinite order with pointwise control constraint. The aim is to derive the first-
order necessary and the second order sufficient optimality conditions by using [4, 5, 19]. For the elliptic
distributed control problems of infinite order the second-order sufficient conditions were estiblished in the
paper by El-zahaby [9]. In the study of the Caushy Dirichlet problem by Dubinskii [6, 7]

L(u) =
∞∑
|α|=0

(−1)|α|DαAα(x,Dγu) = h(x), x ∈ Ω

D|ω|u(x)|∂Ω = 0, |ω| = 0, 1, 2, · · ·

The Sobolev space of infinite order which defined by

w∞{aα, pα}(Ω) = {u(x) ∈ C∞0 (Ω) : p(u) ≡
∞∑
|α|=0

‖Dαu‖pαpα <∞}

where aα ≥ 0 and pα ≥ 1 are numerical sequences and ‖.‖p is the canonical norm in the space Lp(G).
Gali et al. [14] presented a set of inequalities defining on an optimal control of a system governed by

self-adjoint elliptic operators with an infinite number of variables.
Subsequently Lions suggested a problem related to this result but in different direction by taking the

case of operators of an infinite order with finite dimensions.
Gali has solved this problem, the result has been published in [12].
Moreover, I. M. Gali et. al. [12–17] presented some control problems generated by both elliptic and

hyperbolic linear operator of an infinite order with finite number of variables.
Necessary conditions for control problems governed by elliptic variational inequalities with an infinite

number of variables, obtained by El-Zahaby [8]
El-Zahaby et al [11] obtained the optimal control of problems governed by variational inequalities of an

infinite order with finite domain.

"Science Stays True Here" 
Journal of Mathematics and Statistical Science (ISSN 2411-2518), Vol.5, 263-273 | Science Signpost Publishing 



We refers for instance, to Cases [1] for the first-order necessary optimality conditions, Casas, Tröltzsch
and Unger [5] for the second-order sufficient conditions.

For the elliptic case with quadratic objective and linear equation of an infinite order, this obtained by
El-Zahaby et. al. [10], and a semilinear problem of an infinite order with finite dimension, this obtained by
El-Zahaby [9].

For the papers which a close connection to our work, we refer to [2–5,18] and reference given there in.
This paper is structed as follows:
In section two, introduce for functional space of an infinite order with finite dimension.
In section three, a semilinear elliptic control problem for infinite order operator with finite dimension is

considered.
In section four, we derive the first-order necessary condition.
In section five, introduce the formal Lagrange method to determin the actual form of the adjoint equation.
In section six, second-order sufficient optimality conditions are obtained.

2 Some Function Spaces

The embedding problems for non-trivial Sobolev spaces of infinite order are investigated in [6, 7].
An embedding criterian established in terms of the characteristic functions of these space.
In this case

W∞{aα, 2} ⊆ L2(Rn) ⊆W−∞{aα, 2}

where,

W∞{aα, 2} = {φ ∈ C∞(Rn) :
∞∑
|α|=0

aα‖Dαφ‖22 <∞}

be Sobolev space of infinite order of periodic function defined on all of Rn and W−∞{aα, 2} denotes their
topological dual with respect to L2(Rn), we recall that α = (α1, · · · , αn) is a multi-index for differentiation
and |α| = α1 + · · ·+ αn

Dα =
∂|α|

∂xα1
1 ∂xα2

2 · · · (∂x
αn
n )

, aα > 0,

is a numerical sequence, and ‖.‖2 is the canonical norm in the space L2(Rn), (all functions are assumed to
be real value).

Analogous to the above chain we have

W∞0 {aα, 2} ⊆ L2(Rn) ⊆W−∞0 {aα, 2}

Let us consider the elliptic operator of an infinite order with finite dimension [12]

Ay =
∞∑
|α|=0

(−1)|α|aαD
2αy aα > 0. (2.1)

This operator is bounded self-adjoint elliptic operator mapping W∞0 {aα, 2} onto W−∞0 {aα, 2}.
We introduce a continuous bilinear form on W∞0 {aα, 2}

π(y, φ) = (Ay, φ)

=
∞∑
|α|=0

(
(−1)|α|aαD

2αy(x), φ(x)
)
L2(Rn)

, aα ≥ 0

=
∞∑
|α|=1

(
(−1)|α|aαD

2αy(x), φ(x)
)
L2(Rn)

+ q(x)(y(x), φ(x))L2(Rn)
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where q(x) is a real valued function from L2(Rn) such that q(x) ≥ ν, 1 ≥ ν > 0.
The ellipticity of A is sufficient from the coerciveness of π(u, v) on W∞{aα, 2}, see [12] In fact

π(u, u) = (Au, u)

=
∞∑
|α|=1

(aαD
αu(x), Dαu(x))L2(Rn) + q(x)(u(x), u(x))L2(Rn)

≥
∞∑
|α|=1

(aαD
αu(x), Dαu(x))L2(Rn) + ν(u(x), u(x))L2(Rn)

=
∞∑
|α|=1

(
aα‖Dαu‖2L2(Rn)

)
+ ν‖u(x)‖2L2(Rn)

=
∞∑
|α|=1

(
aα‖Dαu‖2L2(Rn)

)
+ ν

∞∑
|α|=1

(
aα‖Dαu‖2L2(Rn)

)

− ν
∞∑
|α|=1

(
aα‖Dαu‖2L2(Rn)

)
+ ν‖u(x)‖2L2(Rn)

= ν‖u‖2W∞{aα,2} + (1− ν)

∞∑
|α|=1

(
aα‖Dαu‖2L2(Rn)

)
Then

π(u, u) ≥ ν‖u‖2W∞{aα,2}. (2.2)

3 Formulation of the optimal control problem

In this paper, we consider the optimal control problem to minimize

(P )



min J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

k

2
‖u‖2L2(Ω), (3.1)

subject to

Ay + d(x, y) = u in Ω (3.2)

y|w||Γ = 0 |w| = 0, 1, 2, · · ·
and to the constraints on the control

ua(x) ≤ u(x) ≤ ub(x) a.e in Ω (3.3)

where A is the elliptic operator of infinite order A ∈ L(W∞{aα, 2},W−∞{aα, 2}) , and having the form
(2.1) and d : Ω×R→ R is a function. The function u denotes the control in the space of control U and y(u)
is the solution (state of the function) associated to the control u, ua, ub ∈ L∞(Ω) with ua(x) ≤ ub(x).

Let us consider the set of admissible control by

Uad = {u ∈ L∞(Ω) : ua(x) ≤ u(x) ≤ ub(x) f.a.a x ∈ Ω}

The norm functional above is a convex with respect to y and the set Uad is a convex , closed and bounded
in L2(Ω) . Nevertheless, the functional J is in general nonconvex, because the equation (3.2) is nonlinear
equation . Therefore, the discussion of the second order condition is reasonable. We should mention a theory
of the optimality conditions for convex problems with a semilinear equations, of. [9, 19].

The partial differential equation is considered in the following sense.
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Definition 3.1. A function y ∈W∞{aα, 2} is said to be a weak solution of the partial differential equation
(3.2) if for all v ∈W∞{aα, 2} the equation

∞∑
|α|=0

∫
Ω

aα(Dαy)(x)(Dαv)(x)dx+

∫
Ω

d(x, y)vdx =

∫
Ω

uvdx

is vaild

To make this well defined, we impose the following assumptions:
Assumption A1:
The set Ω ⊂ RN , N ≥ 2 is assumed to be a bounded Lipschitz domain with sufficiently smooth boundary

Γ and A is an elliptic operator and the coerciveness condition (2.2) of π(y, y) on W∞{aα, 2} is satisfied if
q(x) ≥ ν, 1 ≥ ν > 0.

The function d : Ω× R → R is bounded and measurable with respect to x ∈ Ω for any fixed y ∈ R and
is continuous. Furthermore, the function d is monotone increasing with respect to y for almost all x. This
property of the function d guarantees the existence of unique weak solution of partial differential equation
(3.2) for each fixed u ∈ Uad see [19]

Assumption A2:
The function d is twice differentiable with respect to y for almost every x ∈ Ω. Morever, it satisfy the

boundedness and a local lipschitz conditions of order k = 2 . The bounds ua, ub : E → R belong to L∞(E)
for E = Ω and satisfy the conditions ua(x) ≤ ub(x) for almost every x ∈ E.

Additionally dy(x, y) ≥ 0 for almost every x ∈ Ω and all y ∈ R. Moreover, there is a set Ed ⊂ Ω of
positive measure and a constant λd such that

dy(x, y) ≥ λd ∀ x ∈ Ed ∀ y ∈ R.

The proof of the following theorem can be found in [9, 19]

Theorem 3.1. (Well-Posedess of the state equation) With Assumption A1 holding, then the semilinear
elliptic control problem (3.2) admits for every u ∈ L2(Ω) a unique solution y ∈W∞{aα, 2} ∩ C(Ω̄) with

‖y‖W∞{aα,2} + ‖y‖C(Ω̄) ≤ C‖u‖L2(Ω) (3.4)

.

4 First-Order necessary Conditions

We introduce the control-to-state operator

G : L2(Ω)→W∞{aα, 2}(Ω) ∩ C(Ω̄), u 7→ y.

We transformed the control problem (P ) by using the solution operator G into the reduced quadratic
optimization problems in term of u, namely

f(u) := J(y, u)

= J(G(u), u)

=
1

2
‖G(u)− yd‖2L2(Ω) +

k

2
‖u‖2L2(Ω)

=
1

2

∫
Ω

(G(u)− yd)2 dx+
k

2

∫
Ω

u2 dx

the problem is to find min f(u). where

Uad = {u ∈ L∞(Ω) : ua(x) ≤ u(x) ≤ ub(x)}
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Definition 4.1. A control ū ∈ Uad is said to be an optimal if it satisfies, together with the associated
optimal state ȳ = y(ū), the inequality

J(y(ū), ū) ≤ J(y(u), u) ∀ u ∈ Uad.

A control is said to be a locally optimal in the sense of L2(Ω) if there exists some ε > 0 such that the
above inequality holds for all u ∈ Uad such that ‖u− ū‖L2(Ω) < ε.

The next theorem states the existence of an optimal solution for (P).

Theorem 4.1. Suppose that Assumptions A1, A2 are holds. If the admissible set is not empty, then Problem
(P ) admits at least one local solution in the sense of Definition 4.1.

Proof. The proof is noreor less standard. In all what follows, we denote the optimal solution by (ȳ, ū)
where ȳ = G(ū) and ū is said to be an optimal control. By λ > 0, and Assumptions A1 and A2, we find
a bounded minimizing sequence {un} ⊂ L2(Ω), yn = G(un) and we can assume without loss of generality
un → ū, n → ∞. By Theorem 3.1, the associated sequence {yn} is bounded in W∞{aα, 2}. Hence in [6, 7]
W∞{aα, 2} is completely imbedded in L2(Ω), we can assume

yn → ȳ in L2(Ω)

Together with boundedness in C(Ω) that follows from (3.4), this yields

d(x, yn)→ d(x, y) in L2(Ω)

ȳ = G(ū)

The optimality of ū is a standard conclusion, therefore

j = lim
n→∞

J(yn, un) = J(ȳ, ū)

Remark 4.1. Obviously, all admissible controls must be bounded and measurable, since ua(x), ub(x) ∈ L∞(Ω)
imply u ∈ L∞(Ω) because of the constraint ua(x) ≤ u(x) ≤ ub(x).

Theorem 4.2. Suppose that ū be a local solution to (P ) and Uad convex then the variational inequality

f ′(ū)(u− ū) ≥ 0 for all u ∈ Uad (4.1)

holds.

The proof follows from a more general result see [19].

Theorem 4.3. Let ū ∈ Uad be a local solution to (P ). Then there exist a unique adjoint state p ∈W∞{aα, 2}
defined by

Ap+ dy(x, y)p = y − yd in Ω

p|w||Γ = 0 |w| = 0, 1, 2, · · ·
(4.2)

where p is the adjoint solution and A is the adjoint operator which take the same form in (2.1).
such that the variational inequality is given by

f ′(ū)h = f ′(ū)(u− ū) ∀ u ∈ Uad

=

∫
Ω

(p(x) + kū(x))h(x) dx ≥ 0
(4.3)

where p solves the adjoint equation (4.2).
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From (4.3) several important conclusions can be drawn. First, a standard pointwise discussion reveals
the following implications for a.a x ∈ Ω. If k > 0

ū(x) =

 ua(x), if p(x) + kū(x) > 0;
ε [ua(x), ub(x)] , if p(x) + kū(x) = 0;
ub(x) if p(x) + kū(x) < 0.

(4.4)

If k > 0, then the second implication in (4.4) can be resolved for u . This somehow explains the following
important projection formula:

ū(x) = P[ua(x),ub(x)]

(
−1

k
p(x)

)
where P[a,b], a < b, is the projection of R on [a, b] given by

P[a,b]u := min(b,max(a, u))

This formula follows from (4.3) because it implies that ū solves the optimization problem

min
v∈[ua(x),ub(x)]

(p(x)v +
k

2
v2)

The projection formula permits to deduce higher regularity of any local optimal control, if k > 0.
If k = 0, then we cannot apply the projection formula but only (4.4). Then the optimal control admits

the value ua or ub, where p(x) 6= 0. The control of this type is called bang-bang control.
We recall some results about the differentiability of the functionals involved in the control problem. For

the detailed proofs, we refer to Cases and Mateos [2].

Lemma 4.4. (First-and second order derivative of G). Under the Assumption A1 and A2 on d. Then the
mapping G : L2(Ω) → W∞{aα, 2} ∩ C(Ω̄) is twice continuously Frechet differentiable. Moreover, its first
derivative, denoted by w = G′(u)h, h ∈ L2(Ω) is given by the solution of the linearlized equation

Aw + dy(x, y)w = h in Ω

w|α||Γ = 0 |α| = 0, 1, 2, · · ·
(4.5)

Furthermore, for every z ∈ L2(Ω) the second derivative z = G′′(u)[u1, u2] is the solution of

Az + dy(x, y)z = −dyy(x, y)y1y2 in Ω

z|w||Γ = 0 |w| = 0, 1, 2, · · ·
(4.6)

where y = G(u) and yi = G′(u)ui ∈W∞{aα, 2} for i = 0, 1, 2.

The existence of the first-and second order derivatives G′ and G′′ is proved by the implict function
theorem [19].

Lemma 4.5. Let Assumptions A1 and A2 are fulfilled. Then f is twice continuously Frechet differentiable
from L2(Ω) to R. Its first derivative is given by (4.3)

For the second derivative, we obtain

f ′′(u)[u1, u2] = (y1, y2)L2(Ω) + k(u1, u2)L2(Ω) −
∫

Ω

dyy(x, y)y1y2pdx (4.7)

Proof. From definition of the reduced cost functional

f(u) := J(G(u), u) =
1

2

∫
Ω

(G(u)− yd(x))2 +
k

2

∫
Ω

u2(x)dx
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We get
f ′(u)h = (y − yd, w)L2(Ω) + k(u, h)L2(Ω),

where y = G(u) and w = G′(u)h denotes the weak solution of the linearized equation (4.5) with the right
hand side h.

Now, choosing p as a test function in the weak formulation of (4.5) and inserting w in the weak formulation
of equation (4.2), we obtain

∞∑
|α|=0

(−1)|α|
∫

Ω

aαD
2αwpdx+

∫
Ω

dy(x, y)wpdx =

∫
Ω

hpdx

∞∑
|α|=0

∫
Ω

aα(Dαw)(x)(Dαp)(x)dx+

∫
Ω

dy(x, y)wpdx =

∫
Ω

hpdx

and
∞∑
|α|=0

∫
Ω

aα(Dαp)(x)(Dαw)(x)dx+

∫
Ω

dy(x, y)pwdx =

∫
Ω

(y − yd)wdx

Substracting one equation from the other finally yields

(y − yd, w)L2(Ω) = (h, p)L2(Ω)

As a simple conclusion, the following expression for the directional derivative of the reduced functional
f at ū in the direction h ∈ L2(Ω) yields

f ′(ū)h =

∫
Ω

(p(x) + kū(x))h(x)dx

We obtain the desired necessary optimality condition.
Applying again the Chain rule, we can calculate the second derivative as follow. First, we obtain

f ′(u)u1 = DyJ(G(u), u)G′(u)u1 +DuJ(G(u), u)u1

Next, we calculate the direction derivative of f ′(u)u1 in direction u2. Invoking the product and chain
rules, we find that

f ′′(u)[u1, u2] =

= D2
yJ(G(u), u)[G′(u)u1, G

′(u)u2] +DuDyJ(G(u), u)[G′(u)u1, u2]

+DyJ(G(u), u)G′′(u)[u1, u2] +DyDuJ(G(u), u)[u1, G
′(u)u2]

+D2
uJ(G(u), u)[u1, u2]

= J ′′(y, u)[(y1, u1), (y2, u2)] +DyJ(y, u)G′′(u)[u1, u2]

(4.8)

A similar discussion as above, where the abbreviations z := G′′(u)[u1, u2] denotes the weak solution of (4.6)
with this, we obtain the expression

DyJ(y, u)z =

∫
Ω

(y − yd)z(x)dx

which can be transformed by using the adjoint state p, which is the weak solution to (4.2) hence, we have
(y − yd, z)L2(Ω) = −(dyy(x, y)y1y2, p)L2(Ω). Using this in (4.8) finally yields to equation (4.7)
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5 Formal Lagrange method

The Lagrangian function associated with the problem (3.1)-(3.3) is defined by

L(y, u, p) := J(y, u)− (Ay + d(x, y)− u, p)L2(Ω) (5.1)

we expect the existence of a function p ∈W∞{aα, 2} ∩ C(Ω̄)

∂L
∂y

(ȳ, ū, p) = 0 for all y ∈W∞{aα, 2},
∂L
∂u

(ȳ, ū, p) ≥ 0 for all u ∈ Uad

This leads to the weak formulation for the solution to the problem (4.2) and the variational inequalities∫
Ω

(p(x) + kū(x))h(x) dx ≥ 0

The second derivative of L with respect to (y, u) is given by

L′′(ȳ, ū, p)[(y1, u1), (y2, u2)] = D2
(y,u)L(ȳ, ū, p)[(y1, u1), (y2, u2)]

It follow from (4.7) that

f ′′(u)[u1, u2] =

∫
Ω

(y1y2 + ku1u2 − pdyy(x, y)y1y2)dx = L′′(ȳ, ū, p)[(y1, u1), (y2, u2)]

Theorem 5.1. Suppose that Assumption A1, A2 holds. Then the reduced functional f : L∞(Ω)→ R,

f(u) = J(y, u) = J(G(u), u),

is twice continuously Frechet differentiable. The second derivative of f can be expressed in the form

f ′′(u)[u1, u2] = L′′(ȳ, ū, p)[(y1, u1), (y2, u2)] (5.2)

6 Second-order Sufficient Conditions

The requirement of coercivity or non-negativity of quadratic form J ′′(ū)v2 would be a too strong requirement.
Therefore, we introduce the cone of critical directions as follows:

Definition 6.1. Let τ > 0 be real number. Then the set

Aτ (ū) = {x ∈ Ω : |(p(x) + kū(x))| ≥ τ}

is called a strongly active set.

We define the cone of ciritical direction by

Ĉτ :=

 h ∈ L2(Ω)

∣∣∣∣∣∣∣
h(x) = 0 a.e. in Aτ

h(x) ≥ 0 where ū(x) = ua(x) and x 6∈ Aτ
h(x) ≤ 0 where ū(x) = ub(x) and x 6∈ Aτ

(6.1)

With these definition at hand, one can prove by standard arguments the following theorem covering the local
optimality of ū [19].
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Lemma 6.1. Suppose that Assumption A1, A2 holds. And let the functional

f : L∞(Ω)→ R.

be given by
f(u) := J(y, u) = J(G(u), u)

Then for each M > 0 there exist a constant L(M) > 0 such that

|f ′′(u+ h)[u1, u2]− f ′′(u)[u1, u2]| ≤ L(M)‖h‖L∞(Ω) ‖u1‖L2(Ω)‖u2‖L2(Ω)∀ u1, u2, h ∈ L∞(Ω). (6.2)

Under to the given consideration, the theorem of Tröltzch [19] can be formulated to

Theorem 6.2. (Second order necessary condition). If ū is a local solution to (P ) , then there holds

f ′′(ū)u2 ≥ 0 ∀ u ∈ Ĉτ

The following condition is a second-order sufficient condition. There exists some δ > 0 such that

f ′′(ū)u2 ≥ δ̂‖u‖2L2(Ω) ∀ u ∈ Ĉτ

By (5.2), this is equivalent to the condition

L′′(ȳ, ū, p)(y, u)2 ≥ δ̂‖u‖2L2(Ω) ∀ u ∈ Ĉτ

The following theorem on a second order optimality conditions deals with the two norm-discrepancy, i.e, the
functional f is twice differentiable in L∞(Ω), but the inequality f ′′(ū)u2 ≥ δ̂‖u‖2L2(Ω) holds in L2(Ω) , for

instance, [18].

Theorem 6.3. Under Assumptions A1, A2. Let the control ū ∈ Uad, together with the associated state
ȳ = G(ū) and the adjoint state p, satisfy the first-order necessary optimality condition stated in (4.3). If, in
addition (ȳ, ū) satisfies the second-order sufficient condition

f ′′(ū)u2 ≥ δ̂‖u‖2L2(Ω) ∀ u ∈ Ĉτ (6.3)

Then there exist a constant ε > 0 and δ̂ > 0 such that we have the quadratic growth condition holds:

δ

4
‖u− ū‖2L2(Ω) + J(ȳ, ū) ≤ J(y, u) if ‖u− ū‖L∞(Ω) < ε ∀u ∈ Uad (6.4)

In particular, ū is a localy optimal control with respect to the norm ‖.‖∞
Proof. Using the known series expansion of Taylor at u(x). We obtain that

J(y, u) := f(u) = f(ū) + f ′(ū)(u− ū) +
1

2
f ′′(ū+ θ(u− ū))(u− ū)2

with θ ∈ (0, 1).
In view of the first-order necessary condition, the first-order term is nonnegative. Indeed, it follows from

the variationall inequality that

f ′(u)(u− ū) =

∫
Ω

(p(x) + kū(x))h(x) dx ≥ 0 (6.5)

Next, note that (u− ū) ∈ Ĉτ . We estimate the second-order term from below, we have

f ′′(ū+ θ(u− ū))(u− ū)2 =
(
f ′′(ū)(u− ū)2 + [f ′′(ū+ θ(u− ū)− f ′′(ū))] (u− ū)2

)
≥ δ‖u− ū‖2L2(Ω) − L(M)‖(u− ū)‖L∞(Ω) ‖(u− ū)‖2L2(Ω)

≥ δ

2
‖u− ū‖2L2(Ω)

(6.6)
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Provided that ‖u− ū‖L∞(Ω) ≤ ε for some sufficiently small ε > 0.
In summary, we have

δ

4
‖u− ū‖2L2(Ω) + J(ȳ, ū) ≤ J(y, u)
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