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Abstract 

The Riemann hypothesis is arguably the most important unsolved problem in mathematics. It is even difficult 
to state to beginning students since it requires a knowledge of the zeta function for complex values of the 
argument. However, there are at least 23 equivalent statements of this hypothesis that are much easier to state. 
In this paper we examine one such idea called the Landau hypothesis. This Landau hypothesis has a very 
simple interpretation in terms of  the prime factorization of integers. Surprisingly this hypothesis also has a 
useful description in terms of a one dimensional random walk. We show by means of a known, but not often 
seen, integral representation for any Dirichlet series that the Landau hypothesis implies the Riemann  
hypothesis. 
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1. Prologue: The Easy Equivalent to the Riemann Hypothesis  

        There is a very intuitive way of describing an equivalent statement to the Riemann hypothesis. Let  

equal the number of prime factors of the positive integer n counting multiplicity. For example  while 

. Now the Riemann Hypothesis is roughly equivalent to the statement that  is equally likely to 

be even or odd. (For the precise meaning of this statement, see the statement of the Landau Hypothesis below.)  
        Read on if you want to understand the fascinating mathematics behind this equivalent statement of the 
Riemann hypothesis. 

2. Introduction 

        This paper is concerned with understanding one aspect of the Riemann Hypothesis (RH) . The RH is a 
mathematically advanced idea that is even difficult to state since it requires at least an elementary familiarity 
with the zeta function and complex variables. However there is a much simpler hypothesis equivalent to the RH, 
due to Edmund Landau (1877 – 1938), the meaning of which can be illustrated in a very elementary probabilistic 
fashion. This Landau hypothesis (LH) is the main subject of this paper, and we will give an elementary proof 
that the Landau Hypothesis implies the Riemann Hypothesis.  Surprisingly, we find that the behavior of a simple 
one-dimensional random walk is the key to intuitively understanding why LH, and thus RH, might be true.  We 
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investigate why LH is related to RH by means of an integral representation for any Dirichlet series. Our 
presentation is designed for a wide audience of non-experts.  

3. Preliminary Ideas 

        We begin with the definition of the zeta function [1, 2, 3] 

(3.1)   

which in this series representation is defined only for  . (It is common to use  rather than 

  for the complex variable since this was the notation used by Riemann.) Another representation (valid 

in the same region) is the product due to Euler 

  

where  is the nth prime number. The reader might want to expand this product using the geometric series to 

obtain 

  

and thereby show that the product representation is equivalent to the series. 

        It is possible to extend  as an analytic function valid for all s except  , where the function has a 

simple pole. The most common form of RH is: 

Riemann hypothesis: The complex zeroes of the zeta function all have real part equal to ½. 

        Many say that this is the most important unsolved problem in mathematics. It has existed since 1859 when 
Bernard Riemann wrote a seven page paper in which he showed that the prime counting function , which 

equals the number of prime numbers less than or equal to x, can be expressed exactly in terms of an infinite 
series summed over the complex roots of the zeta function. See the Appendix in [1] for a translation of this paper. 

Landau’s statement equivalent to the RH 

        There are at least 23 statements equivalent to the RH. See [4] and [5]. That is, the RH is true if and only if 
the equivalent statement is true. Some of these equivalent statements have the feature that they remove mention 
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of complex variables and are easier to relate to the distribution of prime numbers. In this paper we will be 
interested in one such equivalent statement, which is attributed to Edmund Landau. We now describe it. 

        Let  equal the number of prime factors of the positive integer n counting multiplicity. For example 

 and . We define the Liouville function as . This simply converts the 

previous function into a function taking the two values plus and minus one. Now we can state Landau’s 
equivalent hypothesis: (See [4, page 46].) 

The Landau hypothesis (LH):  where  is any positive number. 

        In this paper we will mostly be concerned with the only if part of the following: 

Theorem.  LH if and only if RH. (See [4, page 46].) 

        We call  the summatory Liouville function.  

        We will show in Section 8 that the Liouville function can be generated by the series [3, page 6] 

  

which is valid for   We will show later that the  LH implies that this representation is valid for 
and that this implies RH.  But next we will discuss the connection of the behavior of  to a 

uniform random walk in one dimension, and thus uncover how the Landau Hypothesis is related to an intuitively 
plausible probabilistic statement about the distribution of the primes. 

4. A Random Walk in One Dimension 

        To understand LH, we must take an unexpected detour. We will examine the uniform random walk in one 
dimension. It is known that if , for  is a uniform random variable, taking on the values +1 and -

1 only, then the sum   (for large n) has the expected value  which is about  .  

See the Appendix of this paper for a proof. 
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        We caution the reader that this result is not at all intuitive. At first glance the reader might think that the 
expected value is zero. This would be true if the sum under consideration was, (without absolute values), 

 . 

        We will see that this theorem is of importance in studying the asymptotic behavior of the summatory 

Liouville function . 

5. The Random Walk, an Assumption, and the Summatory Liouville Function 

        Let n be a random integer such that such that . Now what can we say about ? Should 

not  act like a random variable taking on the values 1 or -1? In other words, select a positive integer n at 

random, what is the  probability that the number of prime factors in n is even? Is it not reasonable to assume that 
this probability is 0.5? It is like flipping a fair coin! Assuming that  is such a “random like” variable, then 

the summatory Liouville function 
 
might behave, for large N, like a random one dimensional 

walk and from the previous statement we expect 
1

2( )
N

n
n Nλ

π=
∑  . Using this result it is easy to see why LH 

could  be true: 

 . 

        Here the notation ( ) ( )f x g x  means that  and we say that  is asymptotic to . 

Thinking loosely, it means that the two functions are approximately equal for large x.  

6. Expected Random Walk – Simplified Argument 

 We now give a simple argument that will only suggests the truth of our random walk theorem. (For a 
proof, see the Appendix.) Let  be a sequence of numbers randomly taking on the  values +1 or -1. We wish to 

study   and give some simple explanation for the: 
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Random walk theorem: 

 
2( ) 0.798d n n n
π

≈ . 

        Let us look at  .This is equal to 2 2 2 2 2
1 2 3( ) ( )nd n x x x x other terms= + + + ⋅⋅⋅+ + =  

( )n other terms+ . Since the “other terms” can be both positive and negative, they tend to cancel one another. 

This leads us to conclude that ( )d n c n  for some constant c. This completes our simple heuristic argument. 

A rigorous analysis is given in [6] and in the appendix at the end of this paper. 

7. Example of the Random Walk 

        Consider two baseball teams, denoted by A and B,  of exactly equal strength. That is, on any given day, 
either  A or B stand the same chance of winning. Suppose the baseball season for a given year consists of just 
these two teams playing 100 games. Suppose this year A wins 55 games and thus looses 45. The net number of 
games won by A is 10. Obviously then B has a net loss of 10 games. We will say that the win-loss score for this 
year is 10. Now we ask the question, after playing for many seasons, what is the expected average win-loss 
score? Our random walk theorem gives us the answer 8.  For we can describe the season score for team A as a 
random walk -1 +1 -1 + … +1, where our team has lost the first game, won the second, lost the third, and finally 
won the one hundredth game. Our random walk theorem tells us that the expected absolute value of this sum (the 

win-loss score), after a season of 100 games is . An interesting, non-intuitive 

conclusion! See the appendix for a proof of this theorem. 

8. Liouville Function and Dirichlet Series 

        Since   where  is the n th prime number, we have 

  . 
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        So we get 

  

and displaying the first few terms of this product, we see 

  

        The multiplication begins to show 

  

where every natural number n appears in the denominator just once and we recognize that the numerator, which 

we will write (as before) as   is the Liouville function. Again the exponent  is the number 

of prime factors in n counting multiplicity. Thus we have 

(8.1) . This is valid for   

 Functions with a representation  

  

are called Dirichlet series, (see [7]). Here the  are usually real numbers. It is known that if the series 

converges at , then the series converges absolutely and uniformly for , (  any 

positive value), and thereby represents an analytic function in this region. See [2, page 30].  So we now have two 
important Dirichlet series, one that defines the zeta function (3.1), and this one (8.1) that is a generating function 
for the Liouville function. 

9. A Remarkable Integral Representation for Any Dirichlet Series 

 We begin by showing that, under certain conditions on  and the rate of growth of the summatory 
function  the general Dirichlet series has the integral representation 
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 (9.1) , 

where  is the summatory function  

 , 

and  is the “floor of x” or the “greatest integer less than or equal to x”.  

        To show this we first note that  , so we have 

 . 

        This last step requires that  converges. We will assume that this is true. See note at the end of this 

section. 
        Changing the index in this last summation gives us 

  

so we have, since   

  

        But  and we have defined  , (a constant over the interval of 

integration). So we can write 

  

        Summing all the integrals we get our result 

 .  

        Note: A more detailed analysis using the method of summation by parts shows that this integral 
representation is valid if  is such that: 

  1.  converges , and , or 

  2.  and  converges. 
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10. Integral Representation Connects LH and RH 

        It is known that Dirichlet series converge in some half plane of the form . In some important 

cases we can use our integral representation (9.1) to help us decide the value of .  

        Example 1: Suppose  for some constant C, then (9.1) gives us  

(10.1) . 

        Thus  
(10.2)   is finite in the half plane , and is analytic there. This result gives 

information about the Riemann hypothesis as the next example shows.  

        Example 2: Theorem. LH implies RH. Recall the Liouville function  where  equals 

the number of prime divisors of n (counting multiplicity) and   . 

        This series is known to converge only for .  See [3, page 6] and Section 8 above. Now examine 

the function   for its singularities. In the numerator, the zeta function having only a simple pole when the 

argument  is 1, contributes a simple pole at  . But the denominator will produce singularities wherever 
the zeta function is zero. (Note: the numerator cannot be zero if . See Note below.)  These 

singularities (in ) will all be complex numbers with real part ½ if RH is true. 

        If the LH is true, then the summatory Liouville function  for any positive .  By (10.1) 

and (10.2) and the properties of analytic continuation, we see that has no singularities in the 

half plane  (for any positive  however small). It is well known that the set of complex roots 

of the zeta function that are not on the line with real part ½ is symmetric with respect to that line. Thus if RH is 
not true, and zeta has a complex root at   , then it also has a complex root at . This 

follows easily from the functional equation for the zeta function [5, 10, 16].  Thus (10.2) allows us to conclude 
that   has no zeros for  , and we have finally shown that LH implies RH.  
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        Note:  could possibly be finite if . But since we are talking about Re(s)>1/2,  

Re(2s)>1 and it is known (see the Prime Number Theorem) that  has no  roots for   So if 

 is finite in Re(s)>1/2, then since ,  it must be that  

        This completes our study. We end with a few comments. 

11. Comments on the Summatory Liouville Function 

        The summatory Liouville function  has an interesting history. 

        In 1913 Polya [8] conjectured that  was never positive. If this were true, it would have troubled our 

notion than  acts like a random variable taking on values plus and minus one. However in 1958 

Haselgrove [9] disproved this conjecture. In 1980 Tanaka [10] showed that  is the smallest 

value for which . In [11], Borwein, Ferguson, and Mossinghoff ,using results from Lehman [12] 

showed that   infinitely often. In [13] Humphries shows that  

infinitely often. The paper [11] has a detailed history of this topic. 

12. Comments on the References 

        The opening pages of [4] were the authors main motivation for exploring the ideas that lead to this paper. 
        The book [14] by Mazur and Stein is most remarkable. Unlike any other book on RH, this book is written at 
four mathematical levels. The first part is the most fascinating. Here Mazur and Stein assume that the reader has 
no calculus background! Yet the authors give a brilliant exposition of the sweeping saga of work on RH. 
Imagine explaining the Fourier transform to someone without a knowledge of calculus! This author has read this 
first part again and again to appreciate the poetry of the exposition as well as gain insights for improving his own 
teaching. The remaining three parts require successively stronger mathematical background. Everyone interested 
in RH will find this rewarding. 
        There are several good books for the non-expert on RH. Among these are [15] and [16]. The book by Havil 
[17] is not directly concerned with RH, but does have a section on it. This book is deeper mathematically than 
others, and is an excellent exposition. 

Appendix: Proving the random walk theorem 

        Consider a uniform random one-dimensional walk in which we start on the x axis at the origin and make N 
random unit steps to the left and right with equal probability. (We prove the case where N is even.) The 
following table shows the probability of terminating at a give location.  
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Steps -6 -5 -4 -3 -3 -1 0 1 2 3 4 5 6 
0       1       
1      1/2  1/2      
2     1/4  2/4  1/4     
3    1/8  3/8  3/8  1/8    
4   1/16  4/16  6/16  4/16  1/16   
5  1/32  5/32  10/32  10/32  5/32  1/32  
6 1/64  6/64  15/64  20/64  15/64  6/64  1/64 

 
        Let  denote the expected value of the unsigned distance from the origin after N steps. As an example, 

consider the case of 4 steps. The calculation would be 

  . 

        The 2 on the left is needed because the probabilities must be doubled since both the same  positive and 
negative distance  count as one. The numbers 0, 2 and 4 are the moment arms for the corresponding probabilities. 
It is easy to see that the generalization of this in the case where N is the even number   is 

 . 

        We found the sum on the right with Mathematica as  . 

        But .  We have 

 . 

        Now consider n approaching infinity. We can make the Stirling asymptotic approximation 

! 2 x xx xe xπ −
  for large x and get at once 2

2

(2 )! 2
( !) 2

nn nn
n π

  and so since  we finally have 

 
2( ) 0.798d N N N
π

≈ . 

(In the above, the statement ( ) ( )g n f n means that  and we say that g(n) is asymptotic to f(n).)  
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        This means that the expected distance from the origin after 1,000,000 random unit steps, each with the same 
probability of going right or left is about d(1,000,000) = 798. We checked this with Mathematica’s random 
number generator. We calculated d(1,000,000) one thousand times and found the average to be 769 which is an 
error of less than 4 percent. 
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