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Abstract 

The study determined the bifurcation and stability of the solutions of the Boussinesq equations as well as 
the onset of the Rayleigh-Benard convection. The article established the nonlinear theory for this problem 
using a new notion of bifurcation known as attractor bifurcation. This article considered the theory that 
comprises the following three perspectives. We initially deal with the problem that bifurcates from the 
trivial solution an attractor 𝐴𝑅 while the Rayleigh number 𝑅 intersects the first critical Rayleigh number 
𝑅𝑐 for all physically boundary conditions, despite the multiplicity of the eigenvalue 𝑅𝑐 for the linear 
problem. Hence, secondly, the study considered the bifurcated attractor 𝐴𝑅  as asymptotically stable. 
Lastly, the bifurcated solutions are also structurally stable when the spatial dimension is two, and are 
classified as a bifurcated solution as well. Furthermore, the technical method explained here provides a 
means, which can be adopted for many different problems in bifurcation and other pattern formation that 
are related. 

Keywords: Rayleigh-Benard Convection, Dynamic bifurcation, Boussinesq equation, Rayleigh number, 
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Introduction 

        There are general concerned and a fully understanding in the concept of matter and its compositions. It 
leads with the fully understood of something flows from a hot bodies/objects to a cold bodies/objects 
(Kirchgassner, K, 2004). The phenomenon of flows is known as “heat.” During the eighteenth and the early 
nineteenth centuries many scientific approach revealed that all bodies consists of an invisible fluid within it 
known to be caloric. Hence this caloric has a variety of properties some of which proved to be inconsistent 
with nature, for instance it has weight and cannot be created nor destroyed. However, it flows from hot 
bodies to the cold bodies and this was considered as among the most important feature of it. Therefore, it is 
important to consider heat as a valuable aspect of live. 
        In a nutshell thermal convection refers to a specific type of convection phenomena where temperature 
differences drive a fluid flow. More precisely temperature variations induce an unstable fluid stratification 
which cause the transition of the fluid from a state of rest to a state of motion (Foias, C., et al. 1987). The 
fluid flow may undergo much successive instability, which reduce the spatial coherence and the level of 
predictability of the details of movement progressively. In this case, the flow is called turbulent. Few 
examples of (turbulent) thermal convection are air circulation, solar granulation, oceanic currents and 
convective flows in the earth’s mantle and stars. Transport properties of turbulent convective flow are the 
object of interest and investigation in many field ranging from physical sciences like geophysics, 
astrophysics, meteorology, and oceanography to engineering and industrial applications (Foias, C., et al. 
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1987). In this thesis, we are interested in deriving mathematically rigorous bounds for the heat transport 
when the flow is turbulent. For this purpose, consider a fluid enclosed between two rigid parallel and 
infinitely extended plates separated by a vertical distance h and held at different temperatures 𝑇 =  𝑇𝑏𝑜𝑡𝑡𝑜𝑚 
and 𝑇 =  𝑇𝑡𝑜𝑝 at height 0 and ℎ respectively, with 𝑇𝑏𝑜𝑡𝑡𝑜𝑚 >  𝑇𝑡𝑜𝑝. This model of thermal convection 
goes under the name of Rayleigh-Benard convection. 
        A fluid heated from the bottom and cooled at the surface in a cylindrical container will cause convection 
if the temperature difference (∆𝑇) between the surface and the base plates is at least has a critical temperature 
difference (∆𝑇𝑐). The phenomenon above is called Rayleigh-Benard convection, or in short form as RBC. 
However, convection does not occur in the fluid when ∆𝑇 <  ∆𝑇𝑐, due to viscous and thermal dissipation 
and will settled in what is called the “conducting” or “uniform” solution. Therefore, whenever ∆𝑇 large 
enough, convection is will occur as the thermal driving force is significant enough to overcome the 
dissipative effects of thermal conduction and viscosity (Yudovich, V.I. 2013). Convection will only happen 
when the dimensionless control parameter, the Rayleigh number 

𝑅𝑎 =  
∝ 𝑔𝐻3

𝑣𝑘
𝛥𝑇                                                                              (1) 

reaches a critical value 𝑅𝑎𝑐, where α is the thermal-expansion coefficient, 𝑔 is the acceleration of gravity, 𝐻 
is the fluid layer thickness, ∆𝑇  is the temperature difference, κ is the thermal diffusivity, and ν is the 
kinematic viscosity. Fundamentally the Rayleigh number characterizes the ratio of the undermining 
buoyancy force 𝜌𝛼𝑔∆𝑇 to the steadying dissipative force 𝜈𝜅𝜌/𝐻3. We also stated that 

∈ =  
𝑅𝑎 − 𝑅𝑎𝑐
𝑅𝑎𝑐

                                                                              (2) 

        To normalize the degree above threshold; a specific Rayleigh number is for a specific aspect ratio. The 
dimensionless Prandtl number 

Pr =  
𝑣
𝑘

                                                                                           (3) 

        Characterizes the fluid as well as the dimensionless aspect ratio 

Γ ≡
𝐷
𝐻

                                                                                           (4) 

        Where D is the diameter and H is the depth of the cylinder, characterizes the geometry. 
        It is perfect to identify and noted that a complete nonlinear bifurcation and stability theory for this 
problem must at any rate contain the following aspects:  
        a) The bifurcation theorem while the Rayleigh number bisected the initial critical number for all the 
physically boundary conditions,  
        b) The asymptotic stability of bifurcated solutions, and lastly 
        c) The pattern or structure and their stability and transitions within the physical space. 
        The leading difficulties concerning such a complete theory are two-fold. Initially is due to the high 
nonlinearity of the problem as in other fluid problems, also secondly is due to the lack of an approach to 
handle bifurcation and stability at the eigenvalue of the linear problem has even multiplicity. 
The main aim of this research is to reduce the bifurcation problems to the centre manifold together with 
an 𝑆1 attractor bifurcation theorem and structural stability theorem for 2D incompressible flows to achieve 
the following objectives: 
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a) To classify the solutions in the bifurcated attractor 𝐴𝑅. 
b) To study the structure and its transition of the solution of the Benard problem in the physical space. 
c) To study the dynamic bifurcation and the structural stability of the bifurcated solutions of the 2-D 

Boussinesq equations related to the Rayleigh-Benard convection 

Methodology 

        In this article, the method applied in attaining our objectives was outline. Here the study explained the 
main theorem related with attractor bifurcation states which has the control parameter crosses some specific 
critical value when there are 𝑚 + 1(𝑚 ≥  0) eigenvalues crossing the imaginary axis.  
        In the initial stage, the research shows that as the Rayleigh number 𝑅 crosses the first critical value 𝑅𝑐, 
the Boussinesq equations bifurcate from the trivial solution an attractor 𝐴𝑅, with the dimension between m 
and 𝑚 + 1. In this regard, the first critical Rayleigh number 𝑅𝑐 is stated to be the first eigenvalue of the 
linear eigenvalue problem, and 𝑚 +  1 is the multiplicity of this eigenvalue  𝑅𝑐. In comparison with known 
results, the bifurcation theorem achieved in this article is for the whole cases with the multiplicity 𝑚 +
1 ofthe critical eigenvalue 𝑅𝑐 for the Benard problem under any set of physically boundary conditions. As 
the trivial solution becomes unstable as the Rayleigh number crosses the critical value 𝑅𝑐, AR does not 
contain this trivial solution. 
        Secondly, being an attractor, the bifurcated attractor 𝐴𝑅 becomes asymptotic stability meaning that it 
attracts the whole solutions with original data in the phase space outside of the stable manifold, with co-
dimension 𝑚 + 1, of the trivial solution. As Kirchgassner showed that in his paper titled "Bifurcation in 
nonlinear hydrodynamic stability," an ideal stability theorem would include all physically significant 
perturbations and establish the local stability of a selected class of stable solutions, and today we are yet far 
away from this purpose. Moreover, fluid flows are usually time-dependent. Consequently, bifurcation 
analysis for steady state problems general gives only partial answers to the problem and this is not enough 
for solving the stability problem. Therefore it appears that the right notion of asymptotic stability after the 
first bifurcation should be best described by the attractor near, but excluding the trivial state. It is one of our 
principal motivations for proposing attractor bifurcation, and we hope that the stability of the bifurcated 
attractor achieved in this article will contribute to an ideal stability theorem. Thirdly, another critical 
perspective of a complete nonlinear theory for the Rayleigh-Benard convection is to classify the structure or 
pattern of the solutions after the bifurcation. A standard tool to attack problem mentioned above is the 
structural or trend stability of the solutions in the physical space. Many kinds of literature have made an 
extensive study approaching this goal, and set a systematic theory on structural stability and bifurcation of 2-
D divergence-free vector fields; as recommended in a survey article titled Topology of 2-D incompressible 
flows and applications to geophysical fluid dynamics by Tian Ma and Shouhong Wang therein. Applying, in 
precise, the structural stability theorem explained in (Pazy, A. 1983) This article shows that in the two-
dimensional case, for any initial data outside of the stable manifold of the trivial solution, the solution of the 
Boussinesq equations will have the roll structure as 𝑡 is adequately large. 
        In the real sense, the above results for the Rayleigh-Benard convection are achieved using a new notion 
of dynamic bifurcation, called attractor bifurcation, introduced recently by the Tian Ma and Shouhong Wang 
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therein. The main theorem associated with attractor bifurcation states that as the control parameter crosses a 
specific critical value when there 𝑎𝑟𝑒 𝑚 + 1(𝑚 ≥  0)  eigenvalues intersecting the imaginary axis, the 
system bifurcates from a trivial steady state solution to an attractor with dimension between m and 𝑚 +  1, 
provided the critical state is asymptotically stable. This new bifurcation theory concludes the aforementioned 
known bifurcation theories. There are a few relevant features of attractor bifurcation. Initially, the bifurcation 
attractor does not constitute the trivial steady state, and is stable; hence it is physically meaningful. Secondly, 
the attractor includes a collection of solutions of the evolution equation, including perhaps steady states, 
periodical orbits, as well as homoclinic and heteroclinic orbits. Thirdly, it gives a unified point of view on 
dynamic bifurcation and can be applied to many problems in physics and mechanics. Fourth, from the 
application point of view, the Krasnoselskii-Rabinowitz theorem needs the number of eigenvalues 𝑚 +
1 crossing the imaginary axis to be an odd integer, and the Hopf bifurcation is for the case where 𝑚 +  1 =
 2. Though, the new attractor bifurcation theorem obtained in this article can be employed in cases for 
all 𝑚 ≥  0. 
        Also, the bifurcated attractor, as mentioned earlier, is stable, which is another subtle issue for other 
known bifurcation theorems. Of course, here what we do is the verification of the asymptotic stability of the 
crucial state, an adjunct to this analysis required for the eigenvalues problems in the linearized problem. The 
study uses the Theorem 2 to presents a method of obtaining asymptotic stability of the crucial state in 
problems with symmetric linearized equations. This theorem is great; the asymptotic stability of the trivial 
solution to the Rayleigh-Benard problem is simply established. This article recommended this theorem as a 
useful for solving problems in many issues of mathematical physics with symmetric linearized equations. 
Here organized the research as follows. Firstly, the study recalls of the Boussinesq equations and their 
mathematical setting, and also identifies some known existence and uniqueness results of the solutions. The 
study was summaries in the next section where the main attractor bifurcation theory from as discussed in the 
literature entitled "Dynamic Bifurcation of Nonlinear Evolution Equations" in (Tian Ma and Shouhong 
Wang, 2004), and a theorem, in the next section this article will use Theorem 2, for the asymptotic stability 
of the critical state for problems for an evolution system with symmetric linearized equations. States and 
proves the main attractor bifurcation results from the Raleigh-Benard convection. In the second to the last 
section, this article considered Examples and topological structure of the bifurcated solutions. Hence the 
latter part presented the corresponding results for the two-dimensional problem. In the Appendix in Section 7 
and the concept and main findings on the structural stability of 2-D divergence-free vector fields are recalled. 

Preliminary Results  
(Boussinesq Equations and Their Mathematical Setting) 

Boussinesq Equations 

        The Boussinesq equations model is the large scale atmospheric and oceanic flows that are responsible 
for cold fronts and the jet stream. 

𝜕𝑢
𝜕𝑡

+ (𝑢 .∇) 𝑢 − 𝑣∆𝑢 +  𝜌0−1∇𝑝 =  −𝑔𝑘[ 1 − 𝛼 (𝑇 − 𝑇0)]                  (5) 
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𝜕𝑇
𝜕𝑡

+ (𝑢 .∇) 𝑇 − 𝑘∆𝑇 = 0                                                                              (6) 

𝑑𝑖𝑣 𝑢 = 0                                                                                                        (7) 

        Where 𝑣, 𝑘,𝛼,𝑔 are all constant, and 𝑢 = (𝑢1,𝑢2,𝑢3) is the velocity field, 𝑝 is the pressure function, 𝑇 
is the temperature function, 𝑇0  is the constant representing the lower surface temperature at 𝑥3 = 0 and 
𝑘 = (0, 0, 1) where the unit vector is in the 𝑥-direction. 

        Therefore, to make the equations non-dimensional, we consider the following relations: 

𝑥 = ℎ𝑥′, 

𝑡 = ℎ2𝑡′/𝑘, 

𝑢 = 𝑘𝑢′/ℎ, 

𝑇 = 𝛽ℎ �
𝑇′

√𝑅
� + 𝑇0 − 𝛽ℎ𝑥3′ , 

𝑝 = 𝜌𝑜𝑘2𝑝′/ℎ2 + 𝑝𝑜 − 𝑔𝑝𝑜(ℎ𝑥3′ + 𝛼𝛽ℎ2(𝑥3′ )2/2, 

𝑝𝑟 = 𝑣/𝑘 

        At this point the Rayleigh number 𝑅 is defined by equation (5), and 𝑝𝑟  =  𝜈/𝜅 is the Prandtl number. 
Omitting the primes, the equations (6) to (8) can be modified as the format below 

1
𝑝𝑟
�
𝜕𝑢
𝜕𝑡

+ (𝑢 · 𝛻 )𝑢 + 𝛻𝑝� − ∆𝑢 − √𝑅𝑇𝑘 = 0                    (8) 

𝜕𝑇
𝜕𝑡

+ (𝑢 · 𝛻 )𝑇 − �𝑅𝑣3 − ∆𝑇 = 0,                                       (9) 

𝑑𝑖𝑣 𝑣 = 0.                                                                                   (10) 

        Therefore, the non-dimensional domain in this regard is Ω =  𝐷 × (0,1)  ⊂  𝑅3, in which the relation 
𝐷 ⊂  𝑅2  is an open set. And the coordinate system is specified by 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈  𝑅3. 

        The Boussinesq equations given in equations (8) to (10) are the basic equations to study the Rayleigh 
B´enard problem given in this paper. They are complemented with the subsequent initial value conditions: 

(𝑢,𝑇) = (𝑢0,  𝑇0)        𝑎𝑡 𝑡 = 0                                      (11) 

        Hence, boundary conditions are required both at the top and the bottom as well as the lateral boundary 
𝜕𝐷 × (0,1),  and the top and bottom boundary will be (𝑥3  = 0 ,1), whichever the so-called rigid or free 
boundary conditions are given: 
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𝑇 = 0,𝑢 =  0 (𝑟𝑖𝑔𝑖𝑑 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦),                                                 (12)  

𝑇 = 0, 𝑢3 = 0 ,   
𝜕(𝑢1,𝑢2)
𝜕𝑥3

=  0 (𝑓𝑟𝑒𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦).         (13) 

        Usually different combinations are used at the top and bottom boundary conditions in different physical 
setting such as the system of rigid-rigid, rigid-free, free-rigid, as well as free-free. And also for the lateral 
boundary 𝜕𝐷 × [0,1], is usually used one of the following boundary conditions as in (Tian Ma and Shouhong 
Wang, 2004): 

1. The Periodic condition: 

(𝑢,𝑇)(𝑥1 + 𝑘1𝐿1, 𝑥2 + 𝑘2𝐿2, 𝑥3) = (𝑢,𝑇)(𝑥1, 𝑥2, 𝑥3)                        (14) 

For any 𝑘1, 𝑘2 ∈ 𝑍. 

2. The Dirichlet boundary condition: 

𝑢 = 0,   𝑇 = 0   �𝑂𝑟 
𝜕𝑇
𝜕𝑛

= 0 � ;                                              (15) 

3. The Free boundary condition: 

𝑇 = 0,   𝑢𝑛 = 0   �𝑂𝑟 
𝜕𝑢𝑟
𝜕𝑛

= 0 � ,                                             (16) 

        In which 𝑛 and 𝜏 are the unit normal and tangent vectors on 𝜕𝐷 × [0,1] correspondingly, and 𝑢𝑛  =  𝑢 ·
𝑛,𝑢𝑟  =  𝑢 · 𝜏. 

        For minimalism, here the study will proceed with the following set of boundary conditions, and the 
whole results hold true even for other combinations of boundary conditions. 

�
𝑇 = 0,   𝑢 = 0               𝑎𝑡 𝑥3 = (0, 1) 

(𝑢,𝑇)(𝑥1 + 𝑘1𝐿1, 𝑥2 + 𝑘2𝐿2, 𝑥3 𝑡) = (𝑢,𝑇)(𝑢, 𝑡)                       (17)� 

        For any 𝑘1, 𝑘2 ∈ 𝑍. 

Dynamic Bifurcation and Stability in the Rayleigh-Benard Convection 

        The main contribution here is to attempt to establish a nonlinear theory for the Rayleigh-Benard 
convection by a new notion of bifurcation, called attractor bifurcation, and the corresponding theories in the 
literature (Tian Ma and Shouhong Wang 2002; 2004) all these followed the three features of a complete 
theory for the problem just mentioned along with the main idea with the methods to be used. 
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The Dynamic bifurcation for the nonlinear progression equations: 

        In this part, we have to recall some results from the literature for the dynamic bifurcation of abstract 
nonlinear evolution equations which established many researchers especially the one published by the 
authors in (T. Ma and S. Wang, 2004), which is essential in the study of the Benard problem in this thesis. 
Indeed, in this section this study intends to provide a formula or method for proving dynamic bifurcations for 
complications that deal with symmetric linear operators. 

Attractor bifurcation 

        Consider 𝐻 and 𝐻1 to be two Hilbert spaces, and 𝐻1 →  𝐻 to be a compressed and compact insertion. 
The study considered the resulting nonlinear evolution equations 

𝛿𝑦
𝛿𝑥

=  𝐿𝛽𝑌 + 𝐺(𝑌,𝛽)                                                                     (18) 

𝑌 (0) =  𝑌0                                                                              (19) 

        Where Y: (0,∞) ⟶ H and referred as the unknown function, β є as the system parameter, however, 
𝐿𝛽: 𝐻1 →  𝐻  are parameterized linear completely continuous fields continuously depending on 𝜆 ∈  𝑅1, 
which satisfy the following equations: 

𝐿𝛽 : − 𝐴 + 𝐵𝛽 … … … is a sectorial operator,                                                               
𝐴: 𝐻1 →  𝐻… … … is a linear homeomorphism,                                              (20) 

𝐵𝛽: 𝐻1 →  𝐻… is the parameterized linear compact operators                           

        It is easy to identify as in some literatures (D. Henry, 1981; A. Pazzy, 1983) that 𝐿𝛽 generates an 
analytic semi-group as �𝑒𝑡𝐿𝛽�𝑡 ≥ 0. Hence, we can define fractional power operators 𝐿𝛽∝ for any 0 ≤ ∝ ≤ 1 

with its domain 𝐻∝ = 𝐷(𝐿𝛽∝) such that 𝐻∝1 ⊂  𝐻∝2 𝑖𝑓 𝛼1 > 𝛼 2, and 𝐻0 = 𝐻. 

        Moreover, this study will adopt that the nonlinear terms 𝐺(𝑦,𝛽): 𝐻∝  → 𝐻 for some 1 >  𝛼 ≥  0 are the 
family of parameterized 𝐶𝑟  bounded operator (𝑟 ≥ 1) constantly depending on the parameter 𝜆 ∈  𝑅1, in 
which 

𝐺(𝑦,𝛽) = 0(‖𝑦‖𝐻∝)                                                                        (21) 

        In the applications, this study have interested in the sectorial operator 𝐿𝛽 =  −𝐴 + 𝐵𝛽 in which a real 

eigenvalue sequence there exist {𝜌𝑘} ⊂ 𝑅1 and an eigenvector sequence of {𝑒𝑘} ⊂ 𝐻1 𝑜𝑓 𝐴: 

𝐴𝑒𝑘 =  𝜌𝑘𝑒𝑘                                                                                         

0 <  𝜌1  <  𝜌2  < ⋯….                                                                     (22) 

𝜌𝑘 →  ∞ (𝑘 →  ∞)                                                                                    
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        In which {𝑒𝑘} is an orthogonal basis of 𝐻. 

        Therefore, for the compact operator 𝐵𝛽 ∶  𝐻1  →  𝐻, the study will also presume that there will be a 

constant 0 < 𝜃 < 1 such that  

𝐵𝛽: 𝐻𝜃  →  𝐻  Bounded, ∀ 𝜆 ∈  𝑅1                                                  (23) 

        Let consider �𝑆𝛽(𝑡)�𝑡 ≥ 0 to be an operator semi-group created by the equation (1) which delight in the 
properties. 

        For any 𝑡 ≥ 0, 𝑆𝛽(𝑡):𝐻 →  𝐻 is a linear continuous operator, 𝑆𝛽(0)  =  𝐼 ∶  𝐻 →  𝐻 is the identity on 

𝐻, and 

        Hence, for any t, 𝑠 ≥ 0, 𝑆𝛽(𝑡 + 𝑠) = 𝑆𝛽(𝑡) · 𝑆𝛽(𝑠) 

        Therefore, the solution of equation (1) and equation (2) can be articulated as 

𝑦(𝑡) = 𝑆𝛽(𝑡)𝑦0,       𝑡 ≥ 0. 

Conclusion 

        In this article we tried as we mentioned before to clarify the structure of the eigenvectors of the 
linearized problem in which this study plays an important role and studying the onset of the Rayleigh-
B´enard convection. The dimension 𝑚 + 1 of the eingenspace 𝐸0 regulates the dimension of the bifurcated 
attractor 𝐴𝑅 as well. However, the thesis will further explain by examine the detail of the first eingenspace 
for different geometry of the spatial domain and for different geometry and boundary condions. 
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