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Abstract

Multi-valued Additive Systems defined by Aráoz and Johnson in
1982, these finite algebraic structures are a generalization of finite
groups and semigroups. A particular case of these systems are the
b-complemetary multisemigroups. In 1980 Johnson studied the dual
primal problem over a semigroup, and in 1985 Aráoz and Johnson pre-
sented a study that classifies the polyhedron associated with an addi-
tive system, a study that features vertices and faces of this polyhedron.
Madriz in 2016 presents the duality results for the primal problem over
a b-complementary multisemigroup. In this work, we show that sys-
tems of two different bases of the cone associated with an integer linear
programming problem under a b-complementary Multisemigroup are
equivalent. We also present the decomposition of Benders for the dual
problem of the a b-Complementary Multisemigroup.

Keywords:Additive System; Multisemigruop; b-Complementary;
Duality; Benders Decompostion

1 Introduction

The Group Problem (GP) was defined by Gomory in [8]. Gomory’s work is
grounded on the idea that the solution in the linear system of equations asso-
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ciated with an integer linear programming problem can be transformed into
a system of an equation involving elements of a finite abelian group. In the
same year, Gomory presents, using the subadditive cone the characterization
of the vertices and faces associated to GP. Aráoz in [1] define the Semigroup
Problem (SP), characterizes the polyhedra and shows the relation between
minimal system of linear inequality of the polyhedra and extreme points
and rays. Ellis Johnson, in [9], considers the dual of the master semigroup
problem. Aráoz and Johnson, in [3], present the polyhedra of multivalued
additive system problem. Aráoz and Johnson in [6] use bases of the sub-
additive cone to characterize or define polyhedron system associated with
Multivalued Additive System (MAS).

A particular case of multivalued additive systems is the b-complementary
Multisemigroups (b-CMS). In general, a b-CMS is an associative, an abelian,
a b-consistent and a b-complementary MAS. Madriz, in [10], constructs the
dual problem associated with a b-CMS problem, extending the duality result
of semigroup by Johnson in [3], in this work are presented the conditionsto
demonstrate the duality theorem for this type of combinatorial optimization
problems. Madriz’s work [10] is based on the theorem presented by Aráoz
and Johnson in [5], where they determine that, given a base of the subad-
ditive cone, it is possible to establish a system of equations and inequalities
that define the polyhedron associated with a multivalued associative additive
system. However, this result does not show what happens to the system for
different bases. So, it this outcome lead us to the following question: If we
have two bases of the cone, are the systems that they generate equivalent?.
In general the dual problem is defined from a base of the subadditive cone
of the b-CMS problem, for this dual problem in this work we present the
decomposition of Benders.

In this work, we show that the systems associated with two different bases
of the subadditive cone for the b-CMS Linear Programming Problem (b-
CMSLIP) are equivalent. In addition, we present the dual problem associated
with b-CMLIP and the Benders decomposition of this dual problem.

The paper was divided as follows. In Section 2 we present the definitions
of additive system and the b-complementary multisemigroups. In the Section
3 we present the definition of a dual problem and the bases of the cone that we
will use in addition to the basic definition of the subadditive cone and the op-
timization problem over an b-complementary multisemigroup. In Section 4,
we prove that for two bases of the subadditivity cone the systems they define
are equivalent. Finally, in Section 5 we present the decomposition of Ben-
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ders for the dual problem associated with the problem of b-complementary
multisemigroup dual problem.

2 Multisemigoup b-complementary

2.1 Additive System

An additive system is defined to be a non-empty finite set A together
with addition +̂ : 2Ax2A → 2A (2A = {H : H ⊂ A}) such that:

(i) {g}+̂{h} ⊆ A, for all g and h in A;

(ii) S+̂T = ∪s∈S,t∈T ({s} +̂ {t}), for all S, T ⊆ A.

In this paper we denoted {s} +̂ {t} by s+̂t and an additive system by
the pair (A, +̂). And, the additive system (A, +̂) is associative if satisfies
(S+̂T )+̂U = S+̂(T +̂U), for all S, T, U ⊆ A, and it’s abelian if S+̂T = T +̂S,
for all S, T ⊆ A. We assume, without loss of generality, that there exists an
element 0̂ ∈ A such that 0̂+̂g = g+̂0̂ = g, for all g ∈ A, if there isn’t element
in A that fulfills this property, we could adjoin one element to A without
changing (A, +̂), the 0̂ is clearly unique. Besides that, we assume that the
additive system has at most one infeasible element denoted by ∞̂, and we
denote by A+ the set of proper elements in A− {0̂, ∞̂}.

One expression of an additive system (A, +̂) is defined recursively by

• The null string ξ is an expression called the null expression

• The string (g) is called a primitive expression;

• The string E = (E1+̂E2) is an expression, where E1 and E2 are called
a non-null subexpressions of E.

The evaluation is a function γ : Ê → 2A defined by

• γ(ξ) = {0̂};

• γ((g)) = {g}, for all g ∈ A;

• γ((E1+̂E2)) = γ(E1)+̂γ(E2).
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Let E be an expression of the additive system (A, +̂). A vector t ∈ ZA+
is called the incidence vector of E if and only if t(g) 6= 0 is the number
of times with (g) appears as primitive expression in E. t ∈ ZA+ represent
g ∈ A if there are an expression E such that t is the incidence vector of E
and g ∈ γ(E). An expression E is called the solution expression for b ∈ A,
if b ∈ γ(E), and the vector t ∈ Z+

A is called a solution vector for b if there
are an expression E such that: E is a solution expression for b and t is an
incidence vector of E.

2.2 Multisemigroup.

Let (A, +̂) an abelian, associative additive system. For g ∈ A and k ∈ Z∗+
we denote by Ek

g the set of all expression E where (g) is the only primitive
expression to appear k times in E. Now, let γ be an evaluation and g ∈ A, γkg
the set {γ(E) : E ∈ Ek

g}. Since (A, +̂) is an abelian and associative additive
system, γkg is a single set, we denoted by k.g this element.

2.3 Loops

We assume, without loss of generality, that 0.g = 0̂ and 1.g = g. Now, since
there are only a finite number of subsets of A in the sequence

0.g, 1.g, 2.g, . . . , k.g, . . .

there are sets which appear infinitely many times, such sets are called loop
sets of g.

The loop of g is the union of all the loop sets of g. We define g goes to
φ and write g → φ when the loop of g is empty, otherwise we write g ←− φ.

Let (A, +̂) be an abelian associative additive system and b ∈ A+. (A, +̂) 
is b-consistent, if and only if b ∈ b+̂kg, for all g ∈ A such that g ←− φ for
all k ∈ Z+.

A abelian, associative additive sytem (A, +̂) is a multisemigroup if it’s 
g-consistent for all g ∈ A.

2.4 b-complementary

Let (A, +̂) be a multisemigroup and b ∈ A. We define

b ∼ g = {x ∈ A : b ∈ x+̂ g}.
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These sets induce a partial order in A, we say g<̃h when b ∼ g ⊆ b ∼ h.
When the set b ∼ g has a minimum element, this minimum element is called
b-complement of g and is denoted by ĝ. A multisemigroup A is called
b-complementary when every element has a b-complement.

An element g ∈ A is infeasible whenever there is not solution of the
equation b ∈ g+̂x, that is , b ∼ g = ∅.

3 Dual, Bases and The Optimization Prob-

lem.

3.1 The Dual Problem

In this work we will use the following formulation of duality.
Let the linear programming problem

min c̃x (1)

s.t: Ãx = b̃ (2)

Ẽx ≥ h̃ (3)

x ≥ 0 (4)

where x and c̃ are n vector, b̃ is an m vector and h̃ is a p vector, Ã is an
m× n matrix and Ẽ is a p× n matrix (n,m, p ∈ N∗). Corresponding to this
problem, called primal problem, consider the following linear problem

max π̃b̃+ µ̃h̃ (5)

s.t: π̃Ã+ µ̃Ẽ ≤ c̃ (6)

π̃ unrestricted, and µ̃ ≥ 0 (7)

where π̃ and µ̃ are row vetor of size m and p, respectively. The problem 
defined by (5) - (7) is called the dual problem of the primal problem. (see
2.5 in [12]).

3.1.1 Bases of the Convex Cone

Let C be a closed convex cone in Rn, we denote LC the linearity of C,

LC = {x ∈ C : −x ∈ C}.
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We extend the definition of extreme point to mean that x ∈ C is an
extreme point if x = x1 + x2, both x1 and x2 belong to C imply

xi = αix+ li,

αi ≤ 0, li ∈ LC for either, (and hence both) i = 1 or i = 2.

When LC = {−→0 } an extreme point is any vector on an extreme ray of C.

But, a non-zero linearity is present (LC 6= {
−→
0 }), any vector in the linearity

is extreme, and adding a vector in LC to an extreme point gives another
equivalent extreme point.

In general, intersecting the cone with the orthogonal complement of the
linearity gives a pointed cone generated by non-negative combinations of its
extreme rays. The original cone is generated by linear combinations of a
basis of the linearity plus non-negative combinations of the extreme rays.
In terms of the original cone, we do not have extreme rays, but instead, we
might say, extreme half-subspaces of dimension two or higher. These extreme
half-subspaces can be formed as an extreme ray plus the linearity. Any vector
in such an extreme half-subspace is an extreme vector, and C is equal to the
non-negative combinations of its extreme vectors.

When C has a linearity LC , this linearity form a vector subspace of Rn,
hence has a finite basis. The extreme vectors can be taken module de linearity
LC , i.e., two extreme x, y are equivalents if one is a positive multiple of the
other plus a vector in the linearity, in this case we write x ∼ y when x is
equivalent to y. Being polyhedral for C means that, in this sense, there are
a finite number of non-equivalent extreme vectors only.

A basis (E,B) of C are two disjoint sets contained in C such that B
is a basis of LC an E is a set of pair wise non-equivalent extreme points
such that for any extreme point not in LC there is a point equivalent to it
in E. In this case we have C = cone(E) + lin(B), where cone(E) is the
cone generated by E and lin(B) is the subspace generated by B(recall that

cone(∅) = lin(∅) = {−→0 }) and (E,B) is a minimal representation of C.

When LC = {−→0 }, E correspond to a unique set of rays, in general the
elements of E are one to one equivalents to the unique basis of the intersection
of C with the orthogonal complement of the linearity of C ([12]).
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3.2 Subadditivity Cone.

Let (A, +̂) be a additive system, the function π : A → R is subadditivity
if satisfies:

(i) π(∅) = −∞;

(ii) π(G) = max {π(g) : g ∈ G} for all G ⊆ A;

(iii) π(
{

0̂
}

) = 0;

(iv) π(G) + π(H) ≥ π(G+̂H) for all G,H ⊆ A.

The Subadditivity Cone is the set

C(A) = {(π(g); g ∈ A+) : π is a subadditivity function }

We denote the linearity of C(A) by L(A), and π({g}) by π(g).

3.3 The Optimization Problem

Let (A, +̂) be a b-complementary multisemigroup and M ⊆ A+. The mul-
tisemigoup b-complementary problem is

min
∑
g∈M

c(g)t(g)

s.t: b ∈
∑̂
g∈M

t(g)g.

t ∈ ZM+
where c ∈ RM .

The problem is called the Master Problem if M = A+, and the Non-
Master Problem when M 6= A+. In this paper we denoted by P (A, b) the
hull convex of the set

{t ∈ ZM+ : b ∈
∑̂
g∈M

t(g)g}.
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4 Invariant System of P (A, b)

In ([6]) Araoz and Johnson show the following theorem:

Theorem 4.1. [6, Theorem 3.8] Let (L,E) be a base of C(A). The following
system defined a P (A, b)

(i)
∑

g∈A+
ρ(g)t(g) = ρ(b), for all ρ ∈ L

(ii)
∑

g∈A+
π(g)t(g) ≥ π(b), for all π ∈ E

(ii) t(g) ≥ 0, for all g ∈ A+.

4.1 Equivalent Systems for P (A, b)

Let (L,E) be a base of C(A), we denote by SL,E the system:

(1)
∑

g∈A+
ρ(g)t(g) = ρ(b), for all ρ ∈ L

(2)
∑

g∈A+
π(g)t(g) ≥ π(b), for all π ∈ E

(3) t(g) ≥ 0, for all g ∈ A+;

Theorem 4.2. Let (L1, E1) and (L2, E2)be a base of C(A). Them, the sys-
tems SL1,E1 and SL2,E2 are equivalent.

Proof. Let t ∈ RA+ such that it verifies (1), (2) and (3), since (L1, E1) is
a base of C(A), for all ρ

′ ∈ L2 and π
′ ∈ E2, there are scalars αρ ≥ 0, ρ ∈ L1

and βπ ≥ 0, π ∈ E1 such that

ρ
′
=
∑
ρ∈L1

αρρ

and
π

′
=
∑
π∈E1

βππ.

Then∑
g∈A+

ρ
′
(g)t(g) =

∑
g∈A+

(
∑
ρ∈L1

αρρ)(g)t(g) =
∑
g∈A+

(
∑
ρ∈L1

αρρ(g)t(g))
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=
∑
ρ∈L1

αρ(
∑
g∈A+

ρ(g)t(g)) =
∑
ρ∈L1

αρρ(b) = ρ
′
(b)

therefore ∑
g∈A+

ρ
′
(g)t(g) = ρ

′
(b)

On the other hand,∑
g∈A+

π
′
(g)t(g) =

∑
g∈A+

(
∑
π∈E1

βππ)(g)t(g) =
∑
g∈A+

(
∑
π∈e1

βππ(g)t(g))

∑
π∈E1

βπ(
∑
g∈A+

π(g)t(g)) ≥
∑
π∈E1

βππ(b) = π
′
(b)

then ∑
g∈A+

π
′
(g)t(g) ≥ π

′
(b)

In an analogous way, we prove that if t ∈ RA+ verify S(L2, E2), then it
verify S(L1, E1) �

5 Bender Descomposition of the b-complementary

multisemigroup dual problem

5.1 The b-complementary multisemigroup dual prob-
lem

Let (A, +̂) be a multisemigroup b-complementary. We denote by PA,b the
following linear programming problem

min
∑
g∈A+

c(g)t(g)

s.t: t ∈ P (A, b)

where c(g) ∈ R for all g ∈ A+.
In [12] we shown the following theorems.
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Theorem 5.1. The PA,b problem is equivalent to the Pp problem

min
∑
g∈A+

c(g)t(g)∑
g∈A+

ρ(g)t(g) = ρ(b), ρ ∈ L;∑
g∈A+

π(g)t(g) ≥ π(b), π ∈ E;

t(g) ≥ 0, g ∈ A+,

where (L,E) is a base for C(A) and c ∈ RA+

Theorem 5.2. The dual problem of Pp is the problem Pd

max

(∑
ρ∈L

ρ(b)v(ρ) +
∑
π∈E

π(b)w(π)

)
∑
ρ∈L

ρ(g)v(ρ) +
∑
π∈E

π(g)w(π) ≤ c(g), g ∈ A+

v(ρ) unrestricted, ρ ∈ L
w(π) ≥ 0, π ∈ E.

5.2 The Benders Decompostion of Pd

We present the Benders decomposition for problem Pd. From v ∈ RA+ we
denote with Pv the following problem

max
∑
π∈E

π(b)w(π)∑
π∈E

π(g)w(π) ≤ c(g)−
∑

ρ∈L ρ(g)v(ρ), g ∈ A+

w(π) ≥ 0, π ∈ E.

As
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max

(∑
ρ∈L

ρ(b)v(ρ) +
∑
π∈E

π(b)w(π)

)
∑
ρ∈L

ρ(g)v(ρ) +
∑
π∈E

π(g)w(π) ≤ c(g), g ∈ A+

v(ρ) unrestricted, ρ ∈ L
w(π) ≥ 0, π ∈ E.

is iqual to

max

(∑
ρ∈L

ρ(b)v(ρ) + Pv

)
v(ρ) unrestricted, ρ ∈ L.

And the dual of the Pv is the problem DPv

min
∑
g∈A+

(
c(g)−

∑
ρ∈L

ρ(g)v(ρ)

)
t(g)∑

g∈A+

π(g)t(g) ≥ π(b), π ∈ E

t(g) ≥ 0, g ∈ A+

then, the Benders descomposition of thePd is the problem

max

(∑
ρ∈L

ρ(b)v(ρ) +DPv

)
v(ρ) unrestricted, ρ ∈ L

Thus for the construction of the master problem of Bendres we consider
the set

X = {t ∈ RA+

+ :
∑
g∈A+

π(g)t(g) ≥ π(b), π ∈ E},
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and denote with V (X) the set of vertices the polhyedra X. If the set X
is empty, the dual problem DPv it is infeasible, and from duality theory,
the primal problem Pv has no feasible or is unbounded. Therefore, we can
assume that the set X is nonempty.

As the convex polhyedron X is independent of ρ, thus we have the Bender
master problem for the dual b-complemantary of the Multisemigrou Problem
as the problem:

max{γ : γ ≤
∑
ρ∈L

ρ(b)v(ρ) +
∑
g∈A+

(c(g)−
∑
g∈A+

ρ(g)v(ρ))t(g), t ∈ V (X)}
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