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1. Introduction 

        This is an expository paper about a simple random walk. But we examine the walk in a most unusual way 

that (while known) may not be familiar to the reader. The results are very non intuitive and surprising. 

2. A Random Walk in One Dimension 

        We will examine the uniform random walk in one dimension. The following  theorem is known, but not 

well advertised: 

Random walk theorem 

        If , for  is a uniform random variable, taking on the values +1 and -1 only, then the sum 

   as  has the expected value of  

(1)  .  

(In the above theorem, the statement   means that  and we say that g(N) is asymptotic 

to f(N).). 

        We caution the reader that this result is not at all intuitive. At first glance the reader might think that the 

expected value is zero. This would be true if the sum under consideration was, (without absolute values), 



 

, this is a classic error of assuming commutativity: Expected value of absolute value ≠ 

Absolute value of expected value. 

3. Expected Random Walk – Simplified Argument 

        We now give a simple argument that will only crudely suggest the truth of our random walk theorem. Let 

 be a sequence of numbers randomly taking on the  values +1 or -1. We wish to study   and 

give some very  simple partial explanation for: the expected value of . 

        Let us look at  . This is equal to 2 2 2 2 2
1 2 3( ) ( )Nd N x x x x other terms= + + + ⋅⋅⋅+ + =  

( )N other terms+ . Since the “other terms” can be both positive and negative, they tend to cancel one another. 

This leads us to conclude that perhaps the expected value of  (or better  for 

some constant c). This completes our simple heuristic argument. A rigorous analysis follows in section 5 and 

also in [2]. Pages 38 and 39 of [1] give a very nice graphic description of this idea in action. 

4. Example of the random walk 

        Consider tossing a fair coin yielding heads H or tails T, equally likely. You toss the coin 100 times. 

Suppose you get H 55 times and thus T 45. The difference 55 – 45 is 10. We will say that the head-tail 

difference (HTD) for this toss is 10. The HTD will always be considered non-negative, regardless if the toss 

yields more heads or more tails. Now reflect on the possible values of the HTD in 100 tosses of the coin. It could 

be 0 if H = D, (although this is unlikely), or it could even be 100 if either D or T is zero,  (again unlikely). So it 
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seems to be more likely that 0 < HTD < 100. In fact on closer reflection, we expect the HTD to be closer to 0 

than 100.  

        Now we ask the question, after tossing the  coin 100 times again and again, many times, what is the 

expected HTD? Our random walk theorem gives us the answer 8!  For we can describe the sequence of tosses by 

a random walk say  -1 +1 -1 + … +1, where our  first toss is T, the second H, T the third, and finally H the one 

hundredth. Our random walk theorem tells us that the approximate expected absolute value of this sum (the 

HTD), after 100 tosses is . An interesting, conclusion that perhaps now may seem more 

intuitive!  

 (Also look at the comment immediately following equation (2) on section 5.) 

5. Proving the Random Walk Theorem 

        Consider a uniform random one-dimensional walk in which we start on the x axis at the origin and make N 

random unit steps to the left and right with equal probability. (We prove the case where N is even.) The 

following table shows the probability of terminating at a given location. The numerators are Pascal’s triangle. 

For example, if  steps, the probability that , corresponding 

to three of the four steps being chosen = -1 and one step = 1.  
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Probability of position after N steps 

N -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

0       1       

1      1/2  1/2      

2     1/4  2/4  1/4     

3    1/8  3/8  3/8  1/8    

4   1/16  4/16  6/16  4/16  1/16   

5  1/32  5/32  10/32  10/32  5/32  1/32  

6 1/64  6/64  15/64  20/64  15/64  6/64  1/64 

 

        By definition, the expected value of a discrete random variable is the probability-weighted average of all 

possible values. In other words, each possible value the random variable can assume is multiplied by its 

probability of occurring, and the resulting products are summed to produce the expected value. 

        Let  denote the expected value of the unsigned distance from the origin after N steps. As an 

example, consider the case of 4 steps. The calculation would be 

  . 

        The 2 on the left is needed because the probabilities must be doubled since both the same positive and 

negative distance  count as one. The numbers 0, 2 and 4 are the possible values (moment arms) being multiplied 

by their corresponding probabilities from the table. It is easy to see that the generalization of this in the case 

where N is the even number   is 
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 . 

        We found the sum on the right with Mathematica as  . 

        But .  We have 

(2) . 

(It is interesting to note that this exact expression gives 7.95892 for N =100 which was studied in the above coin 

toss example using the asymptotic expression (1).) 

        The expression (2) gives the exact expected value after a finite number of steps. We finally  consider N 

approaching infinity. We can make the Stirling asymptotic approximation  for large x and get at 

once  and so since  we finally have 

        . 

        This means that the expected distance from the origin after 1,000,000 random unit steps, each with the same 

probability of going right or left is about d(1,000,000) = 798. We checked this with Mathematica’s random 

number generator. We calculated d(1,000,000) one thousand times and found the average to be 769 which is an 

error of less than 4 percent. 
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