\(q \)-Multivector fields and \(q \)-forms on Weil bundles

Olivier MABIALA MIKANOU\(^1\), Borhen Vann NKOU\(^2\), Basile Guy Richard BOSSOTO\(^3\)\(^4\)

Abstract

Let \(M \) be a paracompact smooth manifold of dimension \(n \), \(A \) a Weil algebra and \(M^A \) the associated Weil bundle. In this paper, we define the Schouten-Nijenhuis bracket on the \(\mathcal{C}^\infty(M^A, A) \)-module \(\mathfrak{X}^*(M^A) \) of multivector fields on \(M^A \) considered as multi-derivations from \(\mathcal{C}^\infty(M) \) into \(\mathcal{C}^\infty(M^A, A) \) and we show that the exterior algebra \(\mathfrak{X}^q(M^A) \) of multivector fields on \(M^A \) is a Lie graded algebra over \(A \). To finish, we establish an isomorphism between \(\mathfrak{X}^q(M^A) \) and the \(\mathcal{C}^\infty(M^A, A) \)-module \(\mathcal{L}_q^{\text{alt}}(\Omega(M^A, A), \mathcal{C}^\infty(M^A, A)) \) of skew-symmetric multilinear forms of degree \(q \) onto the \(\mathcal{C}^\infty(M^A, A) \)-module \(\Omega(M^A, A) \) of differential \(A \)-forms on \(M^A \).

Mathematics Subject Classification: 58A20, 58A32.

Key words: Weil bundle, Weil algebra, Multivector fields, Schouten-Nijenhuis bracket.

1. **Introduction**

A local algebra in the sense of André Weil or simply a Weil algebra is a real commutative algebra \(A \) with unit of finite dimension admitting an unique maximal ideal \(m \) of codimension 1 over \(\mathbb{R} \) [7]. If \(M \) is a smooth manifold, \(\mathcal{C}^\infty(M) \) the algebra of smooth functions on \(M \) and \(A \) a Weil algebra, then we call an infinitely near point to \(x \in M \) of kind \(A \) a homomorphism of algebras

\[
\xi : \mathcal{C}^\infty(M) \rightarrow A
\]

such that \([\xi(f) - f(x)] \in m\) for any \(f \in \mathcal{C}^\infty(M)\).

We denote \(M^A_x \) the set of all infinitely near points to \(x \) of kind \(A \) and

\[
M^A = \bigcup_{x \in M} M^A_x,
\]

the set \(M^A \) is a smooth manifold of dimension \(\dim M \times \dim A \) called manifold of infinitely near points [6].

Hence \((M^A, \pi_M, M)\) defines a bundle of infinitely near points or simply a Weil bundle.

If \((U, \varphi)\) is a local chart of \(M \) with coordinate functions \((x_1, x_2, ..., x_n)\), the application

\[
U^A \rightarrow A^n, \xi \mapsto (\xi(x_1), \xi(x_2), ..., \xi(x_n)),
\]

is a bijection from \(U^A \) into an open of \(A^n \). The manifold \(M^A \) is a smooth manifold modeled over \(A^n \), that is to say an \(A \)-manifold of dimension \(n \).

The set, \(\mathcal{C}^\infty(M^A, A) \) of smooth functions on \(M^A \) with value in \(A \) is a commutative, unitary \(A \)-algebra. When one identifies \(\mathbb{R}^A \) with \(A \), for \(f \in \mathcal{C}^\infty(M) \), the application

\[
f^A : M^A \rightarrow A, \xi \mapsto \xi(f)
\]

\(^1\)Université Marien NGOUABI , BP: 69, Brazzaville, Congo, E-mail: stive.elg@gmail.com
\(^2\)Université Marien NGOUABI , BP: 69, Brazzaville, Congo, Email: vannborhen@yahoo.fr
\(^3\)Université Marien NGOUABI , BP: 69, Brazzaville, Congo E-mail: bossotob@yahoo.fr
\(^4\)Institut de Recherche en Sciences Exactes et Naturelles (IRSEN), E-mail: bossotob@yahoo.fr
is smooth. Moreover the application
\[C^\infty(M) \longrightarrow C^\infty(M^A, A), f \longmapsto f^A, \]
is an injective homomorphism of algebras and we have:
\[(f + g)^A = f^A + g^A; (\lambda \cdot f)^A = \lambda \cdot f^A; (f \cdot g)^A = f^A \cdot g^A \]
with \(\lambda \in \mathbb{R} \), and \(f \) and \(g \) belongs to \(C^\infty(M) \).
When \((a_\alpha)_{\alpha=1,2,\ldots,\dim(A)}\) is a basis of \(A \) and when \((a^*_\alpha)_{\alpha=1,2,\ldots,\dim(A)}\) is a dual basis of the basis \((a_\alpha)_{\alpha=1,2,\ldots,\dim(A)}\)
the application
\[\sigma : C^\infty(M^A, A) \longrightarrow A \otimes C^\infty(M^A), \varphi \longmapsto \sum_{\alpha=1}^{\dim A} a_\alpha \otimes a^*_\alpha \circ \varphi \]
is an isomorphism of \(A \)-algebras. That isomorphism does not depend of a choisen basis and the application
\[\gamma : C^\infty(M) \longrightarrow A \otimes C^\infty(M^A), f \longmapsto \sigma(f^A), \]
is a homomorphism of algebras.
A vector field \(X \) on \(M^A \) can be considered as a derivation from \(C^\infty(M) \) into \(C^\infty(M^A, A) \) i.e a linear application which verifies
\[X(fg) = X(f) \cdot g^A + f^A \cdot X(g) \]
for any \(f, g \in C^\infty(M) \).
For any vector field \(X \) on \(M^A \), considered as derivation from \(C^\infty(M) \) into \(C^\infty(M^A, A) \), there exists one and only one derivation
\[\widetilde{X} : C^\infty(M^A, A) \longrightarrow C^\infty(M^A, A) \]
such that:
1. \(\widetilde{X} \) is \(A \)-linear;
2. \(\widetilde{X}[C^\infty(M^A)] \subset C^\infty(M^A) \);
3. \(\widetilde{X}(f^A) = X(f) \) for any \(f \in C^\infty(M) \).

The set \(\mathfrak{X}(M^A) \) of all vector fields on \(M^A \) is a \(C^\infty(M^A, A) \)-module and the application
\[[X, Y] = \widetilde{X} \circ Y - \widetilde{Y} \circ X : C^\infty(M) \longrightarrow C^\infty(M^A, A) \]
defines the structure of a Lie algebra over \(A \) \cite{1}, \cite{2}.
If \(\theta : C^\infty(M) \longrightarrow C^\infty(M) \) is a vector field on \(M \), then the application
\[\theta^A : C^\infty(M) \longrightarrow C^\infty(M^A, A), f \longmapsto [\theta(f)]^A, \]
is a vector field on \(M^A \). We say that the vector field \(\theta^A \) is the prolongation to \(M^A \) of the vector field \(\theta \).
Then, for any \(f \in C^\infty(M) \) we have:
\[(\theta_1 + \theta_2)^A = \theta_1^A + \theta_2^A; \quad (f \cdot \theta)^A = f^A \cdot \theta^A; \quad (f \cdot \theta)^A = f^A \cdot \theta^A; \quad [\theta_1^A, \theta_2^A] = [\theta_1, \theta_2]^A. \]

The goal of this work, is to define the Schouten-Nijenhuis bracket on the \(C^\infty(M^A, A) \)-module \(\mathfrak{X}^*(M^A) \) of multivector fields on \(M^A \) considered as multi-derivations \cite{4} from \(C^\infty(M) \) into \(C^\infty(M^A, A) \) and to show that exterior algebra \(\mathfrak{X}^*(M^A) \) of multivector fields on \(M^A \) is a Lie graded algebra over \(A \) .

And to finish, we have to establish an isomorphism between \(\mathfrak{X}^*(M^A) \) and the \(C^\infty(M^A, A) \)-module \(\Lambda_q^\Omega(M^A, A), C^\infty(M^A, A) \) of skew-symmetric multilinear forms of degree \(q \) onto the \(C^\infty(M^A, A) \)-module \(\Omega(M^A, A) \) of differential \(A \)-forms on \(M^A \).
2 \textit{q-Multivector fields and q-forms on }M^A\textit{ }

We denote $\mathfrak{X}^1(M^A) = \mathfrak{X}(M^A)$, the set of all vector fields on M^A i.e the set of smooth sections of tangent bundle (TM^A, π_{M^A}, M^A). More generally, one denotes, for $2 \leq q \leq m = \dim M^A$, $\mathfrak{X}^q(M^A)$ the set of multivector fields of degree q (or q-multivector fields [2],[3],[5]) on M^A, i.e the set of smooth sections of vector bundle $(\Lambda^q TM^A, \pi_{M^A}, M^A)$.

For any $\xi \in M^A$, $T_\xi M^A$ is an A-module [6]. In this section, we show that, a q-multivector field on M^A is a q-derivation [4].

2.1 \textit{The }C^\infty(M^A)\textit{-module of }q\text{-multivector fields and of }q\text{-forms on }M^A\textit{ }

Let $\pi_M : M^A \to M$ be map the which assigns any infinitely near point ξ of M^A to its origin $x \in M$, and U be an open neighborhood of M with coordinate system $\{x_1, ..., x_n\}$. Hence $\{x_{i,\alpha}/ i = 1, ..., n; \alpha = 1, ..., \dim A = r\}$ is coordinate system of $\pi^{-1}_M(U)$ where $x_{i,\alpha} : \pi^{-1}_M(U) \to \mathbb{R}, \xi \mapsto x_{i,\alpha}(\xi)$ is such that

$$\xi(x_i) = \sum_\alpha x_{i,\alpha}(\xi)a_\alpha$$

for any $x_i \in C^\infty(M)$, $\forall i = 1, ..., n$.

\textbf{Lemma 1.} [6] Let $\{x_1, ..., x_n\}$ be a coordinate system on some neighborhood of M. Then we have

$$a_\alpha(\frac{\partial}{\partial x_i})^A = \frac{\partial}{\partial x_{i,\alpha}}$$

for any $i = 1, ..., n; \alpha = 1, ..., r$.

\textbf{Lemma 2.} Let $\{x_1, ..., x_n\}$ be a coordinate system on some neighborhood of M. Then we have

$$a_\alpha^* \circ (dx_i)^A = dx_{i,\alpha}.$$

for any $i = 1, ..., n; \alpha = 1, ..., r$.

\textbf{Proof.} We have, on one hand:

$$a_\alpha^* \left[(dx_i)^A \left[\left(\frac{\partial}{\partial x_j} \right)^A \right] \right] = a_\alpha^* \left(dx_i \left(\frac{\partial}{\partial x_j} \right)^A \right) = a_\alpha^* \left((\delta_{ij})^A \right) = a_\alpha^* (\delta_{ij}).$$

On the other hand, we have:

$$dx_{i,\alpha} \left[\left(\frac{\partial}{\partial x_j} \right)^A \right] = \left(\frac{\partial}{\partial x_i} \right)^A (x_{i,\alpha}) = \left(\frac{\partial}{\partial x_i} \right)^A (a_\alpha^* \circ x_i^A) = a_\alpha^* \left[\left(\frac{\partial}{\partial x_j} \right)^A \right] (x_i^A) = a_\alpha^* \left[\left(\frac{\partial_{x_i}}{\partial x_j} \right)^A \right] = a_\alpha^* (\delta_{ij}).$$

Hence we get

$$a_\alpha^* \circ (dx_i)^A = dx_{i,\alpha},$$

what ends the proof. \qed
In the coordinate system \(\{x_{i\alpha} / i = 1, \ldots, n; \alpha = 1, \ldots, r \} \) a \(q \)-multivector field \(Q \in \mathcal{X}(M^A) \) is written

\[
Q = \sum_{1 \leq i_1 < \ldots < i_q \leq n \atop 1 \leq \alpha_1 < \ldots < \alpha_q \leq r} Q_{i_1 \ldots i_q \alpha_1 \ldots \alpha_q} \frac{\partial}{\partial x_{i_1 \alpha_1}} \wedge \ldots \wedge \frac{\partial}{\partial x_{i_q \alpha_q}},
\]

where \(Q_{i_1 \ldots i_q \alpha_1 \ldots \alpha_q} \in C^\infty(M^A) \). It follows that \(\mathcal{X}^q(M^A) \) is a \(C^\infty(M^A) \)-module of \(q \)-vector fields on \(M^A \). We denote

\[
\mathcal{X}^*(M^A) = C^\infty(M^A) \oplus \mathcal{X}^1(M^A) \oplus \ldots \oplus \mathcal{X}^n(M^A)
\]

the exterior algebra of \(C^\infty(M^A) \)-module of multivector fields.

In the other respects, for \(1 \leq q \leq m \), \(\Omega^q(M^A) \) denotes the space of differential \(q \)-forms on \(M^A \). In the coordinate system \(\{x_{i\alpha} / i = 1, \ldots, n; \alpha = 1, \ldots, r \} \) a differential \(q \)-form \(\varpi \in \Omega^q(M^A) \) is written

\[
\varpi = \sum_{1 \leq i_1 < \ldots < i_q \leq n \atop 1 \leq \alpha_1 < \ldots < \alpha_q \leq r} \varpi_{i_1 \ldots i_q \alpha_1 \ldots \alpha_q} dx_{i_1 \alpha_1} \wedge \ldots \wedge dx_{i_q \alpha_q},
\]

where \(\varpi_{i_1 \ldots i_q \alpha_1 \ldots \alpha_q} \in C^\infty(M^A) \). Thus \(\Omega^q(M^A) \) is a \(C^\infty(M^A) \)-module of differentiable \(q \)-forms on \(M^A \) and

\[
\Omega^*(M^A) = C^\infty(M^A) \oplus \Omega^1(M^A) \oplus \Omega^2(M^A) \oplus \ldots \oplus \Omega^m(M^A)
\]

denotes exterior algebra of \(C^\infty(M^A) \)-module multilinear forms.

Proposition 3. If \(Q \) is a \(q \)-multivector field on \(M^A \) then \(Q \) is a \(q \)-derivation from \(C^\infty(M^A) \) into \(C^\infty(M^A) \).

Theorem 4. Let \(\mathcal{X}^q(M^A) \) be the \(C^\infty(M^A) \)-module of \(q \)-multivector fields on \(M^A \) and \(D^q(C^\infty(M^A)) \) be the \(C^\infty(M^A) \)-module of \(q \)-derivations from \(C^\infty(M^A) \) into \(C^\infty(M^A) \). Then the map

\[
\Phi : \mathcal{X}^q(M^A) \rightarrow D^q(C^\infty(M^A)), Q \mapsto \Phi_Q
\]

where

\[
\Phi_Q : C^\infty(M^A) \times \cdots \times C^\infty(M^A) \rightarrow C^\infty(M^A), [\Phi_Q(f_1, f_2, \ldots, f_q)](\xi) = Q(\xi)(f_1, f_2, \ldots, f_q)
\]

is defined by

\[
[\Phi_Q(f_1, f_2, \ldots, f_q)](\xi) = Q(\xi)(f_1, f_2, \ldots, f_q)
\]

for any \(f_1, f_2, \ldots, f_q \in C^\infty(M^A) \) and \(\xi \in M^A \), is an isomorphism of \(C^\infty(M^A) \)-modules.

2.2 The \(C^\infty(M^A, A) \)-module of \(q \)-multivector fields and of \(q \)-forms on \(M^A \)

Let \(U \) be an open neighborhood of \(M \) with coordinate system \(\{x_1, \ldots, x_n\} \).

Then, \(\left\{ \left(\frac{\partial}{\partial x_1} \right)^A, \ldots, \left(\frac{\partial}{\partial x_n} \right)^A \right\} \) is a free \(A \)-basis of \(T_\xi M^A \) see [6]. Then, a \(q \)-multivector field \(Q \) on \(M^A \) is written:

\[
Q = \sum_{1 \leq i_1 < \ldots < i_q \leq n} Q_{i_1 \ldots i_q} \left(\frac{\partial}{\partial x_{i_1}} \right)^A \wedge \ldots \wedge \left(\frac{\partial}{\partial x_{i_q}} \right)^A,
\]

where \(Q_{i_1 \ldots i_q} \in C^\infty(U^A, A) \).

In this case \(\mathcal{X}^q(M^A) \) is a \(C^\infty(M^A, A) \)-module of \(q \)-multivector fields. Hence

\[
\mathcal{X}^*(M^A) = C^\infty(M^A, A) \oplus \mathcal{X}^1(M^A) \oplus \ldots \oplus \mathcal{X}^n(M^A)
\]
denotes the exterior algebra of $C^\infty(M^A, A)$-module of multivector field on M^A.

In the other respects, for $1 \leq q \leq n$, $\Omega^q(M^A, A)$ denotes the space of differential A-forms of degree q on M^A see[1]. Any differential A-form [1] of degree q on M^A is written
\[
\varpi = \sum_{1 \leq i_1 < \ldots < i_q \leq n} \varpi_{i_1 \ldots i_q} (dx_{i_1})^A \wedge \ldots \wedge (dx_{i_q})^A,
\]
for any $\varpi_{i_1 \ldots i_q} \in C^\infty(U^A, A)$. Then, $\Omega^q(M^A, A)$ is a $C^\infty(M^A, A)$-module of differentiable A-forms of degree q on M^A.

We denote
\[
\Omega^*(M^A, A) = C^\infty(M^A, A) \oplus \Omega^1(M^A, A) \oplus \Omega^2(M^A, A) \oplus \ldots \oplus \Omega^n(M^A, A)
\]
the exterior algebra of $C^\infty(M^A, A)$-module of differentiable multilinear A-forms on M^A.

Proposition 5. If Q is a q-multivector field on M^A then Q is a q-derivation from $C^\infty(M)$ into $C^\infty(M^A, A)$.

Proposition 6. If Q is a q-vector field on M then the map
\[
Q^A : C^\infty(M) \times \cdots \times C^\infty(M) \to C^\infty(M^A, A), (f_1, \ldots, f_q) \mapsto [Q(f_1, \ldots, f_q)]^A
\]
is a q-derivation from $C^\infty(M)$ into $C^\infty(M^A, A)$.

Theorem 7. Let $\mathfrak{X}^q(M^A)$ be the $C^\infty(M^A, A)$-module of q-vector fields on M^A and $\mathcal{D}^q(C^\infty(M), C^\infty(M^A, A))$ be the $C^\infty(M^A, A)$-module of q-derivations from $C^\infty(M)$ into $C^\infty(M^A, A)$. The map
\[
\Theta : \mathfrak{X}^q(M^A) \to \mathcal{D}^q(C^\infty(M), C^\infty(M^A, A)) \; , \; Q \mapsto \Theta_Q
\]
where
\[
\Theta_Q : C^\infty(M) \times \cdots \times C^\infty(M) \to C^\infty(M^A, A)
\]
is defined by
\[
[\Theta_Q(f_1, f_2, \ldots, f_q)(\xi) = Q(\xi)(f_1, f_2, \ldots, f_q)
\]
for any $f_1, f_2, \ldots, f_q \in C^\infty(M)$ and $\xi \in M^A$; is an isomorphism of $C^\infty(M^A, A)$-modules.

We now define two q-multilinear applications σ_q and γ_q as follows:
\[
\sigma_q : C^\infty(M^A, A) \times \ldots \times C^\infty(M^A, A) \to A \otimes C^\infty(M^A), (\varphi_1, \ldots, \varphi_q) \mapsto \sum_a a_\alpha \otimes a_\alpha^* (\varphi_1 \times \ldots \times \varphi_q)
\]
and
\[
\gamma_q : C^\infty(M) \times \ldots \times C^\infty(M) \to A \otimes C^\infty(M^A), (f_1, \ldots, f_q) \mapsto \sigma_q(f_1^A, \ldots, f_q^A).
\]
For $q = 1$, we have $\sigma_1 = \sigma$ and $\gamma_1 = \gamma$.

Theorem 8. Let Q be a multivector field on M^A considered as q-derivation from $C^\infty(M)$ into $C^\infty(M^A, A)$ then there exists an unique q derivation:
\[
\overline{Q} : C^\infty(M^A, A) \times \ldots \times C^\infty(M^A, A) \to C^\infty(M^A, A)
\]
such that

1. Q be A-multilinear;
2. $\overline{Q} [C^\infty(M^A) \times \ldots \times C^\infty(M^A)] \subset C^\infty(M^A)$;
3. \(\bar{Q}(f_1^A, f_2^A, ..., f_q^A) = Q(f_1, f_2, ..., f_q) \), for any \(f_1, f_2, ..., f_q \) ∈ \(C^\infty(M) \).

Proof. If \(Q \) is a multivector field on \(M^A \) considered as \(q \)-derivation from \(C^\infty(M) \) into \(C^\infty(M^A, A) \) and if

\[
\overline{Q} : C^\infty(M^A) \longrightarrow C^\infty(M^A)
\]

is an unique derivation such that

\[
\sigma^{-1} \circ (id_A \otimes \overline{Q}) \circ \gamma_q = Q,
\]

then the map

\[
\tilde{Q} = \sigma^{-1} \circ (id_A \otimes \overline{Q}) \circ \sigma_q : C^\infty(M^A, A) \times ... \times C^\infty(M^A, A) \longrightarrow C^\infty(M^A, A)
\]

answers to the question. \(\square \)

Proposition 9. If \(\mu : A \longrightarrow A \) is an endomorphism and \(Q \) is a multivector field on \(M^A \) considered as \(q \)-derivation from \(C^\infty(M) \) into \(C^\infty(M^A, A) \), then

\[
\bar{Q}(\mu \circ f_1^A , \mu \circ f_2^A , ..., \mu \circ f_q^A) = \mu \circ Q(f_1, f_2, ..., f_q)
\]

(4)

for any \(f_1, f_2, ..., f_q \) ∈ \(C^\infty(M) \).

Proof. From \(\bar{Q}(f_1^A, f_2^A, ..., f_q^A) = Q(f_1, f_2, ..., f_q) \), we have

\[
\bar{Q} \left[\sum_{\alpha=1}^{r} (a_\alpha^* \circ f_1^A, a_\alpha^* \circ f_2^A, ..., a_\alpha^* \circ f_q^A) \cdot a_\alpha \right] = \sum_{\alpha=1}^{r} a_\alpha^* \circ Q(f_1, f_2, ..., f_q) \cdot a_\alpha
\]

that implies

\[
\sum_{\alpha=1}^{r} \bar{Q}(a_\alpha^* \circ f_1^A, a_\alpha^* \circ f_2^A, ..., a_\alpha^* \circ f_q^A) \cdot a_\alpha = \sum_{\alpha=1}^{r} a_\alpha^* \circ Q(f_1, f_2, ..., f_q) \cdot a_\alpha.
\]

Hence \(\bar{Q}(a_\alpha^* \circ f_1^A, a_\alpha^* \circ f_2^A, ..., a_\alpha^* \circ f_q^A) = a_\alpha^* \circ Q(f_1, f_2, ..., f_q) \) for all \((a_\alpha^*)_{\alpha=1}^{r} \). Since

\[
(\mu \circ f_1^A, \mu \circ f_2^A, ..., \mu \circ f_q^A) = \sum_{\alpha=1}^{r} (a_\alpha^* \circ f_1^A, a_\alpha^* \circ f_2^A, ..., a_\alpha^* \circ f_q^A) \cdot \mu(a_\alpha)
\]

it follows that

\[
\bar{Q}(\mu \circ f_1^A, \mu \circ f_2^A, ..., \mu \circ f_q^A) = \sum_{\alpha=1}^{r} \bar{Q}(a_\alpha^* \circ f_1^A, a_\alpha^* \circ f_2^A, ..., a_\alpha^* \circ f_q^A) \cdot \mu(a_\alpha)
\]

\[
= \sum_{\alpha=1}^{r} a_\alpha^* \circ Q(f_1, f_2, ..., f_q) \cdot \mu(a_\alpha)
\]

\[
= \mu \circ Q(f_1, f_2, ..., f_q)
\]

therefore we have the result. \(\square \)

2.3 Schouten-Nijenhuis bracket on \(C^\infty(M^A, A) \)-module \(\mathfrak{X}^q(M^A) \)

Let \(\mathfrak{X}^q(M^A) \) be the set of \(q \)-multivector fields on \(M^A \) considered as \(q \)-derivations from \(C^\infty(M) \) into \(C^\infty(M^A, A) \), we define the Schouten-Nijenhuis bracket (see [2],[5]) as follows:
Theorem 10. If P and Q are both multivector fields on M^A of degree p and q, respectively, considered as p-derivation and q-derivation from $C^\infty(M)$ into $C^\infty(M^A, A)$, respectively. Then, the bracket of P and Q defined by:

$$[P, Q]_S(f_1, f_2, ..., f_{p+q-1}) = \sum_{\sigma \in \Theta_{p+q-1}} \varepsilon(\sigma)\tilde{P}\left(Q(f_{\sigma(1)}, ..., f_{\sigma(q)}), f^A_{\sigma(q+1)}, ..., f^A_{\sigma(p+q-1)}\right)$$

$$-(-1)^{(p-1)(q-1)} \sum_{\sigma \in \Theta_{p+q-1}} \varepsilon(\sigma)\tilde{Q}\left(P(f_{\sigma(1)}, ..., f_{\sigma(p)}), f^A_{\sigma(p+1)}, ..., f^A_{\sigma(p+q-1)}\right)$$

for any $f_1, f_2, ..., f_{p+q-1} \in C^\infty(M)$, is a multivector field on M^A of degree $p + q - 1$.

Proposition 11. If P and Q both are p and q-multivector fields on M^A considered as p and q-derivations, respectively from $C^\infty(M)$ into $C^\infty(M^A, A)$, and if $\varphi \in C^\infty(M^A, A)$, then we have:

1. $[\tilde{P}, \tilde{Q}]_S = [\tilde{P}, \tilde{Q}]_S$.
2. $\varphi \cdot \tilde{P} = \varphi \cdot \tilde{P}$.
3. $\tilde{P} \wedge Q = \tilde{P} \wedge Q$.

Proof. 1. For any $f_1, f_2, ..., f_{p+q-1} \in C^\infty(M)$, we have

$$[\tilde{P}, \tilde{Q}]_S(f^A_1, f^A_2, ..., f^A_{p+q-1})$$

$$= \sum_{\sigma \in \Theta_{p+q-1}} \varepsilon(\sigma)\tilde{P}\left(Q(f^A_{\sigma(1)}, ..., f^A_{\sigma(q)}), f^A_{\sigma(q+1)}, ..., f^A_{\sigma(p+q-1)}\right)$$

$$-(-1)^{(p-1)(q-1)} \sum_{\sigma \in \Theta_{p+q-1}} \varepsilon(\sigma)\tilde{Q}\left(P(f^A_{\sigma(1)}, ..., f^A_{\sigma(p)}), f^A_{\sigma(p+1)}, ..., f^A_{\sigma(p+q-1)}\right)$$

$$= \sum_{\sigma \in \Theta_{p+q-1}} \varepsilon(\sigma)\tilde{P}\left(Q(f^A_{\sigma(1)}, ..., f^A_{\sigma(q)}), f^A_{\sigma(q+1)}, ..., f^A_{\sigma(p+q-1)}\right)$$

$$-(-1)^{(p-1)(q-1)} \sum_{\sigma \in \Theta_{p+q-1}} \varepsilon(\sigma)\tilde{Q}\left(P(f^A_{\sigma(1)}, ..., f^A_{\sigma(p)}), f^A_{\sigma(p+1)}, ..., f^A_{\sigma(p+q-1)}\right)$$

$$= [P, Q]_S(f_1, f_2, ..., f_{p+q-1}).$$

Since $[\tilde{P}, \tilde{Q}]_S$ is the unique $p + q - 1$-derivation from $C^\infty(M^A, A)$ into $C^\infty(M^A, A)$ such that

$$[\tilde{P}, \tilde{Q}]_S(f^A_1, f^A_2, ..., f^A_{p+q-1}) = [P, Q]_S(f_1, f_2, ..., f_{p+q-1})$$

for any $f_1, f_2, ..., f_{p+q-1} \in C^\infty(M)$, hence we have

$$[\tilde{P}, \tilde{Q}]_S = [\tilde{P}, \tilde{Q}]_S.$$
3. For any $f_1, f_2, ..., f_{p+q-1} \in C^\infty(M)$, we have
\[
\tilde{P} \wedge \tilde{Q}(f_1^A, f_2^A, ..., f_{p+q}^A) = \sum_{\sigma \in \mathcal{S}_{p,q}} \varepsilon(\sigma) \tilde{P}(f_{\sigma(1)}, ..., f_{\sigma(p)}) \cdot \tilde{Q}(f_{\sigma(q+1)}, ..., f_{\sigma(p+q)})
\]
\[
= \sum_{\sigma \in \mathcal{S}_{p,q}} \varepsilon(\sigma)P(f_{\sigma(1)}, ..., f_{\sigma(q)}) \cdot Q(f_{\sigma(q+1)}, ..., f_{\sigma(p+q)}) = P \wedge Q(f_1, f_2, ..., f_{p+q}).
\]

In the other hand, since $\tilde{P} \wedge \tilde{Q}$ is the unique $p+q$-derivation from $C^\infty(M, A)$ into $C^\infty(M, A)$, such that
\[
\tilde{P} \wedge \tilde{Q}(f_1^A, f_2^A, ..., f_{p+q}^A) = P \wedge Q(f_1, f_2, ..., f_{p+q})
\]

hence we have
\[
\tilde{P} \wedge \tilde{Q} = \tilde{P} \wedge Q.
\]

Let us give now the intrinsic properties of Schouten-Nijenhuis bracket.

Theorem 12. Let P, Q, R be p-multivector, q-multivector and r-multivector fields on M^A, respectively, considered as p,q and r-derivations from $C^\infty(M)$ into $C^\infty(M^A, A)$, respectively. Let φ, ψ both be smooth functions on M^A with values in A and X a vector field on M^A considered as derivation from $C^\infty(M)$ into $C^\infty(M^A, A)$. The Schouten-Nijenhuis bracket verifies the following equalities:

1. $[\varphi, \psi]_S = 0$;
2. $[X, P]_S = L_X P$ the Lie derivative with respect to the vector field X;
3. $[P, Q]_S = -(-1)^{(p-1)(q-1)}[Q, P]_S$;
4. $[P, Q \wedge R]_S = [P, Q]_S \wedge R + (-1)^{(p-1)q}Q \wedge [P, R]_S$.

Let us give some indications of the proof of theorem 12.

Proof. (of the theorem 12)

We put $P = X_1 \wedge X_2 \wedge \cdots \wedge X_p$, $Q = Y_1 \wedge Y_2 \wedge \cdots \wedge Y_q$ and $R = Z_1 \wedge Z_2 \wedge \cdots \wedge Z_r$. Hence
\[
[\tilde{X}_1 \wedge \cdots \wedge \tilde{X}_p, \tilde{Y}_1 \wedge \cdots \wedge \tilde{Y}_q]_S = \sum_{i=1}^{p} \sum_{j=1}^{q} (-1)^{i+j} [\tilde{X}_i, \tilde{Y}_j]_S \wedge \tilde{X}_1 \wedge \cdots \wedge \tilde{X}_{i-1} \wedge \tilde{X}_{i+1} \wedge \cdots \wedge \tilde{X}_p \wedge \tilde{Y}_1 \wedge \cdots \wedge \tilde{Y}_{j-1} \wedge \tilde{Y}_{j+1} \wedge \cdots \wedge \tilde{Y}_q
\]
in this case the proof of the theorem is in the same way like in the classical case see [3]. For achieving the proof, we consider the fact that
\[
[\tilde{P}, \tilde{Q}]_S(f_1^A, f_2^A, ..., f_{p+q-1}^A) = [P, Q]_S(f_1, f_2, ..., f_{p+q-1})
\]
for any $f_1, f_2, ..., f_{p+q-1} \in C^\infty(M)$.

Theorem 13. Endowed with Schouten-Nijenhuis bracket $\mathfrak{X}^r(M^A)$ is a Lie graded algebra over A and its graded Jacobi identity is given by:
\[
(-1)^{(p-1)(r+q)}[P, [Q, R]_S]_S + (-1)^{(q-1)(p-1)}[Q, [R, P]_S]_S + (-1)^{(r-1)(q-1)}[R, [P, Q]_S]_S = 0
\]
for any $P \in \mathfrak{X}^p(M^A)$, $Q \in \mathfrak{X}^q(M^A)$, $R \in \mathfrak{X}^r(M^A)$ considered as p,q and r-derivations from $C^\infty(M)$ into $C^\infty(M^A, A)$, respectively.

Proof. The proof of graded Jacobi identity is made in the same way like in the proof of the theorem 12.

Proposition 14. If X_1, \cdots, X_p are vector fields on M and $P \in \mathfrak{X}^p(M)$, $Q \in \mathfrak{X}^q(M)$, then we have:
1. \(X_1^A \wedge \cdots \wedge X_p^A = (X_1 \wedge \cdots \wedge X_p)^A\).
2. \(P^A + Q^A = (P + Q)^A\), if \(p = q\).
3. \(P^A \wedge Q^A = (P \wedge Q)^A\).
4. \([P^A, Q^A]_S = [P, Q]_S^A\).

Proof.

1. For any \(f_1, \ldots, f_q \in C^\infty(M)\), we have:

\[
(X_1 \wedge \cdots \wedge X_p)(f_1, \ldots, f_p) = \sum_{\sigma \in S_p} \varepsilon(\sigma)X_1^A(f_{\sigma(1)}) \cdots X_p^A(f_{\sigma(q)}) = \sum_{\sigma \in S_p} \varepsilon(\sigma)(X_1(f_{\sigma(1)})) \cdots (X_p(f_{\sigma(p)}))^A
\]

hence

\(X_1^A \wedge \cdots \wedge X_p^A = (X_1 \wedge \cdots \wedge X_p)^A\).

2. For any \(f_1, \ldots, f_q \in C^\infty(M)\), we have:

\[
(P^A + Q)(f_1, \ldots, f_p) = P^A(f_1, \ldots, f_p) + Q^A(f_1, \ldots, f_p)
= (P(f_1, \ldots, f_p))^A + (Q(f_1, \ldots, f_p))^A
= (P(f_1, \ldots, f_p) + Q(f_1, \ldots, f_p))^A
= [(P + Q)(f_1, \ldots, f_p)]^A = (P + Q)^A(f_1, \ldots, f_p),
\]

so that

\(P^A + Q^A = (P + Q)^A\).

3. Let us take \(P = X_1 \wedge \cdots \wedge X_p\) and \(Q = Y_1 \wedge \cdots \wedge Y_q\). Then, we have:

\[
P^A \wedge Q^A = (X_1 \wedge \cdots \wedge X_p)^A \wedge (Y_1 \wedge \cdots \wedge Y_p)^A
= X_1^A \wedge \cdots \wedge X_p^A \wedge Y_1^A \wedge \cdots \wedge Y_p^A
= (X_1 \wedge \cdots \wedge X_p \wedge Y_1 \wedge \cdots \wedge Y_q)^A
= (P \wedge Q)^A;
\]

4. For any \(f_1, \ldots, f_{p+q-1} \in C^\infty(M)\), we have:

\[
[P^A, Q^A]_S(f_1, \ldots, f_{p+q-1}) = \sum_{\sigma \in \Theta_{p+q-1}} \varepsilon(\sigma)P^A(Q^A(f_{\sigma(1)}, \ldots, f_{\sigma(q)}), f_{\sigma(q+1)}, \ldots, f_{\sigma(p+q-1)})
- (-1)^{(p-1)(q-1)} \sum_{\sigma \in \Theta_{p+q-1}} \varepsilon(\sigma)Q^A(P^A(f_{\sigma(1)}, \ldots, f_{\sigma(p)}), f_{\sigma(p+1)}, \ldots, f_{\sigma(p+q-1)})

= \sum_{\sigma \in \Theta_{p+q-1}} \varepsilon(\sigma)P^A(Q(f_{\sigma(1)}, \ldots, f_{\sigma(q)}), f_{\sigma(q+1)}, \ldots, f_{\sigma(p+q-1)})
- (-1)^{(p-1)(q-1)} \sum_{\sigma \in \Theta_{p+q-1}} \varepsilon(\sigma)Q^A(P(f_{\sigma(1)}, \ldots, f_{\sigma(p)}), f_{\sigma(p+1)}, \ldots, f_{\sigma(p+q-1)})
\]

\[
=[P, Q]_S^A(f_1, \ldots, f_{p+q-1})
=[P, Q]_S^A(f_1, \ldots, f_{p+q-1}).
\]
hence
\[[P^A, Q^A]_S = [P, Q]^A_S. \]

We presently are going to establish the relation between a \(q \)-multivector field and a \(q \)-form on \(M^A \) through the following result.

Theorem 15. Let \(\mathfrak{X}^q(M^A) \) be the set of all multivector fields on \(M^A \) of degree \(q \) considered as \(q \)-derivation from \(C^\infty(M) \) into \(C^\infty(M^A, A) \) and \(\Omega^q_{alt}(\Omega(M^A, A)) \), the \(C^\infty(M^A, A) \)-module of skew-symmetric multilinear forms of degree \(q \) on \(\Omega(M^A, A) \). Then the map
\[\Theta : \mathfrak{X}^q(M^A) \to \Omega^q_{alt}(\Omega(M^A, A), C^\infty(M^A, A)) \]
such that
\[(\Theta(Q)\varpi_1, \cdots, \varpi_q) = \widetilde{Q}(\varpi_1, \cdots, \varpi_q), \]
for any \(\xi \in M^A \), \(Q \in \mathfrak{X}^q(M^A) \) and \(\varpi_1, \cdots, \varpi_q \in \Omega(M^A, A) \) is an isomorphism of \(C^\infty(M^A, A) \)-modules.

Theorem 16. Let \(Q \) be a multivector field of degree \(q \) on \(M \). Then there exists an unique multivector field of degree \(q \) on \(M^A \)
\[Q^A : \Omega(M^A, A) \times \cdots \times \Omega(M^A, A) \to C^\infty(M^A, A) \]
such that
\[Q^A(a_1 \varpi_1^A, \cdots, a_q \varpi_q^A) = a_1 \times \cdots \times a_q [Q(\varpi_1, \cdots, \varpi_q)]^A \]
for any \(a_1, \cdots, a_q \in A \) and \(\varpi_1, \cdots, \varpi_q \in \Omega(M) \).

References

