q-Multivector fields and q-forms on Weil bundles

Olivier MABIALA MIKANOU ${ }^{1}$, Borhen Vann NKOU 2, Basile Guy Richard BOSSOTO ${ }^{34}$

Abstract

Let M be a paracompact smooth manifold of dimension n, A a Weil algebra and M^{A} the associated Weil bundle. In this paper, we define the Schouten-Nijenhuis bracket on the $C^{\infty}\left(M^{A}, A\right)$-module $\mathfrak{X}^{*}\left(M^{A}\right)$ of multivector fields on M^{A} considered as multi-derivations from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$ and we show that the exterior algebra $\mathfrak{X}^{*}\left(M^{A}\right)$ of multivector fields on M^{A} is a Lie graded algebra over A. To finish, we estabish an isomorphism between $\mathfrak{X}^{q}\left(M^{A}\right)$ and the $C^{\infty}\left(M^{A}, A\right)$-module $\mathcal{L}_{\text {alt }}^{q}\left(\Omega\left(M^{A}, A\right), C^{\infty}\left(M^{A}, A\right)\right)$ of skew-symmetric multilinear forms of degree q onto the $C^{\infty}\left(M^{A}, A\right)$-module $\Omega\left(M^{A}, A\right)$ of differential A-forms on M^{A}.

Mathematics Subject Classification: 58A20, 58A32.
Key words: Weil bundle, Weil algebra, Multivector fields, Schouten-Nijenhuis bracket.

1 Introduction

A local algebra in the sense of André Weil or simply a Weil algebra is a real commutative algebra A with unit of finite dimension admitting an unique maximal ideal \mathfrak{m} of codimension 1 over $\mathbb{R}[7]$.
If M is a smooth manifold, $C^{\infty}(M)$ the algebra of smooth functions on M and A a Weil algebra, then we call an infinitely near point to $x \in M$ of kind A a homomorphism of algebras

$$
\xi: C^{\infty}(M) \longrightarrow A
$$

such that $[\xi(f)-f(x)] \in \mathfrak{m}$ for any $f \in C^{\infty}(M)$.
We denote M_{x}^{A} the set of all infinitely near points to x of kind A and

$$
M^{A}=\bigcup_{x \in M} M_{x}^{A}
$$

the set M^{A} is a smooth manifold of dimension $\operatorname{dim} M \times \operatorname{dim} A$ called manifold of infinitely near points [6].
Hence $\left(M^{A}, \pi_{M}, M\right)$ defines a bundle of infinitely near points or simply a Weil bundle. If (U, φ) is a local chart of M with coordinate functions $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, the application

$$
U^{A} \longrightarrow A^{n}, \xi \longmapsto\left(\xi\left(x_{1}\right), \xi\left(x_{2}\right), \ldots, \xi\left(x_{n}\right)\right),
$$

is a bijection from U^{A} into an open of A^{n}. The manifold M^{A} is a smooth manifold modeled over A^{n}, that is to say an A-manifold of dimension n.
The set, $C^{\infty}\left(M^{A}, A\right)$ of smooth functions on M^{A} with value in A is a commutative, unitary A algebra. When one identitifies \mathbb{R}^{A} with A, for $f \in C^{\infty}(M)$, the application

$$
f^{A}: M^{A} \longrightarrow A, \xi \longmapsto \xi(f)
$$

[^0]is smooth. Moreover the application
$$
C^{\infty}(M) \longrightarrow C^{\infty}\left(M^{A}, A\right), f \longmapsto f^{A}
$$
is an injective homomorphism of algebras and we have:
$$
(f+g)^{A}=f^{A}+g^{A} ;(\lambda \cdot f)^{A}=\lambda \cdot f^{A} ;(f \cdot g)^{A}=f^{A} \cdot g^{A}
$$
with $\lambda \in \mathbb{R}, f$ and g belongs to $C^{\infty}(M)$.
When $\left(a_{\alpha}\right)_{\alpha=1,2, \ldots, \operatorname{dim}(A)}$ is a basis of A and when $\left(a_{\alpha}^{*}\right)_{\alpha=1,2, \ldots, \operatorname{dim}(A)}$ is a dual basis of the basis $\left(a_{\alpha}\right)_{\alpha=1,2, \ldots, \operatorname{dim}(A)}$, the application
\[

$$
\begin{equation*}
\sigma: C^{\infty}\left(M^{A}, A\right) \longrightarrow A \otimes C^{\infty}\left(M^{A}\right), \varphi \longmapsto \sum_{\alpha=1}^{\operatorname{dim} A} a_{\alpha} \otimes a_{\alpha}^{*} \circ \varphi \tag{1}
\end{equation*}
$$

\]

is an isomorphism of A-algebras. That isomorphism does not depend of a choisen basis and the application

$$
\begin{equation*}
\gamma: C^{\infty}(M) \longrightarrow A \otimes C^{\infty}\left(M^{A}\right), f \longmapsto \sigma\left(f^{A}\right) \tag{2}
\end{equation*}
$$

is a homomorphism of algebras.
A vector field X on M^{A} can be considered as a derivation from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$ i.e a linear application which verifies

$$
X(f g)=X(f) \cdot g^{A}+f^{A} \cdot X(g)
$$

for any $f, g \in C^{\infty}(M)$.
For any vector field X on M^{A}, considered as derivation from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$, there exists one and only one derivation

$$
\widetilde{X}: C^{\infty}\left(M^{A}, A\right) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

such that:

1. \widetilde{X} is A-linear;
2. $\widetilde{X}\left[C^{\infty}\left(M^{A}\right)\right] \subset C^{\infty}\left(M^{A}\right) ;$
3. $\widetilde{X}\left(f^{A}\right)=X(f)$ for any $f \in C^{\infty}(M)$.

The set $\mathfrak{X}\left(M^{A}\right)$ of all vector fields on M^{A} is a $C^{\infty}\left(M^{A}, A\right)$-module and the application

$$
[X, Y]=\widetilde{X} \circ Y-\tilde{Y} \circ X: C^{\infty}(M) \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

defines the structure of a Lie algebra over A [1], [?].
If $\theta: C^{\infty}(M) \longrightarrow C^{\infty}(M)$ is a vector field on M, then the application

$$
\theta^{A}: C^{\infty}(M) \longrightarrow C^{\infty}\left(M^{A}, A\right), f \longmapsto[\theta(f)]^{A}
$$

is a vector field on M^{A}. We say that the vector field θ^{A} is the prolongation to M^{A} of the vector field θ. Then, for any $f \in C^{\infty}(M)$ we have:

$$
\begin{aligned}
\left(\theta_{1}+\theta_{2}\right)^{A} & =\theta_{1}^{A}+\theta_{2}^{A} ; \quad(f \cdot \theta)^{A}=f^{A} \cdot \theta^{A} \\
(\widetilde{f \cdot \theta})^{A} & =f^{A} \cdot \widetilde{\theta^{A}} ; \quad\left[\theta_{1}^{A}, \theta_{2}^{A}\right]=\left[\theta_{1}, \theta_{2}\right]^{A}
\end{aligned}
$$

The goal of this work, is to define the Schouten-Nijenhuis bracket on the $C^{\infty}\left(M^{A}, A\right)$-module $\mathfrak{X}^{*}\left(M^{A}\right)$ of multivector fields on M^{A} considered as multi-derivations [4] from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$ and to show that exterior algebra $\mathfrak{X}^{*}\left(M^{A}\right)$ of multivector fields on M^{A} is a Lie graded algebra over A. And to finish, we have to estabish an isomorphism between $\mathfrak{X}^{q}\left(M^{A}\right)$ and the $C^{\infty}\left(M^{A}, A\right)$-module $\mathfrak{L}_{\text {alt }}^{q}\left(\Omega\left(M^{A}, A\right), C^{\infty}\left(M^{A}, A\right)\right)$ of skew-symmetric multilinear forms of degree q onto the $C^{\infty}\left(M^{A}, A\right)$ module $\Omega\left(M^{A}, A\right)$ of differential A-forms on M^{A}.

$2 \quad q$-Multivector fields and q-forms on M^{A}

We denote $\mathfrak{X}^{1}\left(M^{A}\right)=\mathfrak{X}\left(M^{A}\right)$, the set of all vector fields on M^{A} i.e the set of smooth sections of tangent bundle $\left(T M^{A}, \pi_{M^{A}}, M^{A}\right)$. More generally, one denotes, for $2 \leq q \leq m=\operatorname{dim} M^{A}, \mathfrak{X}^{q}\left(M^{A}\right)$ the set of multivector fields of degree q (or q-multivector fields $[2],[3],[5])$ on M^{A}, i.e the set of smooth sections of vector bundle $\left(\Lambda^{q} T M^{A}, \pi_{M^{A}}, M^{A}\right)$.
For any $\xi \in M^{A}, T_{\xi} M^{A}$ is an A-module [6]. In this section, we show that, a q-multivector field on M^{A} is a q-derivation [4].

2.1 The $C^{\infty}\left(M^{A}\right)$-module of q-multivector fields and of q-forms on M^{A}

Let $\pi_{M}: M^{A} \longrightarrow M$ be map the which assigns any infinitely near point ξ of M^{A} to its origin $x \in M$, and U be an open neighborhood of M with coordinate system $\left\{x_{1}, \ldots, x_{n}\right\}$. Hence $\left\{x_{i, \alpha} / i=1, \ldots, n ; \alpha=\right.$ $1, \ldots, \operatorname{dim} A=r\}$ is coordinate system of $\pi_{M}^{-1}(U)$ where $x_{i \alpha}: \pi_{M}^{-1}(U) \longrightarrow \mathbb{R}, \xi \longmapsto x_{i, \alpha}(\xi)$ is such that

$$
\xi\left(x_{i}\right)=\sum_{\alpha} x_{i \alpha}(\xi) a_{\alpha}
$$

for any $x_{i} \in C^{\infty}(M), \forall i=1, \ldots, n$.
Lemma 1. [6] Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a coordinate system on some neighborhood of M. Then we have

$$
a_{\alpha}\left(\frac{\partial}{\partial x_{i}}\right)^{A}=\frac{\partial}{\partial x_{i \alpha}}
$$

for any $i=1, \ldots, n ; \alpha=1, \ldots, r$.

Lemma 2. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a coordinate system on some neighborhood of M. Then we have

$$
a_{\alpha}^{*} \circ\left(d x_{i}\right)^{A}=d x_{i \alpha}
$$

for any $i=1, \ldots, n ; \alpha=1, \ldots, r$.
Proof. We have, on one hand:

$$
\begin{aligned}
a_{\alpha}^{*}\left[\left(d x_{i}\right)^{A}\left[\left(\frac{\partial}{\partial x_{j}}\right)^{A}\right]\right] & =a_{\alpha}^{*}\left(d x_{i}\left(\frac{\partial}{\partial x_{j}}\right)\right)^{A} \\
& =a_{\alpha}^{*}\left(\left(\delta_{i j}\right)^{A}\right)=a_{\alpha}^{*}\left(\delta_{i j}\right)
\end{aligned}
$$

On the other hand, we have:

$$
\begin{aligned}
d x_{i \alpha}\left[\left(\frac{\partial}{\partial x_{j}}\right)^{A}\right] & =\left(\frac{\partial}{\partial x_{i}}\right)^{A}\left(x_{i \alpha}\right) \\
& =\left(\frac{\partial}{\partial x_{i}}\right)^{A}\left(a_{\alpha}^{*} \circ x_{i}^{A}\right) \\
& =a_{\alpha}^{*}\left[\left(\frac{\partial}{\partial x_{j}}\right)^{A}\right]\left(x_{i}^{A}\right) \\
& =a_{\alpha}^{*}\left[\left(\frac{\partial x_{i}}{\partial x_{j}}\right)^{A}\right]=a_{\alpha}^{*}\left(\delta_{i j}\right)
\end{aligned}
$$

Hence we get

$$
a_{\alpha}^{*} \circ\left(d x_{i}\right)^{A}=d x_{i \alpha},
$$

what ends the proof.

In the coordinate system $\left\{x_{i \alpha} / i=1, \ldots, n ; \alpha=1, \ldots, r\right\}$ a q-multivector field $Q \in \mathfrak{X}^{q}\left(M^{A}\right)$ is written

$$
Q=\sum_{1 \leq i_{1}<\ldots<i_{q} \leq n} \sum_{1 \leq \alpha_{1}<\ldots<\alpha_{q} \leq r} Q_{i_{1} \ldots i_{q} \alpha_{1} \ldots \alpha_{q}} \frac{\partial}{\partial x_{i_{1} \alpha_{1}}} \wedge \ldots \wedge \frac{\partial}{\partial x_{i_{q} \alpha_{q}}}
$$

where $Q_{i_{1} \ldots i_{q} \alpha_{1} \ldots \alpha_{q}} \in C^{\infty}\left(M^{A}\right)$. It follows that $\mathfrak{X}^{q}\left(M^{A}\right)$ is a $C^{\infty}\left(M^{A}\right)$-module of q-vector fields on M^{A}. We denote

$$
\mathfrak{X}^{*}\left(M^{A}\right)=C^{\infty}\left(M^{A}\right) \oplus \mathfrak{X}^{1}\left(M^{A}\right) \oplus \ldots \oplus \mathfrak{X}^{m}\left(M^{A}\right)
$$

the exterior algebra of $C^{\infty}\left(M^{A}\right)$-module of multivector fields.
In the other respects, for $1 \leq q \leq m, \Omega^{q}\left(M^{A}\right)$ denotes the space of differential q-forms on M^{A}. In the coordinate system $\left\{x_{i \alpha} / i=1, \ldots, n ; \alpha=1, \ldots, r\right\}$ a differential q-form $\varpi \in \Omega^{q}\left(M^{A}\right)$ is written

$$
\varpi=\sum_{1 \leq i_{1}<\ldots<i_{q} \leq n} \sum_{1 \leq \alpha_{1}<\ldots<\alpha_{q} \leq r} \varpi_{i_{1} \ldots i_{q} \alpha_{1} \ldots \alpha_{q}} d x_{i_{1} \alpha_{1}} \wedge \ldots \wedge d x_{i_{q} \alpha_{q}}
$$

where $\varpi_{i_{1} \ldots i_{q}, \alpha_{1} \ldots \alpha_{q}} \in C^{\infty}\left(M^{A}\right)$. Thus $\Omega^{q}\left(M^{A}\right)$ is a $C^{\infty}\left(M^{A}\right)$-module of differentiable q-forms on M^{A} and

$$
\Omega^{*}\left(M^{A}\right)=C^{\infty}\left(M^{A}\right) \oplus \Omega^{1}\left(M^{A}\right) \oplus \Omega^{2}\left(M^{A}\right) \oplus \ldots \oplus \Omega^{m}\left(M^{A}\right)
$$

denotes exterior algebra of $C^{\infty}\left(M^{A}\right)$-module multilinear forms.
Proposition 3. If Q is a q-multivector field on M^{A} then Q is a q-derivation from $C^{\infty}\left(M^{A}\right)$ into $C^{\infty}\left(M^{A}\right)$.

Theorem 4. Let $\mathfrak{X}^{q}\left(M^{A}\right)$ be the $C^{\infty}\left(M^{A}\right)$-module of q-multivector fields on M^{A} and $D^{q}\left(C^{\infty}\left(M^{A}\right)\right)$ be the $C^{\infty}\left(M^{A}\right)$-module of q-derivations from $C^{\infty}\left(M^{A}\right)$ into $C^{\infty}\left(M^{A}\right)$. Then the map

$$
\Phi: \mathfrak{X}^{q}\left(M^{A}\right) \longrightarrow \mathcal{D}^{q}\left(C^{\infty}\left(M^{A}\right)\right), Q \longmapsto \Phi_{Q}
$$

where

$$
\Phi_{Q}: \overbrace{C^{\infty}\left(M^{A}\right) \times \cdots \times C^{\infty}\left(M^{A}\right)}^{q} \longrightarrow C^{\infty}\left(M^{A}\right),\left[\Phi_{Q}\left(f_{1}, f_{2}, \ldots, f_{q}\right)\right](\xi)=Q(\xi)\left(f_{1}, f_{2}, \ldots, f_{q}\right)
$$

is defined by

$$
\left[\Phi_{Q}\left(f_{1}, f_{2}, \ldots, f_{q}\right)\right](\xi)=Q(\xi)\left(f_{1}, f_{2}, \ldots, f_{q}\right)
$$

for any $f_{1}, f_{2}, \ldots, f_{q} \in C^{\infty}\left(M^{A}\right)$ and $\xi \in M^{A}$, is an isomorphism of $C^{\infty}\left(M^{A}\right)$-modules.

2.2 The $C^{\infty}\left(M^{A}, A\right)$-module of q-multivector fields and of q-forms on M^{A}

Let U be an open neighborhood of M with coordinate system $\left\{x_{1}, \ldots, x_{n}\right\}$.
Then, $\left\{\left(\frac{\partial}{\partial x_{1}}\right)_{\mid \xi}^{A}, \ldots,\left(\frac{\partial}{\partial x_{n}}\right)_{\mid \xi}^{A}\right\}$ is a free A-basis of $T_{\xi} M^{A}$ see [6]. Then, a q-multivector field Q on M^{A} is written:

$$
Q=\sum_{1 \leq i_{1}<\ldots<i_{q} \leq n} Q_{i_{1} \ldots i_{q}}\left(\frac{\partial}{\partial x_{i_{1}}}\right)^{A} \wedge \ldots \wedge\left(\frac{\partial}{\partial x_{i_{q}}}\right)^{A}
$$

where $Q_{i_{1} \ldots i_{q}} \in C^{\infty}\left(U^{A}, A\right)$.
In this case $\mathfrak{X}^{q}\left(M^{A}\right)$ is a $C^{\infty}\left(M^{A}, A\right)$-module of q-multivector fields. Hence

$$
\mathfrak{X}^{*}\left(M^{A}\right)=C^{\infty}\left(M^{A}, A\right) \oplus \mathfrak{X}^{1}\left(M^{A}\right) \oplus \ldots \oplus \mathfrak{X}^{n}\left(M^{A}\right)
$$

denotes the exterior algebra of $C^{\infty}\left(M^{A}, A\right)$-module of multivector field on M^{A}.
In the other respects, for $1 \leq q \leq n, \Omega^{q}\left(M^{A}, A\right)$ denotes the space of differential A-forms of degree q on M^{A} see[1]. Any differential A-form [1] of degree q on M^{A} is written

$$
\varpi=\sum_{1 \leq i_{1}<\ldots<i_{q} \leq n} \varpi_{i_{1} \ldots i_{q}}\left(d x_{i_{1}}\right)^{A} \wedge \ldots \wedge\left(d x_{i_{q}}\right)^{A}
$$

for any $\varpi_{i_{1} \ldots i_{q}} \in C^{\infty}\left(U^{A}, A\right)$. Then, $\Omega^{q}\left(M^{A}, A\right)$ is a $C^{\infty}\left(M^{A}, A\right)$-module of differentiable A-forms of degree q on M^{A}.
We denote

$$
\Omega^{*}\left(M^{A}, A\right)=C^{\infty}\left(M^{A}, A\right) \oplus \Omega^{1}\left(M^{A}, A\right) \oplus \Omega^{2}\left(M^{A}, A\right) \oplus \ldots \oplus \Omega^{n}\left(M^{A}, A\right)
$$

the exterior algebra of $C^{\infty}\left(M^{A}, A\right)$-module of differentiable multilinear A-forms on M^{A}.
Proposition 5. If Q is a q-multivector field on M^{A} then Q is a q-derivation from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$.

Proposition 6. If Q is a q-vector field on M then the map

$$
Q^{A}: \overbrace{C^{\infty}(M) \times \cdots \times C^{\infty}(M)}^{q} \longrightarrow C^{\infty}\left(M^{A}, A\right),\left(f_{1}, \quad \ldots, \quad f_{q}\right) \longrightarrow\left[\begin{array}{lll}
Q\left(f_{1},\right. & \ldots, & \left.f_{q}\right)
\end{array}\right]^{A}
$$

is a q-derivation from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$.
Theorem 7. Let $\mathfrak{X}^{q}\left(M^{A}\right)$ be the $C^{\infty}\left(M^{A}, A\right)$-module of q-vector fields on M^{A} and $D^{q}\left(C^{\infty}(M), C^{\infty}\left(M^{A}, A\right)\right)$ be the $C^{\infty}\left(M^{A}, A\right)$-module of q-derivations from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$. The map

$$
\Theta: \mathfrak{X}^{q}\left(M^{A}\right) \longrightarrow \mathcal{D}^{q}\left(C^{\infty}(M), C^{\infty}\left(M^{A}, A\right)\right), Q \longmapsto \Theta_{Q}
$$

where

$$
\Theta_{Q}: \overbrace{C^{\infty}(M) \times \cdots \times C^{\infty}(M)}^{q} \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

is defined by

$$
\left[\Theta_{Q}\left(f_{1}, f_{2}, \ldots, f_{q}\right)\right](\xi)=Q(\xi)\left(f_{1}, f_{2}, \ldots, f_{q}\right)
$$

for any $f_{1}, f_{2}, \ldots, f_{q} \in C^{\infty}(M)$ and $\xi \in M^{A}$; is an isomorphism of $C^{\infty}\left(M^{A}, A\right)$-modules.
We now define two q-multilinear applications σ_{q} and γ_{q} as follows:

$$
\sigma_{q}: \overbrace{C^{\infty}\left(M^{A}, A\right) \times \ldots \times C^{\infty}\left(M^{A}, A\right)}^{q} \longrightarrow A \otimes C^{\infty}\left(M^{A}\right),\left(\varphi_{1}, \ldots, \varphi_{q}\right) \longmapsto \sum_{\alpha} a_{\alpha} \otimes a_{\alpha}^{*}\left(\varphi_{1} \times \ldots \times \varphi_{q}\right)
$$

and

$$
\gamma_{q}: \overbrace{C^{\infty}(M) \times \ldots \times C^{\infty}(M)}^{q} \longrightarrow A \otimes C^{\infty}\left(M^{A}\right),\left(f_{1}, \ldots, f_{q}\right) \longmapsto \sigma_{q}\left(f_{1}^{A}, \ldots, f_{q}^{A}\right)
$$

For $q=1$, we have $\sigma_{1}=\sigma$ and $\gamma_{1}=\gamma$.
Theorem 8. Let Q be a multivector field on M^{A} considered as q-derivation from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$ then there exists an unique q derivation:

$$
\begin{equation*}
\widetilde{Q}: \overbrace{C^{\infty}\left(M^{A}, A\right) \times \ldots \times C^{\infty}\left(M^{A}, A\right)}^{q} \longrightarrow C^{\infty}\left(M^{A}, A\right) \tag{3}
\end{equation*}
$$

such that

1. Q be A-multilinear;
2. $\widetilde{Q}\left[C^{\infty}\left(M^{A}\right) \times \ldots \times C^{\infty}\left(M^{A}\right)\right] \subset C^{\infty}\left(M^{A}\right)$;
3. $\widetilde{Q}\left(f_{1}^{A}, f_{2}^{A}, \ldots, f_{q}^{A}\right)=Q\left(f_{1}, f_{2}, \ldots, f_{q}\right)$, for any $\left.f_{1}, f_{2}, \ldots, f_{q}\right) \in C^{\infty}(M)$.

Proof. If Q is a multivector field on M^{A} considered as q-derivation from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$ and if

$$
\bar{Q}: C^{\infty}\left(M^{A}\right) \longrightarrow C^{\infty}\left(M^{A}\right)
$$

is an unique derivation such that

$$
\sigma^{-1} \circ\left(i d_{A} \otimes \bar{Q}\right) \circ \gamma_{q}=Q
$$

then the map

$$
\widetilde{Q}=\sigma^{-1} \circ\left(i d_{A} \otimes \bar{Q}\right) \circ \sigma_{q}: \overbrace{C^{\infty}\left(M^{A}, A\right) \times \ldots \times C^{\infty}\left(M^{A}, A\right)}^{q} \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

answers to the question.
Proposition 9. If $\mu: A \longrightarrow A$ is an endomorphism and Q is a multivector field on M^{A} considered as q-derivation from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$, then

$$
\begin{equation*}
\widetilde{Q}\left(\mu \circ f_{1}^{A}, \mu \circ f_{2}^{A}, \ldots, \mu \circ f_{q}^{A}\right)=\mu \circ Q\left(f_{1}, f_{2}, \ldots, f_{q}\right) \tag{4}
\end{equation*}
$$

for any $\left.f_{1}, f_{2}, \ldots, f_{q}\right) \in C^{\infty}(M)$.
Proof. From $\widetilde{Q}\left(f_{1}^{A}, f_{2}^{A}, \ldots, f_{q}^{A}\right)=Q\left(f_{1}, f_{2}, \ldots, f_{q}\right)$, we have

$$
\widetilde{Q}\left[\sum_{\alpha=1}^{r}\left(a_{\alpha}^{*} \circ f_{1}^{A}, a_{\alpha}^{*} \circ f_{2}^{A}, \ldots, a_{\alpha}^{*} \circ f_{q}^{A}\right) \cdot a_{\alpha}\right]=\sum_{\alpha=1}^{r} a_{\alpha}^{*} \circ Q\left(f_{1}, f_{2}, \ldots, f_{q}\right) \cdot a_{\alpha}
$$

that implies

$$
\sum_{\alpha=1}^{r} \widetilde{Q}\left(a_{\alpha}^{*} \circ f_{1}^{A}, a_{\alpha}^{*} \circ f_{2}^{A}, \ldots, a_{\alpha}^{*} \circ f_{q}^{A}\right) \cdot a_{\alpha}=\sum_{\alpha=1}^{r} a_{\alpha}^{*} \circ Q\left(f_{1}, f_{2}, \ldots, f_{q}\right) \cdot a_{\alpha} .
$$

Hence $\widetilde{Q}\left(a_{\alpha}^{*} \circ f_{1}^{A}, a_{\alpha}^{*} \circ f_{2}^{A}, \ldots, a_{\alpha}^{*} \circ f_{q}^{A}\right)=a_{\alpha}^{*} \circ Q\left(f_{1}, f_{2}, \ldots, f_{q}\right)$ for all $\left(a_{\alpha}^{*}\right)_{\alpha=1, \ldots, r}$. Since

$$
\left(\mu \circ f_{1}^{A}, \mu \circ f_{2}^{A}, \ldots, \mu \circ f_{q}^{A}\right)=\sum_{\alpha=1}^{r}\left(a_{\alpha}^{*} \circ f_{1}^{A}, a_{\alpha}^{*} \circ f_{2}^{A}, \ldots, a_{\alpha}^{*} \circ f_{q}^{A}\right) \cdot \mu\left(a_{\alpha}\right)
$$

it follows that

$$
\begin{aligned}
\widetilde{Q}\left(\mu \circ f_{1}^{A}, \mu \circ f_{2}^{A}, \ldots, \mu \circ f_{q}^{A}\right) & =\sum_{\alpha=1}^{r} \widetilde{Q}\left(a_{\alpha}^{*} \circ f_{1}^{A}, a_{\alpha}^{*} \circ f_{2}^{A}, \ldots, a_{\alpha}^{*} \circ f_{q}^{A}\right) \cdot \mu\left(a_{\alpha}\right) \\
& =\sum_{\alpha=1}^{r} a_{\alpha}^{*} \circ Q\left(f_{1}, f_{2}, \ldots, f_{q}\right) \cdot \mu\left(a_{\alpha}\right) \\
& =\mu \circ Q\left(f_{1}, f_{2}, \ldots, f_{q}\right)
\end{aligned}
$$

therefore we have the result.

2.3 Schouten-Nijenhuis bracket on $C^{\infty}\left(M^{A}, A\right)$-module $\mathfrak{X}^{q}\left(M^{A}\right)$

Let $\mathfrak{X}^{q}\left(M^{A}\right)$ be the set of q-multivector fields on M^{A} considered as q-derivations from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$, we define the Schouten-Nijenhuis bracket (see [2],[5]) as follows:

Theorem 10. If P and Q are both multivector fields on M^{A} of degree p and q, respectively, considered as p-derivation and q-derivation from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$, respectively. Then, the bracket of P and Q defined by:

$$
\begin{aligned}
{[P, Q]_{S}\left(f_{1}, f_{2} \ldots, f_{p+q-1}\right)=} & \sum_{\sigma \in \mathfrak{S}_{q, p-1}} \varepsilon(\sigma) \widetilde{P}\left(Q\left(f_{\sigma(1)}, \ldots, f_{\sigma(q)}\right), f_{\sigma(q+1)}^{A}, \ldots, f_{\sigma(p+q-1)}^{A}\right) \\
& -(-1)^{(p-1)(q-1)} \sum_{\sigma \in \mathfrak{S}_{p, q-1}} \varepsilon(\sigma) \widetilde{Q}\left(P\left(f_{\sigma(1)}, \ldots, f_{\sigma(p)}\right), f_{\sigma(p+1)}^{A}, \ldots, f_{\sigma(p+q-1)}^{A}\right)
\end{aligned}
$$

for any $f_{1}, f_{2} \ldots, f_{p+q-1} \in C^{\infty}(M)$, is a multivector field on M^{A} of degree $p+q-1$.
Proposition 11. If P and Q both are p and q-multivector fields on M^{A} considered as p and q-derivations, respectively from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$, and if $\varphi \in C^{\infty}\left(M^{A}, A\right)$, then we have:

1. $[\widetilde{P}, \widetilde{Q}]_{S}=\widetilde{[P, Q]_{S}}$.
2. $\widetilde{\varphi \cdot P}=\varphi \cdot \widetilde{P}$.
3. $\widetilde{P \wedge Q}=\widetilde{P} \wedge \widetilde{Q}$.

Proof. 1. For any $f_{1}, f_{2} \ldots, f_{p+q-1} \in C^{\infty}(M)$, we have

$$
\begin{aligned}
& {[\widetilde{P}, \widetilde{Q}]_{S}\left(f_{1}^{A}, f_{2}^{A} \ldots, f_{p+q-1}^{A}\right) } \\
= & \sum_{\sigma \in \mathfrak{S}_{q, p-1}} \varepsilon(\sigma) \widetilde{P}\left(\widetilde{Q}\left(f_{\sigma(1)}^{A}, \ldots, f_{\sigma(q)}^{A}\right), f_{\sigma(q+1)}^{A}, \ldots, f_{\sigma(p+q-1)}^{A}\right) \\
& -(-1)^{(p-1)(q-1)} \sum_{\sigma \in \mathfrak{S}_{p, q-1}} \varepsilon(\sigma) \widetilde{Q}\left(\widetilde{P}\left(f_{\sigma(1)}^{A}, \ldots, f_{\sigma(p)}^{A}\right), f_{\sigma(p+1)}^{A}, \ldots, f_{\sigma(p+q-1)}^{A}\right) \\
= & \sum_{\sigma \in \mathfrak{S}_{q, p-1}} \varepsilon(\sigma) \widetilde{P}\left(Q\left(f_{\sigma(1)}, \ldots, f_{\sigma(q)}\right), f_{\sigma(q+1)}^{A}, \ldots, f_{\sigma(p+q-1)}^{A}\right) \\
& -(-1)^{(p-1)(q-1)} \sum_{\sigma \in \mathfrak{S}_{p, q-1}} \varepsilon(\sigma) \widetilde{Q}\left(P\left(f_{\sigma(1)}, \ldots, f_{\sigma(p)}\right), f_{\sigma(p+1)}^{A}, \ldots, f_{\sigma(p+q-1)}^{A}\right) \\
= & {[P, Q]_{S}\left(f_{1}, f_{2} \ldots, f_{p+q-1}\right) . }
\end{aligned}
$$

Since $\left[\widetilde{P, Q]_{S}}\right.$ is the unique $p+q-1$-derivation from $C^{\infty}\left(M^{A}, A\right)$ into $C^{\infty}\left(M^{A}, A\right)$ such that

$$
\left[\widetilde{P, Q]_{S}}\left(f_{1}^{A}, f_{2}^{A} \ldots, f_{p+q-1}^{A}\right)=[P, Q]_{S}\left(f_{1}, f_{2} \ldots, f_{p+q-1}\right)\right.
$$

for any $f_{1}, f_{2} \ldots, f_{p+q-1} \in C^{\infty}(M)$, hence we have

$$
[\widetilde{P}, \widetilde{Q}]_{S}=\left[\widetilde{P, Q]_{S}}\right.
$$

2. We have

$$
(\varphi \cdot \widetilde{P})\left(f_{1}^{A}, f_{2}^{A} \ldots, f_{p}^{A}\right)=\varphi \cdot \widetilde{P}\left(f_{1}^{A}, f_{2}^{A} \ldots, f_{p}^{A}\right)=\varphi \cdot P\left(f_{1}, f_{2} \ldots, f_{p}\right)=(\varphi \cdot P)\left(f_{1}, f_{2} \ldots, f_{p}\right)
$$

Since $\widetilde{\varphi \cdot P}$ is the unique p-derivation from $C^{\infty}\left(M^{A}, A\right)$ into $C^{\infty}\left(M^{A}, A\right)$ such that

$$
\widetilde{\varphi \cdot P}\left(f_{1}^{A}, f_{2}^{A} \ldots, f_{p}^{A}\right)=(\varphi \cdot P)\left(f_{1}, f_{2} \ldots, f_{p}\right)
$$

for any $f_{1}, f_{2} \ldots, f_{p+q-1} \in C^{\infty}(M)$, hence we have

$$
\widetilde{\varphi \cdot P}=\varphi \cdot \widetilde{P}
$$

3. For any $f_{1}, f_{2} \ldots, f_{p+q-1} \in C^{\infty}(M)$, we have

$$
\begin{aligned}
\widetilde{P} \wedge \widetilde{Q}\left(f_{1}^{A}, f_{2}^{=A}, \ldots, f_{p+q}^{A}\right) & =\sum_{\sigma \in \mathfrak{S}_{p, q}} \varepsilon(\sigma) \widetilde{P}\left(f_{\sigma(1)}^{A}, \ldots, f_{\sigma(p)}^{A}\right) \cdot \widetilde{Q}\left(f_{\sigma(q+1)}^{A}, \ldots, f_{\sigma(p+q)}^{A}\right) \\
& =\sum_{\sigma \in \mathfrak{S}_{p, q}} \varepsilon(\sigma) P\left(f_{\sigma(1)}^{A}, \ldots, f_{\sigma(q)}\right) \cdot Q\left(f_{\sigma(q+1)}, \cdots, f_{\sigma(p+q)}\right)=P \wedge Q\left(f_{1}, f_{2}, \ldots, f_{p+q}\right) .
\end{aligned}
$$

In the other hand, since $\widetilde{P \wedge Q}$ is the unique $p+q$-derivation from $C^{\infty}\left(M^{A}, A\right)$ into $C^{\infty}\left(M^{A}, A\right)$, such that

$$
\widetilde{P \wedge Q}\left(f_{1}^{A}, f_{2}^{A}, \ldots, f_{p+q}^{A}\right)=P \wedge Q\left(f_{1}, f_{2}, \ldots, f_{p+q}\right)
$$

hence we have

$$
\widetilde{P \wedge Q}=\widetilde{P} \wedge \widetilde{Q}
$$

Let us give now the intrinsic properties of Schouten-Nijenhuis bracket.
Theorem 12. Let P, Q, R be p-multivector, q-multivector and r-multivector fields on M^{A}, respectively, considered as p, q and r-derivations from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$, respectively. Let φ, ψ both be smooth functions on M^{A} with values in A and X a vector field on M^{A} considered as derivation from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$. The Schouten-Nijenhuis bracket verifies the following equalities:

1. $[\varphi, \psi]_{S}=0$;
2. $[X, P]_{S}=L_{X} P$ the Lie derivative with respect to the vector field X;
3. $[P, Q]_{S}=-(-1)^{(p-1)(q-1)}[Q, P]_{S}$;
4. $[P, Q \wedge R]_{S}=[P, Q]_{S} \wedge R+(-1)^{(p-1) q} Q \wedge[P, R]_{S}$.
let us give some indications of the proof of theorem12.
Proof. (of the theorem12)
We put $P=X_{1} \wedge X_{2} \wedge \cdots \wedge X_{p}, Q=Y_{1} \wedge Y_{2} \wedge \cdots \wedge Y_{q}$ and $R=Z_{1} \wedge Z_{2} \wedge \cdots \wedge Z_{r}$. Hence

$$
\left[\widetilde{X_{1}} \wedge \cdots \wedge \widetilde{X_{p}}, \widetilde{Y_{1}} \wedge \cdots \wedge \widetilde{Y_{q}}\right]_{S}=\sum_{i=1}^{p} \sum_{j=1}^{q}(-1)^{i+j}\left[\widetilde{X_{i}}, \widetilde{Y_{j}}\right]_{S} \wedge \widetilde{X_{1}} \wedge \cdots \wedge{\widehat{X_{i}}}_{\cdots} \not \widetilde{X}_{p} \wedge \widetilde{Y_{1}} \wedge \cdots \wedge \widehat{\tilde{Y}}_{i} \cdots \wedge \widetilde{Y_{p}}
$$

in this case the proof of the theorem is in the same way like in the classical case see [3]. For achieving the proof, we consider the fact that

$$
[\widetilde{P}, \widetilde{Q}]_{S}\left(f_{1}^{A}, f_{2}^{A}, \ldots, f_{p+q-1}^{A}\right)=[P, Q]_{S}\left(f_{1}, f_{2}, \ldots, f_{p+q-1}\right)
$$

for any $f_{1}, f_{2} \ldots, f_{p+q-1} \in C^{\infty}(M)$.
Theorem 13. Endowed with Schouten-Nijenhuis bracket $\mathfrak{X}^{*}\left(M^{A}\right)$ is a Lie graded algebra over A and its graded Jacobi identity is given by:

$$
(-1)^{(p-1)(r-1)}\left[P,[Q, R]_{S}\right]_{S}+(-1)^{(q-1)(p-1)}\left[Q,[R, P]_{S}\right]_{S}+(-1)^{(r-1)(q-1)}\left[R,[P, Q]_{S}\right]_{S}=0
$$

for any $P \in \mathfrak{X}^{p}\left(M^{A}\right), Q \in \mathfrak{X}^{q}\left(M^{A}\right), R \in \mathfrak{X}^{r}\left(M^{A}\right)$ considered as p, q and r-derivations from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$, respectively.

Proof. The proof of graded Jacobi identity is made in the same way like in the proof of the theorem12.
Proposition 14. If X_{1}, \cdots, X_{p} are vector fields on M and $\left.P \in \mathfrak{X}^{p}(M)\right), Q \in \mathfrak{X}^{q}(M)$, then we have:

1. $X_{1}^{A} \wedge \cdots \wedge X_{p}^{A}=\left(X_{1} \wedge \cdots \wedge X_{p}\right)^{A}$.
2. $P^{A}+Q^{A}=(P+Q)^{A}$, if $p=q$.
3. $P^{A} \wedge Q^{A}=(P \wedge Q)^{A}$.
4. $\left[P^{A}, Q^{A}\right]_{S}=[P, Q]_{S}^{A}$.

Proof. 1. For any $f_{1}, \cdots, f_{q} \in C^{\infty}(M)$, we have:

$$
\begin{aligned}
\left(X_{1} \wedge \cdots \wedge X_{p}\right)\left(f_{1}, \cdots, f_{p}\right) & =\sum_{\sigma \in S_{p}} \varepsilon(\sigma) X_{1}^{A}\left(f_{\sigma(1)}\right) \cdots X_{q}^{A}\left(f_{\sigma(q)}\right)=\sum_{\sigma \in S_{p}} \varepsilon(\sigma)\left(X_{1}\left(f_{\sigma(1)}\right)\right)^{A} \cdots\left(X_{p}\left(f_{\sigma(p)}\right)\right)^{A} \\
& =\left(\sum_{\sigma \in S_{p}} \varepsilon(\sigma) X_{1}\left(f_{\sigma(1)}\right) \cdots X_{p}\left(f_{\sigma(p)}\right)\right)^{A} \\
& =\left(\left(X_{1} \wedge \cdots \wedge X_{p}\right)\left(f_{1}, \cdots, f_{p}\right)\right)^{A} \\
& =\left(X_{1} \wedge \cdots \wedge X_{p}\right)^{A}\left(f_{1}, \cdots, f_{p}\right)
\end{aligned}
$$

hence

$$
X_{1}^{A} \wedge \cdots \wedge X_{p}^{A}=\left(X_{1} \wedge \cdots \wedge X_{p}\right)^{A} .
$$

2. For any $f_{1}, \cdots, f_{q} \in C^{\infty}(M)$, we have:

$$
\begin{aligned}
\left(P^{A}+Q\right)\left(f_{1}, \cdots, f_{p}\right) & =P^{A}\left(f_{1}, \cdots, f_{p}\right)+Q^{A}\left(f_{1}, \cdots, f_{p}\right) \\
& =\left(P\left(f_{1}, \cdots, f_{p}\right)\right)^{A}+\left(Q\left(f_{1}, \cdots, f_{p}\right)\right)^{A} \\
& =\left(P\left(f_{1}, \cdots, f_{p}\right)+Q\left(f_{1}, \cdots, f_{p}\right)\right)^{A} \\
& =\left[(P+Q)\left(f_{1}, \cdots, f_{p}\right)\right]^{A}=(P+Q)^{A}\left(f_{1}, \cdots, f_{p}\right),
\end{aligned}
$$

so that

$$
P^{A}+Q^{A}=(P+Q)^{A} .
$$

3. Let us take $P=X_{1} \wedge \cdots \wedge X_{p}$ and $Q=Y_{1} \wedge \cdots \wedge Y_{q}$. Then, we have:

$$
\begin{aligned}
P^{A} \wedge Q^{A} & =\left(X_{1} \wedge \cdots \wedge X_{p}\right)^{A} \wedge\left(Y_{1} \wedge \cdots \wedge Y_{p}\right)^{A} \\
& =X_{1}^{A} \wedge \cdots \wedge X_{p}^{A} \wedge Y_{1}^{A} \wedge \cdots \wedge Y_{p}^{A} \\
& =\left(X_{1} \wedge \cdots \wedge X_{p} \wedge Y_{1} \wedge \cdots \wedge Y_{q}\right)^{A} \\
& =(P \wedge Q)^{A} ;
\end{aligned}
$$

4. For any $f_{1}, \cdots, f_{p+q-1} \in C^{\infty}(M)$, we have:

$$
\begin{aligned}
& {\left[P^{A}, Q^{A}\right]_{S}\left(f_{1}, \cdots, f_{p+q-1}\right)} \\
& =\sum_{\sigma \in \tilde{\mathfrak{S}}_{q, p-1}} \varepsilon(\sigma) P^{A}\left(Q^{A}\left(f_{\sigma(1)}, \ldots, f_{\sigma(q)}\right), f_{\sigma(q+1)}, \ldots, f_{\sigma(p+q-1)}\right) \\
& -(-1)^{(p-1)(q-1)} \sum_{\sigma \in \mathfrak{S}_{p, q-1}} \varepsilon(\sigma) Q^{A}\left(P^{A}\left(f_{\sigma(1)}, \ldots, f_{\sigma(p)}\right), f_{\sigma(p+1)}^{A}, \ldots, f_{\sigma(p+q-1)}^{A}\right) \\
& =\sum_{\sigma \in \mathfrak{G}_{q, p-1}} \varepsilon(\sigma)\left(P\left(Q\left(f_{\sigma(1)}, \ldots, f_{\sigma(q)}\right), f_{\sigma(q+1)}, \ldots, f_{\sigma(p+q-1)}\right)\right)^{A} \\
& -(-1)^{(p-1)(q-1)} \sum_{\sigma \in \mathfrak{S}_{p, q-1}} \varepsilon(\sigma)\left(Q\left(P\left(f_{\sigma(1)}, \ldots, f_{\sigma(p)}\right), f_{\sigma(p+1)}, \ldots, f_{\sigma(p+q-1)}\right)\right)^{A} \\
& =\left[\begin{array}{c}
\sum_{\sigma \in \mathcal{G}_{\text {Gp,p-1}}} \varepsilon(\sigma) P\left(Q\left(f_{\sigma(1)}, \ldots, f_{\sigma(q)}\right), f_{\sigma(q+1)}, \ldots, f_{\sigma(p+q-1)}\right) \\
-(-1)^{(p-1)(q-1)} \sum_{\sigma \in \mathfrak{S}_{p, q-1}} \varepsilon(\sigma) Q\left(P\left(f_{\sigma(1)}, \ldots, f_{\sigma(p)}\right), f_{\sigma(p+1)}, \ldots, f_{\sigma(p+q-1)}\right)
\end{array}\right]^{A} \\
& =\left[[P, Q]_{S}\left(f_{1}, \cdots, f_{p+q-1}\right)\right]^{A} \\
& =[P, Q]_{S}^{A}\left(f_{1}, \cdots, f_{p+q-1}\right),
\end{aligned}
$$

hence

$$
\left[P^{A}, Q^{A}\right]_{S}=[P, Q]_{S}^{A}
$$

We presently are going to estabish the relation between a q-multivector field and a q-form on M^{A} through the following result.

Theorem 15. Let $\mathfrak{X}^{q}\left(M^{A}\right)$ be the set of all multivector fields on M^{A} of degree q considered as q-derivation from $C^{\infty}(M)$ into $C^{\infty}\left(M^{A}, A\right)$ and $\mathfrak{L}_{\text {alt }}^{q}\left(\Omega\left(M^{A}, A\right)\right.$, the $C^{\infty}\left(M^{A}, A\right)$-module of skew-symmetric multilinear forms of degree q on $\Omega\left(M^{A}, A\right)\left(=\Omega^{1}\left(M^{A}, A\right)\right)$. Then the map

$$
\Theta: \mathfrak{X}^{q}\left(M^{A}\right) \longrightarrow \mathfrak{L}_{a l t}^{q}\left(\Omega\left(M^{A}, A\right), C^{\infty}\left(M^{A}, A\right)\right)
$$

such that

$$
\left([\Theta(Q)]\left(\varpi_{1}, \cdots, \varpi_{q}\right)\right)(\xi)=\widetilde{Q}(\xi)\left(\varpi_{1}(\xi), \cdots, \varpi_{q}(\xi)\right)
$$

for any $\xi \in M^{A}, Q \in \mathfrak{X}^{q}\left(M^{A}\right)$ and $\varpi_{1}, \ldots \varpi_{q} \in \Omega\left(M^{A}, A\right)$ is an isomorphism of $C^{\infty}\left(M^{A}, A\right)$-modules.
Theorem 16. Let Q be a multivector field of degree q on M. Then there exists an unique multivector field of degree q on M^{A}

$$
Q^{A}: \overbrace{\Omega\left(M^{A}, A\right) \times \cdots \times \Omega\left(M^{A}, A\right)}^{q} \longrightarrow C^{\infty}\left(M^{A}, A\right)
$$

such that

$$
\begin{equation*}
Q^{A}\left(a_{1} \omega_{1}^{A}, \cdots, a_{q} \omega_{q}^{A}\right)=a_{1} \times \cdots \times a_{q}\left[Q\left(\omega_{1}, \cdots, \omega_{q}\right)\right]^{A} \tag{5}
\end{equation*}
$$

for any $a_{1}, \ldots, a_{q} \in A$ and $\omega_{1}, \ldots, \omega_{q} \in \Omega(M)$.

References

[1] B.G.R. Bossoto, E. Okossa, Champs de vecteurs et formes différentielles sur une variété des points proches, Archivum mathematicum (BRNO), Tomus 44 (2008),159-171.
[2] F. Butin, Structures de Poisson sur les algèbres de polynômes, cohomologie et déformations, Thèse de l'univerèsité de Lyon, 2009.
[3] J.P. Dufour, N.T. Zung, Poisson Structures and Their Normal Forms, Progress in Mathematics, Vol 242, Birkhäuser, Berlin 2005.
[4] L.C. Gegoux, A. Pichereau, P. Vanhaecke, Poisson structures, Springer-Verlag Berlin Heildelberg 2013.
[5] D. Gutkin, Λ-Cohomologie et opérateurs de récursion, Ann.Inst.Poincaré, Vol.47, $n^{\circ} 4,1987$, p. 355366.
[6] A. Morimoto, Prolongation of connections to bundles of infinitely near points, J. Diff. Geom, 11 (1976), 479-498.
[7] A. Weil, Théorie des points proches sur les variétés différentiables, Colloq. Géom. Diff. Strasbourg (1953), 111-117

[^0]: ${ }^{1}$ Université Marien NGOUABI, BP: 69, Brazzaville, Congo, E-mail: stive.elg@gmail.com
 ${ }^{2}$ Université Marien NGOUABI, BP: 69, Brazzaville, Congo, Email: vannborhen@yahoo.fr
 ${ }^{3}$ Université Marien NGOUABI, BP: 69, Brazzaville, Congo E-mail: bossotob@yahoo.fr
 ${ }^{4}$ Institut de Recherche en Sciences Exactes et Naturelles (IRSEN), E-mail: bossotob@yahoo.fr

