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Abstract 

Location models typically assume that the spatial demand distribution or weights of demand clusters is/are given. 
However, when a service is new, or considerably altered, such distributions are, in fact, learned gradually as more 
demands are realized. Recently, location analysts proposed robust optimization models which deal with ranges of 
weights. We argue that, in principle, uncertain weights can be viewed as mixtures of distributions, and are thus 
similar to ordinary weights. However, location analysts need a procedure, hopefully a simple one, to revise spatial 
probability distributions as more information is obtained. We provide a Bayesian model which accomplishes that in 
a sensible manner. We then show that this theory-based model is, in fact, equivalent to a very simple “physical” 
mechanism. As the spatial demand distribution evolves with experience, the home bases of servers can be adjusted 
accordingly, if feasible and desirable. 
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1. Introduction 

        When a system or service, or the circumstances under which they operate, are new or have changed 
considerably, their effective control and management require learning over time. Initial parameters need to 
be chosen with care and predictions continuously revised in light of previous realizations. As a case in 
point, a system which dispatches servers to respond to requests originating from a set of locations (as well 
as a system where customers visit the servers) should, at least in the early stages, revise beliefs about 
relative magnitudes of future demands originating from various locations in light of where previous calls 
came from. Since the optimal home-base locations of the servers are a function of the spatial demand 
distribution, those could be recomputed, and the servers repositioned if the change in distribution is 
deemed large. The systems we have in mind include emergency services (e.g., Anderson and Fontenot 
1992, Jamil, Batta and Malon 1994); automated material-handling systems (e.g., Egbelu 1993, Johnson 
and Brandeau 1996, Lu and Gerchak 1998a, 1998b); disk systems where a read/write head moves among 
tracks (King 1990, Vickson, Gerchak and Rotem 1995, Gerchak and Lu 1996); and elevators (Gamse and 
Newel 1982). Revising spatial distributions will be relevant in these and other systems regardless of 
number of servers and dimensions, and whether the servers visit customers or vice versa. Yet the location 
theory literature seems rather silent on the issue of learning and revising beliefs.  
        The goals of this work are to propose a (Bayesian) scheme for revising spatial distributions as 
experience accumulates, and to show that a very simple and easy to implement procedure is equivalent to 
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that scheme. Before any demand is observed, the planner's beliefs can be expressed in the form of a prior 
distribution on the parameters of the predictive distribution. If experience with similar systems is limited, 
that prior might be rather diffused. At the outset, location decisions will be based on this initial predictive 
distribution. Much of location theory views what we refer to as predictive probabilities as weights. Some 
location analysts were interested in problems with "uncertain weights" (Drezner and Scott 1999, Averbach 
and Berman 1997, Demir et al. 2005). Tools from robust optimization (e.g., Kouvelis and Yu 1997) were 
then utilized. Had "weights" been viewed as probabilities, uncertain weights would become mixtures of 
probabilities, and hence themselves constitute probabilities (see eq. (1) below and discussion there). Thus 
"uncertain weights" are, in principle, not really a more general concept than "given weights 
(probabilities)". In that sense, one of our contributions is in providing a probabilistic framework for this 
line of research.  
        The parameters of the predictive distribution will be successively revised, in a Bayesian fashion, as 
observations accumulate. At first, when experience is limited, the origin of each new request for service 
will have a significant effect on the distribution (though the origin of the last request is not considered 
more informative than its predecessors' - the process is assumed stationary.) Eventually, the effect of each 
additional piece of information will be quite small. Although Bayesian techniques as such are well 
developed, our setting is, as we will argue, not quite similar to those in which these techniques are usually 
deployed. The multivariate distribution which we utilize for describing beliefs is the Dirichlet distribution. 
This is a rich and interpretable family and, in our setting, the posterior will also be Dirichlet, with slightly 
altered parameters. The predictive distribution is particularly simple.  
        Practitioners who need to revise beliefs over locations may intuitively come up with' the following 
simple physical procedure. In n urns, corresponding to the n locations,  place balls whose relative 
quantities reflect our beliefs about the relative magnitude of the location demands. Subsequently, a ball is 
added to each urn which corresponds to a location that generated a request. At each stage, the distribution 
of balls among the urns reflects the current beliefs about where the next request will come from. We show 
that this simple scheme is equivalent to the specific Bayesian procedure just described. Thus 
implementing the Bayesian procedure is very easy, as this can be done via a simple, easy-to-program, 
algorithm.  
        In our Concluding Remarks we summarize our observations, and, for concreteness, specify their use 
in relocating servers on a line. We comment on the finding of medians of the predictive distributions, and 
on modeling dependence between locations of successive requests.  

2. The Bayesian Framework 

        Label the locations which generate demand {l, ... ,n}. Depending on the type of application, these 
locations can be in one or more dimensions. Predictions depend on a parameter-vector 𝜃, whose value is 
unknown to us. At the outset, before any demands are realized, beliefs about this parameter are captured 
through the prior joint density function 𝑓′(𝜃) (prior distributions will be denoted by a single prime, while 
posterior distributions by double primes). The parameter 𝜃 affects the location k of next demand through 
the probability mass function 𝑃(𝑘|𝜃), k = 1, ... ,n, referred to as the likelihood function. Let 𝑅1 be the 
unknown location of the first request. The prior distribution and the likelihood generate the prior 
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predictive distribution 

 𝑃(𝑅1 = 𝑘) = ∫ 𝑃(𝑘|𝜃)𝑓′(𝜃)𝑑𝜃∞
−∞ , 𝑘 = 1, … ,𝑛 (1) 

        It is the predictive distributions that we seek to obtain, since the location of the server's home base is 
derived from them. Note that, we see from (1) that, as argued in the Introduction, uncertain ("weighted") 
probabilities [the 𝑃(𝑘|𝜃)'s weighted by 𝑓′(𝜃)] are themselves probabilities. In contrast, the uncertain-
weights robust-optimization approach (Drezner and Scott, Averbach and Berman, Demir et al.) assumes 
that the unknown weight of location k, k = 1, ... , n, is within a range �𝑤𝑘𝐿 ,𝑤𝑘𝐻�. Nothing is assumed about 
the distribution over this range, a state of knowledge to which the Bayesians would refer as a diffused 
prior, and thus most naturally described by the uniform distribution. In our setting (e.g. (1)) that case 
would correspond to 𝑓′(𝜃) being uniform on �𝑤𝑘𝐿 ,𝑤𝑘𝐻�.  
        Suppose that one request has now arrived, and it was in location j. We now first revise the 
distribution of the parameter 𝜃:  

 𝑓"(𝜃|𝑅1 = 𝑗) = 𝑓′(𝜃)𝑃(𝑗|𝜃)

∫ 𝑓′(𝜃)𝑃(𝑗|𝜃)𝑑𝜃∞
−∞

  (2) 

        The new predictive distribution is  

 𝑃(𝑅2 = 𝑘|𝑅1 = 𝑗) = ∫ 𝑃(𝑘|𝜃)𝑓"(𝜃|𝑗)𝑑𝜃∞
−∞ , 𝑘 = 1, … ,𝑛 (3) 

where 𝑅2 is the random location of the second request. Whether the source of 𝑅1 will have a significant 
effect depends on how tight was the prior distribution (i.e., how much past experience with similar 
systems it reflected in it). After m successive requests, the predictive distribution uses the most recent 
update of the distribution of 𝜃, 𝑓𝑚(𝜃|𝑟1, … , 𝑟𝑚), where 𝑟𝑖  is the origin of the i-th request. After many 
requests, the impact of the prior distribution will become very small.  
        Formally, the above is a fairly standard Bayesian framework. However, in our setting the likelihood 
function pertains to the actual demand process, and (location) decisions are made, possibly, after each 
realization. In most Bayesian settings, the likelihood pertains to a sample which is taken solely for 
inference purposes (e.g., Raiffa and Schlaifer 1961, Winkler 2003).  

3. A Specific Bayesian Model 

        Denote the probability of a request originating from location i by 𝑃𝑖 , i = 1, ... ,n. This might be 
viewed as a multinomial distribution with a single trial. However, the values of the 𝑃𝑖 's are not known to 
us. We shall assume that, at the outset, this vector of probabilities has the Dirichlet joint distribution, the 
density of which is 

 𝑓𝑃1,…,𝑃𝑛
′ (𝑝1, … ,𝑝𝑛) = �∑ 𝑘𝑖

′−1𝑛
𝑖=1 �!

∏ �𝑘𝑖
′−1�!𝑛

𝑖=1
∏ 𝑝𝑖

𝑘𝑖
′−1𝑛

𝑖=1  (4) 

for 𝑝𝑖 ≥ 0 , ∑ 𝑝𝑖 = 1 𝑛
𝑖=1 and 𝑘𝑖′ ≥ 1, 𝑖 = 1, … ,𝑛 . This is a multivariate generalization of the beta 

distribution (e.g., Gelman et al. 2013). As demonstrated in several Bayesian decision analysis texts (e.g., 
Raiffa and Schlaifer 1961, Winkler 2003) the family of beta distributions (corresponding to n = 2 in (4)) 
can be left or right- skewed, uni- or bi-modal, and assume a rich array of forms. Also, beta "beliefs" can be 
interpreted (e.g., Winkler) as based on (possibly fictitious) past experience based on 𝑘1′ + 𝑘2′  Bernoulli 
trials of which 𝑘1′  were "successes". Its Dirichlet multivariate extension possess the same richness (e.g., 
Gelman et al.) and can be interpreted as founded on a past experience based on ∑ 𝑘𝑖′𝑛

𝑖=1  multinomial trials, 
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𝑘𝑖′ of which, i = 1, ... , n, originated from location i. Note that the special case 𝑘𝑖′ = 1, i = 1, ... ,n, 
corresponds to a (multivariate) uniform distribution on [0,1]𝑛, the joint density of which is (𝑛 − 1)!. Thus 
the Dirichlet is a rich and flexible family, which can accomodate many patterns of prior beliefs. Also, the 
Dirichlet distribution can be easily generalized to any finite intervals. Thus the "uncertain weights" 
discussed above may be viewed as a special case.  
        Assessing the parameters of a Dirichlet prior distribution should not be too difficult, since its vector 
of means equals 𝑘𝑖′ ∑ 𝑘𝑗′𝑛

𝑗=1� , i = 1, ... , n, so one can obtain the parameter values by asking about the 

means, with one additional question.  
        The predictive location distribution of 𝑅1 is thus a Dirichlet mixture of (single-trial) multinomials. 
For general multinomials, such a mixture gives rise to a multivariate Polya-Eggenberger distribution 
(Berger 1985, Gelman et al. 2013). In our special case, however, it reduces to the very simple expression:  

 𝑃(𝑅1 = 𝑖) = 𝑘𝑖′ ∑ 𝑘𝑗′𝑛
𝑗=1�  , i=1,…,n (5) 

        Note that this discrete distribution is as simple to use as if the demand probabilities (weights) were 
"known" to start with.  
        Since the multinomial and Dirichlet distributions are known to be a conjugate pair (Gelman et al.), 
the posterior joint distribution of 𝑃1, … ,𝑃𝑛, following an arrival of a request originating from location m, is 
also Dirichlet, with parameters 
 𝑘𝑖" = 𝑘𝑖′ , 𝑖 ≠ 𝑚 , 𝑘𝑚" = 𝑘𝑚′ + 1 
        The predictive distribution is thus  

 𝑃(𝑅2 = 𝑖|𝑅1 = 𝑚) = 𝑘𝑖" ∑ 𝑘𝑗"𝑛
𝑗=1�  , i=1,…,n (6) 

which, again, is very simple to compute and use.  
        One can revise the probabilities after each request or, if the server's home base cannot be relocated so 
frequently, every several requests; the resulting posterior distribution will be the same. Eventually, the 
effect of the prior will fade away . 

Example  

        Suppose that n = 7, and that 𝑘𝑖′ = 1, i = 1, ... ,7 (i.e., the prior is a (diffused) multivariate uniform). 
The initial predictive distribution is then 𝑃(𝑅1 = 𝑖) = 1 7⁄ , i = 1, ... ,7. Now suppose that of the first five 
requests to arrive two originated from i = 1, two from i = 2 and one from i = 3. Then  

𝑘1" = 𝑘2" = 3, 𝑘3" = 2 , 𝑘4" = 𝑘5" = 𝑘6" = 𝑘7" = 1 
        Thus the posterior predictive distribution (of R6) is then (3/12,3/12,2/12,1/12,1/12,1/12,1/12).  

4. An Equivalent Simple Direct Physical Mechanism 

        We shall now describe a seemingly unrelated "ad-hoc" physical mechanism, which is extremely 
simple to program and use. As we shall see, it turns out to be equivalent to the previous theory-based 
Dirichlet-multinomial model.  
        Suppose that initially we place 𝑎𝑗 balls in urn j, j = 1, ... , n. The relative numbers of balls in the urns 
reflect our prior beliefs as to the relative magnitude of demands. The absolute amounts reflect our 
confidence in the prior beliefs. Subsequently, each time a request arrives from a location corresponding to 
some urn, we add a ball to that urn. This procedure is related to the Polya-Eggenberger Urn Model 
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(Johnson and Kotz 1977, Berg 2006). Thus if, out of m requests, location j, j = 1, ... ,n, requested service kj 
times, the predictive distribution becomes 

 𝑃(𝑅𝑚+1 = 𝑖) = 𝑎𝑖+𝑘𝑖
∑ 𝑎𝑗+𝑚𝑛
𝑗=1

 , i=1,…,n (7) 

        This is exactly the same as the predictive distribution obtained from the Bayesian model (6)! Not 
surprisingly, these probabilities converge to 𝑘𝑖 𝑚⁄ . Now, 

𝐸(𝑅𝑚+1) =
∑ 𝑗�𝑎𝑗+𝑘𝑗�𝑛
𝑗=1

𝑚+∑ 𝑎𝑗𝑛
𝑗=1

 , 

which makes intuitive sense. As m grows, that expectation converges to ∑ 𝑗𝑘𝑗 𝑚⁄𝑛
𝑗=1 .  

        Also, 

𝐸(𝑅𝑚+1
2 ) =

∑ 𝑗2�𝑎𝑗+𝑘𝑗�𝑛
𝑗=1

𝑚+∑ 𝑎𝑗𝑛
𝑗=1

 , 

so 

𝑉𝑎𝑟(𝑅𝑚+1) =
�𝑚 + ∑ 𝑎𝑗𝑛

𝑗=1 �∑ 𝑗2�𝑎𝑗 + 𝑘𝑗�𝑛
𝑗=1 − �∑ 𝑗�𝑎𝑗 + 𝑘𝑗�𝑛

𝑗=1 �2

�𝑚 + ∑ 𝑎𝑗𝑛
𝑗=1 �2

 

        As m grows, that variance converges to ∑ 𝑗2𝑘𝑗 𝑚⁄𝑛
𝑗=1 . 

        The choice of the 𝑎𝑗’s scale will affect the rate at which the new information changes our beliefs.  
        This simple physical procedure updates the predictive distribution directly, rather than indirectly via a 
change in the parameters' distribution as the Bayesian procedure does. However, the results are equivalent.  

5. Concluding Remarks 

        Having an up to date probabilistic forecast of where the next request will come from is important and 
useful. When one is learning the demand distribution over time, one may react to a significant enough 
(cumulative) change in the forecast by relocating servers' home bases, or reallocating resources to existing 
home bases. Thus a coherent, yet simple and fast, procedure for updating probabilistic forecasts as 
experience accumulates is needed. We provided such a simple physical procedure, and showed it is 
equivalent to a rigorous Bayesian framework.  
        Our probabilistic forecast revision framework applies to any finite number of demand sources, 
regardless of whether they are located on/in a line, plane or have some other topography. For concreteness, 
however, consider the implication for demands on a line - highway, elevator shaft, etc. Further, suppose 
one wishes to locate, and relocate, a single mobile server in such an environment.  
        It is well known that if the goal is to minimize the expected squared distance traveled to a random 
request on a line, a single server's home-base should be at the median of the distribution. So, for that 
purpose, it will be sufficient to revise the median of the distribution. After many requests have arrived, the 
median will simply be the location which had an equal number of requests on both sides. However, early 
on the prior will also have an effect. Due to the simple form of our predictive distribution, computing the 

median is very easy. The median is simply the value M for which ∑ (𝑎 + 𝑘)𝑖𝑀
𝑖=1

∑ (𝑎 + 𝑘)𝑖𝑛
𝑖=1

� ≈ 1
2� .  An 

additional request can only alter the median by one position. Note the difference between our approach, 
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which synthesize all information into one distribution (or median), and the robust optimization approach, 
which treats each possible distribution separately.  
        If there is more than one server, and/or the goal is to minimize travel time, which is nonlinear in the 
distance, the entire distribution becomes relevant (Anderson and Fontenot; Vickson et al., Lu and Gerchak 
1998b). The simplicity of our predictive distribution is likely to help there too.  
        A different approach to the so called "K-server problem" has been discussed in the theoretical 
computer science literature (Koutsoupias and Papadimitriu 1995, and references therein). There the 
performance measure is the ratio of the "cost" of a particular server (re)location policy to the "cost" had 
there been a perfect foresight as to where the requests will come from.  
        For some systems, it has been observed that the locations of successive requests are not independent 
(and not only due to Bayesian learning). In databases, for example, the location of the last request is 
considered more likely to be the source of the next request (Mitrani 1992, p. 555). Mitrani proposes the 
model 

𝑃(𝑅𝑘+1 = 𝑗|𝑅𝑘 = 𝑖) = �
𝑝 + (1 − 𝑝)𝑃𝑖

(1 − 𝑝)𝑃𝑗
         

𝑖 = 𝑗
𝑖 ≠ 𝑗

� 

where Pl, ... ,Pn is a' probability mass function over the set of locations and p is the probability that a local 
run continues. This is special case of a Markovian model. Now, if p is known, our scheme can be used to 
update the 𝑃𝑖 's and eq. (7) used to make prediction. If p is also unknown, and is to be revised 
simultaneously with the 𝑃𝑖 's, the problem is more challenging. In other situations one might argue that 
when a location generates a demand and this demand is supplied, its updated demand is "one less" than 
previously. Our model, which assumes independence over time, should be a useful starting point to 
analyze both the positive and negative dependence scenarios.  
        It is interesting to note that in the field of search theory (e.g. Stone 1989), Bayesian learning from 
earlier search results as to the target's location is quite prominent.  
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