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Abstract

In this work, some cases of Fractional Partial Differential Equations (FPDE) are
considered and resolved numerically using a meshless method via Radial Basis
Functions (RBF). Taking different types of fractional derivatives and non-
uniform collocation nodes. The results are compared with those obtained by
previous works. This type of approach sounds like a good choice to deal with
problems in higher dimensions or non-uniform data.
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1. Introduction

The growing interest in Fractional Calculus has been motivated by applica-
tions of fractional equations in different fields of research. For example, models
in Physics and Chemistry [1], [2], [3], [4], in problems of flow or heat transfer,
but also in other fields such as finances [5], [6].

Recent important applications of these anomalous diffusion-convection mod-
els are those related to oil extraction and hydrological models for aquifers, food
production and water distribution in large cities. C. Fuentes et al. ([7], [8]) pro-
posed a model that represents anomalous diffusion of petroleum in three types
of medium with different porosities: fractures, vugs and matrix. Determining
the behavior of the fluid within the reservoir and the loss of permeability of
the medium helps with research of oil migration mechanisms. In this context,
the geometric and physical interpretation of the fractional derivatives in these
differential equations is the subdivusive or super-diffusive diffusion.

But, fractional equations present serious numerical and mathematical diffi-
culties in the context of diffusion equations in larger dimensions. There is no
established theory as in the case of Partial Differential Equations (PDE), so it
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is important to count on efficient and precise numerical schemes. The proposal
is to consider Radial Basis Functions (RBF) [9], taking into account that the
geometry of the domain does not determine the efficiency of the algorithm and
sounds like an immediate alternative to generalize to larger dimensions.

The objective of this paper is to show that the RBF methodology is an al-
ternative to solve fractional partial differential equations, without necessarily
considering uniformly distributed data, for different types of fractional deriva-
tives, such as Riemann-Liouville, Riesz and Caputo, for time or for space. In
addition, the results are compared with those obtained in the considered original
works.

This type of technique approximates the solution by means of a linear com-
bination of radial basis functions, which are easy to implement, globally defined
and exponential convergence, but they produce dense and badly conditioned
interpolation matrixes. On the other hand, some RBFs contain a shape pa-
rameter, a number that influences the precision of the numerical results ([10]
and [11]). To attenuate the bad condition due to the shape parameter. With
RBF-QR, very high precision and convergence are obtained without the need
to increase a polynomial term to the interpolator [12]. Although the computa-
tional cost increases, so does the range of problems to which such a technique
can be applied.

2. Fractional Calculus

The notation introduced by Leibniz in the seventeenth century gave rise to

the idea of generalizing
dnf(x)

dxn
for non integer n (see figure 1). He himself,

in his letters to L’Hôpital (1695) and Wallis (1697) opens that possibility. But
it is not until Euler (1738) that the first step was taken in observing that the

derivative
dnxb

dxn
for non-integer n makes sense. Laplace (1812) proposed an idea

to calculate non-integer derivatives, from an integral. Lacroix (1820) takes up
the idea of Euler and using the gamma function Γ gives the exact formula to

evaluate
d1/2xb

dx1/2
.

Grünwald [13](1867) and Letnikov [14] (1868) developed a fractional deriva-
tive based on schemes in differences, for derivatives of positive integer order:

f (1)(x) = lim
h→0

f(x)− f(x− h)

h

f (2)(x) = lim
h→0

f(x)− 2f(x− h) + f(x− 2h)

h2

f (3)(x) = lim
h→0

f(x)− 3f(x− h) + 3f(x− 2h)− f(x− 3h)

h3

...

f (n)(x) = lim
h→0

1

hn

n∑
i=0

(−1)i
(
n

i

)
f(x− ih)

and so, the right and left derivatives Grünwald-Letnikov with order α > 0 of a 
given function f are defined as
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f(x) = sinx

∂f

∂x
= sin

(
x+ 1 · π2

)
∂2f

∂x2
= sin

(
x+ 2 · π2

)
∂3f

∂x3
= sin

(
x+ 3 · π2

)
...

∂nf

∂xn
= sin

(
x+ n · π2

)

Figure 1: If α is a non-natural number, does it make sense to put
∂αf

∂xα
=

sin
(
x+ α · π

2

)
?

GL
a Dα

xf(x) = lim
h→0,

nh=x−a

h−α
n∑
k=0

(−1)k
(
α

k

)
f(x− kh) (1)

and

GL
x Dα

b f(x) = lim
h→0,

nh=b−x

h−α
n∑
k=0

(−1)k
(
α

k

)
f(x+ kh). (2)

where the binomial coefficient

(
α

k

)
is defined as

Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
.

Perhaps the first serious attempt to give a more general definition to the

fractional derivative is due to Liouville (1832), setting the result
dν

dxν
f(x) =

aνeax for ν positive.
Of equal importance to Liouville’s works, Riemann in his article [15] written 

in 1847 but published in 1876, 10 years after his death, obtained an expression 
for fractional integration. Together with Liouville, they established one of the 
main definitions of the Differential-Integral Fractional Calculus.

From these works, great personalities of mathematics of the nineteenth 
and twentieth century were dedicated to formalize the concept of fractional 
derivative. To mention a few, there are Fourier (1822), Abel (1823), Liouville 
(1832), Holmgren (1865-1866), Grünwald (1867), Letnikov (1868), Nekrasov 
(1881-1891), Hadamard (1892), Weyl (1917), Riesz (1922-1923), M. Caputo 
(1967),etc.

In this part we define the fractional derivatives that we use in this work, first 
explaining some characteristics of the notation.

For certain fractional derivatives, we start from the fact that derivation and 
integration processes are part of a single process, see figure 2. And so the 
fractional derivative is an interpolation of this sequence of operators (Podlubny
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[16]). The notation used by Davis [17]

aD
α
xf(x) (3)

refers to the derivative of order α of a function f(x), where the subscripts a and
x (called terminals by Ross [18]) establish the differentiation domain. Fractional
integrals correspond to negative α values.

Figure 2: Unifying the derivation and integration processes

To define the fractional integral, let’s start with an example of Basic Integral
Calculus. Let f be a continuous function in an interval [a, b] and we construct
the operator J as

J (f(t)) :=

∫ t

a

f(τ)dτ for t between a and b, (4)

and, using Fubini

J 2 (f(t)) =

∫ t

a

(∫ τ1

a

f(τ)dτ

)
dτ1 =

∫ t

a

(t− τ)f(τ)dτ. (5)

Continuing with the inductive process we obtain the Cauchy formula, of
repeated integration

J n (f(t)) :=

∫ t

a

∫ τ1

a

· · ·
∫ τn−1

a

f(τ)dτ · · · dτ2dτ1 =
1

(n− 1)!

∫ t

a

(t−τ)n−1f(τ)dτ.

(6)
for n ∈ N, a, t ∈ R and t > a. If we replace the natural number n with the
positive real value α and the factorial with the Gamma function Γ(α), we obtain

Definition 1. The left-sided Riemann-Liouville fractional integral of or-
der α of function f(x) is defined as

RL
a D−αx f(x) =

1

Γ(α)

∫ x

a

(x− τ)α−1f(τ)dτ, x > a. (7)

Definition 2. The right-sided Riemann-Liouville fractional integral of
order α of function f(x) is defined as

RL
x D−αb f(x) =

1

Γ(α)

∫ b

x

(τ − x)α−1f(τ)dτ, x < b. (8)

Thus, according to Figure (2) we can obtain a fractional derivative (posi-
tive α value)“moving” to the right. And it is the idea to define the fractional 
operators that we will use in this work.
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Definition 3. The left-sided Riemann-Liouville fractional derivative of
order α of function f(x) is defined as

RL
aD

α
xf(x) =

1

Γ(m− α)

dm

dxm

∫ x

a

(x− τ)m−α−1f(τ)dτ, x > a, (9)

where m = dαe.

Definition 4. The right-sided Riemann-Liouville fractional derivative
of order α of function f(x) is defined as

RL
xD

α
b f(x) =

(−1)m

Γ(m− α)

dm

dxm

∫ b

x

(τ − x)m−α−1f(τ)dτ, x < b, (10)

where m = dαe.

Another fractional derivative to consider is the fractional derivative of Riesz
and it is used for equations that model superdiffusion, anomalous transport and
kinetics of chaos dynamics; for further reference see [19, 20]. The definition can
be stated as

Definition 5. The Riesz fractional operator for α on a finite interval 0 ≤
x ≤ L is defined as

∂α

∂|x|α
f(x, t) = −cα(RLa Dα

x + RL
x Dα

b )f(x, t), (11)

where

cα =
1

2 cos
(
πα
2

) , α 6= 1, (12)

RL
a Dα

xf(x) =
1

Γ(m− α)

dm

dxm

∫ x

a

(x− τ)m−α−1f(τ)dτ, (13)

RL
x Dα

b f(x) =
(−1)m

Γ(m− α)

dm

dxm

∫ b

x

(τ − x)m−α−1f(τ)dτ. (14)

Although the Fractional Calculus has been motivated by applications in dif-
ferent fields of research, approaches such as the fractional derivative of Riemann-
Liouville have disadvantages when dealing with initial conditions. To counteract
this drawback, we consider the fractional operator proposed by M. Caputo in
his 1967 article [21] and two years later in his book [22]. Such an operator can
be established as:

Definition 6. The left-sided Caputo fractional derivative of order α of
function f(x) is defined as

C
aD

α
xf(x) =

1

Γ(m− α)

∫ x

a

(x− τ)m−α−1f (m)(τ)dτ, x > a, (15)

and m = dαe.
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The fact that derivative of integer order appears within the integral in de-
finition (6), makes Caputo derivative the most suitable for dealing with initial
conditions of the FPDEs.

A result that will be useful for us is that of the formula of the Caputo
fractional derivative of the exponential eλx, with λ complex constant. The
proof of the following theorem can be reviewed in the work of Ishteva [23].

Theorem 1. Let α ∈ R, m − 1 < α < m, m ∈ N, λ ∈ C. So the Caputo
derivative of the exponential function has the form

C
xD

α
b e

λx =
∞∑
i=0

λi+mxi+m−α

Γ(i+ 1 +m− α)
= λmxm−αE1,m−α+1(λx), (16)

where

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α > 0 β > 0, (17)

is the Mittag-Leffler function.

Example 1. The fractional derivative of Caputo of the sine function f(x) =
sinx can be calculated taking into account the representation

sin z =
eiz − e−iz

2i
, z ∈ C; (18)

and using the linearity property of the Caputo derivative and the formula for
the exponential (see theorem 1) we have

C
aD

α
x sinλx =C

aD
α
x

eiλx − e−iλx

2i

=
1

2i

(
C
aD

α
x e

iλx − C
aD

α
x e
−iλx)

= 1
2i ((iλ)mxm−αE1,m−α+1(iλx)−(−iλ)mxm−αE1,m−α+1(−iλx))

=− 1
2 i(iλ)mxm−α(E1,m−α+1(iλx)−(−1)mE1,m−α+1(−iλx))

where m is the natural number such that m− 1 < α < m, i is the complex unit
and Eα,β(z) is the Mittag-Leffler function.

Figure 3 shows how the graph of the sine function changes over the interval
[0, 2π], when the order of the Caputo derivative goes from 0 to 2.

3. Radial Basis Function Methodology

Radial Basis Function’s method is a kind of a meshless method, i.e. the
approximation doesn’t need an structured mesh, whose interpolators are defined
in terms of a distance. It has several advantages like easy implementation, being
adaptable to spaces in higher dimensions and spectrally accurate.

A standard interpolator in terms of radial basis functions (see [12]), given
the data uk, of some real function u, in the corresponding collocation nodes
X = {x1, . . . ,xN}, has the form

sε(x) =
N∑
k=1

λkφk(x) (19)
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Figure 3: Caputo’s fractional derivatives for the sine function, y = sinx, x ∈ [0, 2π].

(a) Side 1 (b) Side 2

(c) Side 1 (d) Side 2

where φk(x) = φ(ε||x− xk||), φ is one real variable function and the constant
value ε is called shape parameter. Generally ||·|| denotes the Euclidean norm.

The unknown coefficients λk can be determined by interpolation conditions

sε(xi) = ui, i = 1, . . . , N.

producing a linear equation system which can be described in matrix form

Aλ = uX (20)

where A =

Φ(x1)T

...
Φ(xN )T

, Φ(x) :=

φ1(x)
...

φN (x)

, λ =

λ1

...
λN

 and uX =

u1

...
uN

. A is

called Gram matrix.
The main disadvantage of this method is that Gram matrix is an ill-conditioned

matrix. Besides this, there is no general method to choose shape parameter and
much less in fractional problems. In some cases, can be estimated as noted in
[24] and [9].

The next step is estimate the action of a differential operator L to the func-
tion u(x), in every evaluation node from the set Z = {z1, . . . , zNe}, given the
values of the function at collocation nodes X = {x1, . . . ,xN}.

Assuming that L is linear, we apply it to the RBF interpolator, for each of
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the evaluation nodes, as an approximation to the values of L in u:

Lsε(zi) =
N∑
k=1

λkLφk(zi), i = 1, 2, . . . , Ne; (21)

which leads to the matrix form

Lsε = Bλ (22)

where

Lsε =

 Lsε(z1)
...

Lsε(zNe)

 , B =

 Lφ1(z1) · · · LφN (z1)
...

...
...

Lφ1(zNe) · · · LφN (zNe)

 .
And the coefficient matrix λ is calculated by solving for λ in equation (20).

In this way, from equation (22) we obtain

Lsε = (BA−1)uX . (23)

Thus, the matrix BA−1 approximates the values of the differential operator
applied to the function.

Table (1) shows some examples, about the more used real functions φ(r).
But in this work the chosen function is the Gaussian function.

Table 1: Common Elections for φ(r)

RBF name RBF φ(r)

Piecewiese smooth, global
Polyharmonic spline rm, m = 1, 3, 5, . . .

rm ln(r), m = 2, 4, 6, . . .
Compact support (’Wendland’) (1− εr)m+p(εr), p polynomial.

Smooth, global

Gaussian (GA) e−(εr)2

Multiquadric (MQ)
√

1 + (εr)2

Inverse Quadric (IQ) 1/(1 + (εr)2)

Inverse multiquadric (IMQ) 1/
√

1 + (εr)2

Bessel (BE) (d = 1, 2, . . .) Jd/2−1(εr)/(εr)d/2−1

3.1. QR decomposition and RBF for Interpolation

In order to reduce the bad conditioning of the Gram matrix due in part to
the form parameter ε, a change of basis is made [25], in terms of Chebyshev
polynomials. With RBF-QR, very high precision and convergence are obtained
without the need to increase a polynomial term to the interpolator (Larsson et
al [12]). The QR decomposition interpolation routines that were used for the
numerical part were developed by Larsson et. al. ([25, 12]) and can be reviewed
in www.it.uu.se/research/scientific computing/software/rbf qr.

Since the Chebyshev polynomials have domain [−1, 1] and starting from an
interval of the form [a, b], a < b, a change of variable is applied:

y =
x−

(
b+a

2

)
b−a

2

, x ∈ [a, b]. (24)
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so, for the variable y ∈ [−1, 1], the RBF basis is rewritten as

φk(x) = e−ε
2(x−xk)2 k = 1, 2, . . . , N

= e−ε
2( b−a2 )

2
(y−yk)2

[
yk :=

xk −
(
b+a

2

)
b−a

2

]

= e−ε
2
y(y−yk)2

[
εy :=

(
b− a

2

)
ε

]
=
∞∑
j=0

djcj(yk) e−ε
2
yy

2

Tj(y)︸ ︷︷ ︸
Vj(y)

, (25)

where dj =
2ε2j
y

j!
, cj(yk) = tje

−ε2yy
2
kyjk0F1([], j + 1, ε4

yy
2
k), with t0 = 1

2 and tj = 1

para j > 0, mFn hypergeometric function, and Tj is the Chebyshev polynomial
of degree j.

The series 25 is truncated in j = p ≥ N , based on the size of its terms (see
[25]). So

Φ(x)T = [φ1(x) · · ·φN (x)]

≈ V (y)T


c0(y1) c0(y2) · · · c0(yN )
d1c1(y1) d1c1(y2) · · · d1c1(yN )

...
...

...
dpcp(y1) dpcp(y2) · · · dpcp(yN )



= V (y)T

d0

. . .

dp


︸ ︷︷ ︸

D


c0(y1) c0(y2) · · · c0(yN )
c1(y1) c1(y2) · · · c1(yN )

...
...

...
cp(y1) cp(y2) · · · cp(yN )


︸ ︷︷ ︸

CT

where V (y)T =
[
e−ε

2
yy

2

T0(y) · · · e−ε
2
yy

2

Tp(y)
]
, the elements of the ma-

trix C are O(1) and each element dk of the matrix D is proportional to ε2mk
y

con mk+1 ≥ mk.
Matrix C is factored into the QR form

Φ(x)T ≈ V (y)TDCT

= V (y)TDRTQT .

The Q matrix is split into blocks

Φ(x)T ≈ V (y)T
[
D1 O
O D2

] [
RT1
RT2

]
QT

= V (y)T
[
D1R

T
1

D2R
T
2

]
QT

where R1 and D1 are square of order N ×N and invertible.
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Multiplying both terms by the matrix Q
(
RT1
)−1

D−1
1

Φ(x)TQ
(
RT1
)−1

D−1
1 ≈ V (y)T

[
IN

D2R
T
2

(
RT1
)−1

D−1
1

]
Thus, the new basis is

Ψ(y)T =
[
ψ1(y) · · · ψN (y)

]
= V (y)T

[
IN
R̃T

]
(26)

where R̃T = D2R
T
2

(
RT1
)−1

D−1
1 .

The Gram matrix is taken as

A =

Φ(x1)T

...
Φ(xN )T

 ≈
V (y1)T

...
V (yN )T

[IN
R̃T

]
D1R

T
1 Q

T (27)

The problem of interpolation (20) is rewritten in the form

AΨλΨ = uX (28)

where AΨ =

V (y1)T

...
V (yN )T

[IN
R̃T

]
y λΨ = D1R

T
1 Q

Tλ.

In some way, the numerical singularity that induces the shape parameter has
been removed, and this process will be used to discretize fractional operators
using RBF with small shape parameters, see [9].

3.2. Descomposición QR para discretización de operadores diferenciales

Now we want to use the new basis (26) to approximate the values of a linear
differential operator L applied to a function u, on a set of evaluation nodes
Z = {z1, . . . , zNe}. Taking into account that each Ψ depends linearly on the
functions V (y),

LΨ(y)T = LV (y)T
[
IN
R̃T

]
(29)

with LV (y)T =
[
LV0(y) · · · LVp(y)

]
.

Taking into account that the matrix D discretizes the operator Lu(x) on the
set of evaluation nodes, see (23)

D = BA−1

=

 Lφ1(z1) · · · LφN (z1)
...

...
...

Lφ1(zNe) · · · LφN (zNe)

A−1 =

 LΦT (z1)
...

LΦT (zNe)

A−1,

scaling the interval [−1, 1], we have

ηi =
zi −

(
b+a

2

)
b−a

2

, zi ∈ [a, b], i = 1, . . . , Ne. (30)
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and using (27)

D ≈

 LV (η1)T

...
LV (ηNe)T

[IN
R̃T

]
D1R

T
1 Q

T


V (y1)T

...
V (yN )T

[IN
R̃T

]
D1R

T
1 Q

T


−1

we obtain
D ≈ BLΨA

−1
Ψ (31)

where BLΨ =

 LV (η1)T

...
LV (ηNe)

T

[IN
R̃T

]
and AΨ =

V (y1)T

...
V (yN )T

[IN
R̃T

]
The interpolation matrix A (20) for the Gaussian RBF is non-singular for

collocation nodes different from each other and positive shape parameters. The
corresponding matrix AΨ is no singular if the change of basis is “well defined”,
as discussed in [12].

As it is of our interest to apply fractional operators on a set of nodes not
necessarily equispaced, we will use formulas in their representation in series.
In addition, we must specifically calculate the fractional derivatives of φk(x) =

e−ε
2(x−xk)2 for the simple case of RBF’s scheme and Vj(y) = e−ε

2
yy

2

· Tj(y) for
the RBF-QR case.

The following formulas that were applied for the fractional part can be re-
viewed in the work of Mohammadi, Maryam and Schaback, Robert [26].

For all x, y ∈ R and x > a we have

RL
a Dα

xφ(|x− y|) = ξ−α
(
RL
ξ(a−y)D

α
xφ
)

(|x− y|), (32)

and
C
aD

α
xφ(|x− y|) = ξ−α

(
C
ξ(a−y)D

α
xφ
)

(|x− y|), (33)

where ξ = sign(x− y).

Theorem 2. For a 6= 0, n ∈ N and x > a we have

RL
a Iαx x

n = n!(x− a)α
n∑
k=0

an−k(x− a)k

(n− k)!Γ(α+ k + 1)
, (34)

RL
a Dα

xx
n = n!(x− a)−α

n∑
k=0

an−k(x− a)k

(n− k)!Γ(k − α+ 1)
, (35)

C
aD

α
xx

n = n!a−m(x− a)m−α
n−m∑
k=0

an−k(x− a)k

(n−m− k)!Γ(m− α+ k + 1)
(36)

Thus, for example, for the calculation of the fractional derivative of the
function φk(x) = e−ε

2(x−xk)2 we first develop its expansion in MacLaurin series
and then the operator is applied to each term

Dαφk(x) = Dαe−ε
2|x−xk|2

=
∞∑
j=0

(−1)jε2j

j!

(
2j∑
i=0

(2j)!(−1)ix2j−i
k

i!(2j − i)!
Dαxi

)
(37)

where Dα is a fractional derivative.
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4. Numerical Examples

4.1. Fractional Partial Differential Equation with Riesz space fractional deriva-
tives

We consider the fractional partial differential equation proposed by Yang et.

al. [27] and again considered by Mohammadi and Schaback [26]:

∂u(x, t)

∂t
= −Kα

∂αu(x, t)

∂|x|α
, x ∈ [0, π], t ∈ (0, T ], (38)

u(x, 0) = u0(x),

u(0, t) = u(π, t) = 0,

where u could be for example the concentration of a dissolute substance, and
Kα the dispersion coefficient. Here we use the Riesz fractional derivative and
1 < α < 2.

Since RBF applies for non-equispaced nodes, we choose a Chebyshev distri-
bution of the collocation nodes over the interval [0, π] (see figure 4):

xi =
π

2
cos (θi) +

π

2
, θi = π − i π

N − 1
, i = 0, 1, . . . , N − 1

Figure 4: Chebyshev nodes distribution over [0, π] interval.

Then, we solve the FPDE by the method of lines based on the spatial trial
spaces spanned by the Lagrange basis L1(x), . . . , LN (x) associated to RBFs
φj(x) = φ(|x− xj |), j = 1, 2, . . . , N .

L(x)T = Φ(x)TA−1 (39)

where
L(x)T =

[
L1(x) · · · LN (x)

]
,

Φ(x)T =
[
φ1(x) · · · φN (x)

]
and the Gram matrix

A =

φ1(x1) · · · φN (x1)
...

...
...

φ1(xN ) · · · φN (xN )


If L is a differential operator and the RBF φ is soft enough, then the applica-

tion of such an operator to the Lagrange base is calculated via the relationship

(LL)(x) = (Lφ)A−1.

Due to standard Lagrange conditions, the zero boundary conditions in x1 = 0
and xN = π are satisfied if we use only an approximation generated by the
functions L2, . . . , LN−1. This approximation is then represented as

u(x, t) =
N−1∑
j=2

βj(t)Lj(x),
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with the unknown vector

β(t) =

 β2(t)
...

βN−1(t)

 .
By evaluating the interpolator in the FPDE for each node xi, you get

N−1∑
j=2

β′j(t)Lj(xi) = −Kα

N−1∑
j=2

βj(t)
∂α

∂|x|α
Lj(xi)

and the initial conditions

βj(0) = u0(xj), 2 ≤ j ≤ N − 1.

From these last two equations the following system of ordinary differential equa-
tions is obtained

β′(t) = −Kα

(
∂α

∂|x|α
L

)
· β(t),

initial conditions
β(0) = U0,

∂α

∂|x|α
L =


∂α

∂|x|αL2(x2) · · · ∂α

∂|x|αLN−1(x2)
... · · ·

...
∂α

∂|x|αL2(xN ) · · · ∂α

∂|x|αLN−1(xN )

 and U0 =

 u0(x2)
...

u0(xN−1)

 .
The results obtained via the RBF methodology and Lagrange polynomials

for problem (38) are consistent with those obtained by Yang et al [27] and Cheng
et al [28]. Taking into account the data α = 1.8, Kα = 0.25, u0(x) = x2(π − x)
and shape parameter ε = 0.8. The graphs with the results are shown in figure
(5).

Figure 5: Numerical approximation via RBF to the solution of equation (38), with
α = 1.8, ε = 0.8 and Kα = 0.25

4.2. Riemann-Liouville space-fractional diffusion equation

In this part, let us consider the partial fractional differential equation (FDP)
introduced by Sousa [29] and taken up in Piret et. al. [9], the fractional diffusion
equation, in one dimension

∂f(x, t)

∂t
= d(x)0D

α
xf(x, t) + q(x, t) para x ∈ [0, 1] y t > 0 (40)
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where RL
0 Dα

x is the fractional derivative of Riemann-Liouville, 1 < α ≤ 2,

d(x) =
Γ(5− α)

24
xα y q(x, t) = −2e−tx4.

with the initial conditions

f(x, 0) = x4, x ∈ (a, b) (41)

and Dirichlet boundary conditions

f(0, t) = 0, f(1, t) = e−t. (42)

The exact solution (40) to this equation is

f(x, t) = e−tx4.

The numerical approximation to the solution via RBF methodology is ob-
tained using Gaussian φ(r) = e−εr

2

and multiquadric φ(r) =
√

1 + ε2r2 RBFs,
together with Lagrange polynomials. With N = 21 Chebyshev type collocation
nodes, Ne = 100 evaluation nodes, several values for the order of the derivative
α and shape parameters ε = 0.6, 1.2.

The results obtained by Sousa [29] were obtained by applying implicit Crank-
Nicholson schemes for time. The discretization of the fractional derivative was
done using splines, of second order precision. The results, both from Sousa and
from RBF, are shown in the table (2), taking into account the absolute error

||uexact − uapproximation||∞ (43)

where || · ||∞ is `∞ norm.

Table 2: Comparison of results to the numerical approximation of the solution to
FPDE (40)

(a) Sousa results [29]

Global `∞ error (43) of time converged solution
for three mesh resolutions at t = 1 for α =
1.2, 1.4, 1.5, 1.8 and ∆t = ∆x.

∆x α = 1.2 Rate α = 1.4 Rate

1/15 0.1275× 10−2 0.9070× 10−3

1/20 0.7571× 10−3 1.8 0.5327× 10−3 1.8

1/25 0.5030× 10−3 1.8 0.3486× 10−3 1.9

1/30 0.3566× 10−3 1.9 0.2461× 10−3 1.9

∆x α = 1.5 Rate α = 1.8 Rate

1/15 0.7660× 10−3 0.4380× 10−3

1/20 0.4493× 10−3 1.9 0.2540× 10−3 1.9

1/25 0.2929× 10−3 1.9 0.1649× 10−3 1.9

1/30 0.2067× 10−3 1.9 0.1150× 10−3 2.0

(b) RBF results.

Global `∞ error (43) of time converged solution
at t = 1, for α = 1.2, 1.4, 1.5, 1.8 and shape
parameters ε = 0.6, 1.2.

Order
α

Gaussian Multiquadric

ε = 0.6 ε = 1.2 ε = 0.6

1.2 0.35574×10−4 0.13190×10−3

1.4 0.46508×10−4 0.14486×10−3

1.5 0.60498×10−4 0.19793×10−3

1.8 0.16994×10−4 0.18125×10−4 0.26661×10−3
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4.3. Caputo time fractional partial differential equations

In this part we consider three examples of partial differential equations (U-
ddin and Haq, see [30]) of the type

∂αu(x, t)

∂tα
+ δ

∂u(x, t)

∂x
+ γ

∂2u(x, t)

∂x2
= f(x, t), (44)

where t > 0, x ∈ [a, b], 0 < α ≤ 1, δ and γ are real parameters, bounded initial
condition u(x, 0) = u0(x) and boundary conditions Dirichlet u(a, t) = g1(t) y
u(b, t) = g2(t) for t ≥ 0. The fractional derivative is Caputo derivative.

4.3.1. Example 1

Putting δ = 1, γ = −1 and f(x, t) =
2t2−α

Γ(3− α)
+ 2x− 2 in equation (44), we

obtain a fractional, linear and non-homogeneous Burger equation

∂αu(x, t)

∂tα
+
∂u(x, t)

∂x
− ∂2u(x, t)

∂x2
=

2t2−α

Γ(3− α)
+ 2x− 2. (45)

with initial condition
u(x, 0) = x2, (46)

and Dirichlet boundary conditions

u(0, t) = t2, u(1, t) = 1 + t2. (47)

The exact solution (see [31]) is

u(x, t) = x2 + t2, (48)

The problem is solved using Lagrange polynomials, RBF-QR for the spatial part
and an implicit scheme in finite differences for the temporal part, for x ∈ [0, 1]
and t ∈ [0, 2], fractional derivative of order α = 0.5. The program considers
several shape parameters and chooses the one with the lowest maximum error.

Figure 6 compares the errors that result from choosing uniform collocation
nodes, with a fixed step size, against nodes of Chebyshev. Chebyshev’s choice of
nodes is due to the fact that they attenuate bad behavior, which manifests itself
in large oscillations in the numerical approach, called the Gibbs phenomenon
(see [32], [33]). In Table (3) we compared the results we obtained with respect
to those obtained by Uddin-Haq, where they also took RBF but multiquadric
(MQ) RBF and potential functions .

4.3.2. Example 2

We take equation (44) when δ = 1, γ = 0 and f(x, t) =
t1−α

Γ(2− α)
sin(x) +

t cos(x),
∂αu(x, t)

∂tα
+
∂u(x, t)

∂x
=

t1−α

Γ(2− α)
sin(x) + t cos(x). (49)

With the initial condition
u(x, 0) = 0, (50)
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Figure 6: Comparison of results for the equation (45), α = 0.5 and t = 1.

(a) Max error for ε = 5 is 1.4802 × 10−4 (b) Max error for ε = 5 is 2.2165 × 103

(c) Max error for ε = 6.4 is 1.4959 × 10−4 (d) Max error for ε = 6.8 is 1.4959 × 10−4

The exact solution to this problem (see [31]) is

u(x, t) = t sinx. (51)

The problem is solved by Lagrange and RBF-QR, for α = 0.6, N = 51
and N = 121 collocation nodes for x ∈ [−3, 3]. Figure (7) shows that when
the number of uniform collocation nodes grows, the instability increases as the
solution approaches. And to mitigate this bad behavior Chebyshev nodes are
chosen. Table (4) compares the results obtained for this problem with respect
to Uddin-Haq results.

4.3.3. Example 3

Consider the equation (44) where δ = 0 and γ = −1 and f(x, t) = 0,

∂αu(x, t)

∂tα
=
∂2u(x, t)

∂x2
. (52)

We use the initial condition

u(x, 0) = 4x(1− x), (53)

and boundary conditions

u(0, t) = u(1, t) = 0. (54)
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Table 3: Comparison of results to the numerical approximation of the solution to
FPDE (45), α = 0.5 in spatial interval [0, 1]

(a) Uddin-Haq results [30]

Error norms corresponding for δt = 0.01, N = 51, MQ shape parameter
ε = 0.1.

Time 0.1 0.5 1.0 1.5 2.0

MQ

L∞ 6.086 × 10−2 2.958 × 10−2 2.114 × 10−2 1.732 × 10−2 1.503 × 10−2

L2 2.613 × 10−1 1.277 × 10−1 9.134 × 10−2 7.485 × 10−2 6.494 × 10−2

r7

L∞ 6.086 × 10−2 2.958 × 10−2 2.112 × 10−2 1.728 × 10−2 1.495 × 10−2

L2 2.612 × 10−1 1.277 × 10−1 9.120 × 10−2 7.454 × 10−2 6.440 × 10−2

r5

L∞ 6.087 × 10−2 2.961 × 10−2 2.122 × 10−2 1.748 × 10−2 1.529 × 10−2

L2 2.613 × 10−1 1.279 × 10−1 9.189 × 10−2 7.597 × 10−2 6.688 × 10−2

(b) RBF-QR Gaussian results.

Error norms corresponding for N =
121 and several shape parameters.

Time ε L∞

0.1 7.6 1.2021× 10−4

0.5 6.8 1.4385× 10−4

1 6.8 1.4959× 10−4

1.5 6.8 1.5215× 10−4

2 6.8 1.5368× 10−4

The exact solution to this problem is not known, but it is shown as an
example of subdiffusive and superdiffusive phenomena, as discussed in the in-
troduction. Again, the problem is solved by Lagrange polynomials, RBF-QR
scheme for the spatial part and an implicit scheme for the temporal part, for
x, t ∈ [0, 1]. The results for α = 0.5 and α = 0.7 go according to those shown
in Podlubny et al. 2009 [34] and Uddin et. al. 2011 [30]. The first two rows
of figure 8 show the numerical solution of problem 52 for α = 0.5 and α = 0.7
and are an example of subdiffusive phenomena; while the third row of figure 8
is added to exemplify a superdiffusive phenomenon, with α = 1.2.

5. Conclusions

As shown, RBF schemes are efficient and they are on par with schemes like
Finite Differences, they allow non-uniform data like Chebyshev nodes and Hal-
ton nodes. The challenge is to adapt them to solve multidimensional fractional
systems of equations that consider that the medium does not have a single
characteristic.
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diffusion: Lévy walks. Physical Review A, 40(7):3964, 1989.

[3] A Piryatinska, AI Saichev, and WA Woyczynski. Models of anomalous
diffusion: the subdiffusive case. Physica A: Statistical Mechanics and its
Applications, 349(3):375–420, 2005.

101



Figure 7: Instability due to the choice of nodes, for the equation (49).

(a) Max error for ε = 1 is 0.0010 (b) Max error for ε = 1.5 is 9.6981 × 1010

(c) Max error for ε = 0.4 is 4.2188× 10−15 (d) Max error for ε = 0.2 is 6.4393×10−15

[4] AS Chaves. A fractional diffusion equation to describe lévy flights. Physics
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Figure 8: Numerical solution to equation (52), orders α = 0.5, 0.7 and 1.2

(a) Side 1 (b) Side 2

(c) Side 1 (d) Side 2

(e) Side 1 (f) Side 2
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