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Abstract   

Under the research, the effectiveness of 14 machine learning algorithms for the diagnosis of cardiovascular diseases was 
evaluated. A PTB database of digitized electrocardiograms was used. It was found that the most preferred are a Label 
Propagation classifier (accuracy of recognition is 0.94), An extremely randomized tree classifier (accuracy is 0.92) and a 
Classifier implementing the k-nearest neighbors vote (accuracy is 0.90). 
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Previous work 

        Machine learning it is getting more popular in medicine. In particular, thanks to methods of machine 
learning, it is possible to carry out remote and automatic diagnostics of diseases, identify risk factors, 
substantiate optimal treatment strategies. There are supervised learning and unsupervised learning methods of 
Machine Learning. Supervised methods tries to predict of outcome, make classification of observation and  
estimation of a parameter [1]. Johnson et al. reported on using of Regularized regression [2], Ensembles of 
decision trees [3] and Support vector machines in diagnosis of heart diseases [4]. Unsupervised Machine 
Learning methods discovers of hidden structure in a data and tries to research the relationships between 
variables. There are a few papers on using of unsupervised methods in cardiology.  Kiranyaz et al. used a Tensor 
factorization for Real-Time Patient-specific ECG classification [5], Abdolmanafi et al. reported on using on 
Topological data analysis for automatic tissue classification of coronary artery [6], Choi et al. used a recurrent 
neural network models for early detection of heart failure onset [7]. 

Motivation and Aim 

        The goal of the researching is founding the more suitable method of machine learning for diagnosing of 
heart diseases. 
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Materials and Methods 

        We used a Physikalisch-Technische Bundesanstalt (PTB) database of digitized electrocardiograms presented 
by professor Michael Oeff to physionet.org project [8]. The database contains 549 records from 290 subjects. 
Each subject is represented by one to five records. Each record includes 15 simultaneously measured signals: the 
conventional 12 leads together with the 3 Frank lead ECGs. Each signal is digitized at 1000 samples per second, 
with 16 bit resolution over a range of ± 16.384 mV [9].  

Preprocessing and Feature Extraction 

        We used a python  biosppy library for preprocessing and feature extraction [10]. While preprocessing we 
extracted the first lead from ECG signals, reduced a noises and extracted the QRS complexes from signals (Fig. 
1). We used temporal and amplitude characteristics of P,Q,S and T regions of cardio cycles and amplitute values 
of R-peaks (in total 9 features) (Fig. 1). 

Cross-validation 

        A PTB is a good annotated ECG database. There are following class labels: Myocardial infarction, 
Cardiomyopathy/Heart failure, Bundle branch block, Dysrhythmia, Myocardial hypertrophy, Valvular heart 
disease, Myocarditis, Miscellaneous, Healthy controls (in total 9 class labels). We composed 6 datasets (feature 
matrix plus class label vector) for ECG signals of 5, 10, 15, 20, 25 and 30 seconds length. Then each dataset was 
spitted into training set and testing set with ratio of 75:25. 

Classification 

        We used 14 methods of Machine Learning for classification (Naive Bayes classifier for multivariate 
Bernoulli models, A decision tree classifier, An extremely randomized tree classifier, Classifier implementing the 
k-nearest neighbors vote, Label Propagation classifier, Linear Discriminant Analysis, Linear Support Vector 
Classification, Logistic Regression (aka logit, MaxEnt) classifier, Nearest centroid classifier, A random forest 
classifier, Classifier using Ridge regression, Ridge classifier with built-in cross-validation, Gaussian Mixture 
Models, SVM). 
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Fig. 1. Feature preprocessing with biosppy python library. 

 

Results and Discussion 

        Table 1 shows effectiveness of various methods of Machine Learning for heart diseases classification. As 
we can see the most accurate methods of classification are Label Propagation classifier (accuracy of recognition 
is 0.94), An extremely randomized tree classifier (accuracy is 0.92) and a Classifier implementing the k-nearest 
neighbors vote (accuracy is 0.90). Second, signal duration of 5 seconds is enough for good recognition of 
cardiovascular diseases. 

Table 1. Effectiveness of various methods of Machine Learning for heart diseases classification 

 5 sec 10 sec 15 sec 20 sec 25 sec 30 sec 

Naive Bayes classifier for multivariate Bernoulli models 0.70 0.69 0.68 0.35 0.67 0.67 

A decision tree classifier 0.83 0.89 0.90 0.88 0.92 0.92 

An extremely randomized tree classifier 0.92 0.96 0.97 0.97 0.98 0.98 

Classifier implementing the k-nearest neighbors vote 0.90 0.96 0.95 0.95 0.97 0.97 

Label Propagation classifier 0.94 0.97 0.97 0.96 0.98 0.98 

Linear_Discriminant_Analysis 0.72 0.69 0.68 0.73 0.68 0.68 

Linear Support Vector Classification 0.72 0.70 0.68 0.62 0.68 0.68 

Logistic Regression (aka logit, MaxEnt) classifier 0.71 0.70 0.68 0.80 0.68 0.68 
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Nearest centroid classifier 0.18 0.21 0.21 0.59 0.22 0.22 

A random forest classifier 0.73 0.70 0.69 0.17 0.69 0.69 

Classifier using Ridge regression 0.72 0.70 0.68 0.20 0.68 0.68 

Ridge classifier with built-in cross-validation 0.72 0.70 0.68 0.20 0.68 0.68 

Gaussian Mixture Models 0.65 0.66 0.65 0.88 0.65 0.65 

SVM 0.79 0.85 0.86 0.92 0.87 0.87 
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