
Abstract

We showed the group GR and Lie algebra gR generated by { da

dxa |a ∈ R}
and {xa|a ∈ R} and their generating operators log( d

dx
) and log x have

unique maximal normal subgroup AR and maximal ideal a. It was shown
taking suitable completion ā, ϑ; ϑg = g−1 dg

dx
gives a monomorphism from

AR into ā([6].). But to search ”good” completion is remained as a prob-
lem..

In this paper, we propose the good completion (in some sense, mini-
mal) is aexp;

aexp = {
∑
n

cnΨ
(n)(1 + s)|

∑
n

cnx
n ∈ Exp(C)}.

Here Exp(C) is the space of finite exponential type functions. Corresponding 
extension of AR is also proposed.

1. Introduction

Fractional calculus is now studied and applied not only in mathe-
matics, but also in several area of Sciences (cf.[9]). As a tool to the 
study of fractional calculus, we have introduced an integral trans-
form R;

R[f(s)](x) =

∫ ∞

−∞

xs

Γ(1 + s)
f(s)ds,

and show for suitable class of function f ; e.g.
f(s)

Γ(1 + s)
is rapidly

decreasing at s → ±∞,

da

dxa
R[f(s)](x) = R[τaf(s)](x), τaf(s) = f(s+ a).

([5]). Precisely saying, if x < 0, we need to fix xs in the calculation
of R This is done for example, to fix log x as log |x| − πi Another
way to consider R for x < 0 is consider R[f ] to be a many valued
function on C× = C \ {0}. But in this paper, we skip to think this
kinds of problems (cf.[5]).
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Applying R, we determined structure of the group GR gener-

ated by 1-parameter groups { da

dxa
|a ∈ R} and {xa|a ∈ R}, and

the Lie algebra gR generated their generating operators log(
d

dx
) and

log x([6] As for definition and properties of log(
d

dx
), we refer [4].[11]).

Via conjugation by R, GR is an extension of the multiplicative free

abelian group AR generated by { Γ(1 + s)

Γ(1 + s+ a)
|a ∈ R×, R× = R\{0}}

by R = {τa|a ∈ R}; τaf(s) = f(s + a). Hence AR is isomorphic to
the free abelian group DR×,Z generated by {δa|a ∈ R×}. The iso-
morphism from DR×;Z to AZ is given by µ−x:Ψ;

u−x;ΨT = exp(T

∫ s

−x

Ψ(1 + x+ t)dt).

gR has unique maximal ideal a generated by Ψ(1 + s). Taking
suitable completion ā of a, it is shown there is a monomorphism

ϑ : AR → ā; ϑf = f−1df(s)

ds
. Precisely, ϑ(AR) is contained in the

completion of a2, the subideal of a generated by Ψ′(1 + s).

Note. Extension of these results to several variables case shows
ϑ should be replaced to ρ; ρg = g−1dg. Since ρ is essential in
the non-abelian de Rham theory ([1].[2]), this suggests there might
exist relations between non-abelian de Rham theory and fractional
calculus.

These results suggest there might be exist some lack in GR. We
proposed this lack is supplied to add Γ(1+s) to AR ([6]). We denote

this extended group by A♮
R. It is isomorphic to the group DR;Z, the

free abelian group generated by {δa|a ∈ R}. The map ϑ is defined on

A♮
R and gives an isomorphism into ā. But in our former studies, we

only demand
∑

n

an

n!
Ψ(n)(1 + s) ∈ ā and can not fix the completion.

In this paper, we propose

Proposal. We take aexp;

aexp = {
∑
n

cnΨ
(n)(1 + s)|

∑
n

cnx
n ∈ Exp(C)},

where Exp(C) is the space of finite exponential type functions, as
the appropriate completion of a.
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By definition, aexp is isomorphic to Exp(C) as a vector space.
Convergence of a series {fn} of Exp(C) is defined |fn(x)| ≤ CeK|x|

for all n, where C,K are positive constants, and converges to a
function f uniformly on C in wider sense. Then Exp(C) is complete
by this definition of convergence. Topology of aexp is imposed from
this topology of Exp(C).

Note. Roughly speaking, aexp is the minimal completion of a⊗C
which satisfies the demand

∑
n n!

Ψ(n)(1 + s) ∈ ā, a ∈ C. But

to take aexp as the good completion seems to restrict studies of
fractional calculus only in the analytic category.

For a power series f(x) =
∑

n cnx
n, we set f(δ) =

∑
n cnδ

(n).
f(δ) is not a distribution in the sense of Schwartz, in general. But
it may be a generalized function on suitable function space. We
note this kind of sum of delta functions and interpretations them
as generalized functions (may not be distributions in the sense of
Schwartz) are appear in physical literatures (cf.[8],[13],[14],[16]).

Especially if f ∈ Exp(C), then f(δ) acts on Ent(C), the space of
entire functions on C convergence of its series {fn} is defined by the
uniform convergence in wider sense. In fact, denoting Exp(C)δ =
{f(δ)|f ∈ Exp(C)}, we have

Exp(C)δ = Ent(C)†.

By definition, DR;Z ⊂ Exp(C)δ. Since µ−x;Ψ can be defined on

Exp(C)δ, we set µ−x;ΨExp(C)δ = A♮
C:exp. then we have

ϑ : A♮
C;exp

∼= aexp.

The map ιΨ = ϑ ◦ µ−x;Ψ : (Exp(C)δ ∼= aexp is given by

ιΨT = TtΨ(1 + x+ t).

When f(x) = eax and T = f(δ), we have ιΨT = Ψ(1 + x + a),
via analytic continuation. This suggest if f(x) =

∫∞
−∞ eaxsg(s)ds, it

may be

ιΨT =

∫ ∞

−∞
g(s)Ψ(1 + s+ a)ds.

49

an



If f ∈ Exp(C), then f = B[g], where g is a holomorphic function at
the origin. Therefore,we may ask if T = f(δ), does the formula

ιΨT =
1

2πi

∫
|s|=ϵ

g(s)Ψ(1 + x+
1

s
)ds,

is hold taking suitable ϵ?.

This paper is consisted by seven Sections. In §2, we study Exp(C)δ
and show it is the dual space of Ent(C). Ent(C)δ = {f(δ)|f ∈
Ent(C)} is also discussed and show Ent(C)δ = Exp(C)†. At a
glance, δa, a ̸= 0 seems does not belong to Exp(C)δ. But regard-

ing Exp)(C)δ = Ent(C)†, we can identify δa and
∑

n

(−a)n

n!
δ(n) ∈

Exp(C)δ. Based on this fact, we introduce aexp, etc. in §3. §4 treats
the map ιΨ = ϑ ◦ µ−x;Ψ. Originally, elements of GR etc. are re-

garded as operators. But elements of aexp and A♮
C;exp are defined

by completion, that is formal infinite sum (or product) of fractional
differentiations. So it is a problem whether elements of aexp, etc.
can be interpreted as operators acting on some function space. §5
treats this problem. Related to this problem, the problem whether
the sum

∑
n cnδan can be regarded as an operator acting on some

space has been treated in [7]. In §6, we reconsider this problem and
give alternative proof of results in [7].

We denote a = (a1, . . . , an), etc..Then the group GRn and Lie al-

gebra gRn generated by { ∂a1

∂xa1
1

, . . . ,
∂an

∂xan
n

|a ∈ Rn} and {xa1
1 , . . . , xan

n |a ∈

Rn}, and their generating operators {log( ∂

∂x1

), . . . , log(
∂

∂xn

)} and

{log x1, . . . , log xn} are direct sum (product) of GR and gR:

GRn =

n︷ ︸︸ ︷
GR|s=s1 × · · · ×GR|s=sn ,

gRn =

n︷ ︸︸ ︷
gR|s=s1ds1 ⊕ · · · ⊕ gR|s=sndsn .

Hence definitions and results in single variable case are extended
straight forwardly to several variable case. But since
Exp(C)δ|x=x1dx1⊕· · ·⊕Exp(C)δ|x=xndxn is only a subspace of Λ

1Exp(Cn)δ,
the space of 1-forms with coefficients are Exp(Cn), the space of fi-
nite exponential functions on Cn. Hence we need fix the coordinate
system of Cn. To overcome this restriction will be a problem.
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2. The spaces Exp(C) and Ent(C) and their dual
spaces

We denote the space of finite exponential type functions and entire
functions on C by Exp(C) and Ent(C). Their topologies are given
by the following neighborhood systems:

Exp(C): We take U(f ;K, r;C,M), where K is a compact set of
C, r, C,M are positive numbers, and U(f ;K, r, C,M) is

{g ∈ Exp(C)||f(z)−g(z)| < r, z ∈ K, |f(z)−g(z)| ≤ Ce|Mz|, z ∈ C}.

Ent(C): We take U(f,K, r) = {g ∈ Ent(C)||f(z)− g(z)| < r, z ∈
K}, where K is a compact set of C.

A series {fn} of Ent(C) converges to a function f by this topology,
if and only if {fn} converges uniformly in wider sense to f . Hence
f is an entire function. While a series {fn} of Exp(C) to f by this
topology, if and only if the estimate |fn(z)| ≤ Ce|Mz| holds for some
positive C,M , for all n and converges uniformly in wider sense to
f . Hence f ∈ Exp(C).

Entire functions allow Taylor expansions on C. We set an entire
function f(z) =

∑∞
n=0 cnz

n and fN(x) =
∑N

m=0 cnz
n. Then we have

limN→∞ fN(z) = f(z). where convergence is in the above sense.
Hence we obtain

Lemma 1. The polynomial algebra C[z] is dense both in Exp(C)
and Ent(C) by the above topologies.

Let f(z) =
∑

n cnz
n. Then we use the notation

f(δ) =
∑
n

cnδ
(n).

In general, f(δ) is not a distribution in the sense of Schwartz. But if
f ∈ Exp(C), or f ∈ Ent(C), f(δ) can be considered as a generalized
function by the following Lemma.

Lemma 2. Let f(z) ∈ Exp(C) and g(z) ∈ Ent(C) with Taylor
expansions f(z) =

∑
n anz

n and g(z) =
∑

n bnz
n. Then

∑
n n!anbn

converges.
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Proof. Since f ∈ Exp(C), there exist C > 0,M > 0 such that

|an| ≤ C
Mn

n!
for all n Hence we have

|
n=L∑
n=N

n!anbn| ≤ C(
n=L∑
n=N

Mn|bn|).

Then since
∑

n |bn|zn is also an entire function, we have

lim
N→∞,L→∞

n=L∑
n=N

n!anbn = 0.

This proves Lemma.

We use notations a = (a1, a2, . . .),etc., ab = (a1b1, a2b2, . . .) and

ρ(a) = lim sup
n→∞

|an|1/n, r(a) =
1

ρ(a)

Here, we set r(a) = ∞ if ρ(a) = 0, and r(a) = 0 if ρ(a) = ∞, r(a)
is the convergence radius of the power series

∑
n a

nzn.

Lemma 3. The followings hold.

1. ρ(b) = 0 if ab converges for all a with ρ(a) < ∞.

2. ρ(a) < ∞ if ab converges for all b with ρ(b) = 0.

Proof. To show 1, we use ρ(a) = |ξ|, if a = (ξ, ξ2, . . .), where ξ is
an arbitrary complex number. Then set fb(z) =

∑
n bnz

n, fb(ξ) =
ab converges if 1 is hold. Therefore convergence radius of fb(z) is
∞. This proves 1.

If ρ(a) = ∞, there is a subseries (an1 , an2 , . . .) of (a1.a2, . . .) such
that

lim
k→∞

|ank
|1/nk = ∞.

Then limk→∞ |aϵnk
|1/nk = ∞, if 0 < ϵ < 1. We define a series

b = (b1, b2, . . .) by

{
bnk

= |ank
|−ϵ,

bn = 0, otherwise
. Then ρ(b) = 0 and ab

diverges, because lim supn→∞ |anbn| = ∞. Hence we have 2.
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Definition 1. We define the spaces Exp(C)δ and Ent(C)δ by

Exp(C)δ = {f(δ)|f ∈ Exp(C)}, (1)

Ent(C)δ = {f(δ)|f ∈ Ent(C)}. (2)

By using these notations, we have

Theorem 1. The followings hold.

Exp(C)δ = Ent(C)†, Ent(C)δ = Exp(C)†. (3)

Proof. Let f(z) =
∑

n anz
n ∈ Exp(C) and g(z) ∈ Ent(C). Then

we have

f(δ)g(z) =
∑
n

(−1)nn!anbn, g(δ)f(z) =
∑
n

(−1)nn!anbn. (4)

These right hand sides converges by Lemma 2. Hence we have

Exp(C)δ ⊂ Ent(C)†, Ent(C)δ ⊂ Exp(C)†. (5)

Since C[z] is dense both in Exp(C) and Ent(C), linear functional
T on these spaces is determined by Tzn, n = 0.1, 2, . . .. If Tzn = cn,
we have

Tzn = (−1)n
cn
n!
δ(n)zn.

Hence to set h(z) =
∑

n(−1)n
cn
n!
zn, we may write T = h(δ).Then

Lemma 3,1 show Exp(C)† ⊂ Ent(C)δ and 2 shows Ent(C)† ⊂ Exp(C)δ.
Therefore we have Theorem.

Note. Theorem 1 is essentially reinterpretation of the duality of
O, the algebra of germs of holomorphic functions at the origin and
Ent(C) given by

(f(x), g(x)) =
1

2πi

∮
f(x)g(

1

x
)
dx

x
, f(x) ∈ O, g(x) ∈ Ent(C).

Precisely, since

1

2πi

∮
1

xn+1
f(x)dx,=

1

n!

dnf(x)

dxn
|x=0,
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if ϕ(x) is hlomorphic at x = 0, we get

ϕ(δ)[f(x)] =
1

2πi

∮
B[ϕ](−1

x
)f(x)dx,

if f(x) ∈ Ent(C). Hence we obtain Th.2 from the duality of O and 
Ent(C).

3. Taylor expansion of δa

If f(z) is an entire function, we have

f(a) =
∞∑
n=0

an

n!
f (n)(0), a ∈ C.

Therefore we obtain

f(a) =
∞∑
n=0

(−1)n
an

n!
δ(n)f(z), a ∈ C. (6)

This means taking Ent(C) or Exp(C) as the space of testing func-
tions, the following Taylor expansion of δa = δ(z − a) holds

δa =
∞∑
n=0

(−1)n
an

n!
δ(n). (7)

Let Dd
C;C be the C-vector space spanned by {δ(k)a |a ∈ C, k =

0, 1.2, . . .}. Then by (7), we have

Proposition 1. By the map

δ(k)a →
∞∑
n=0

(−1)n
an

n!
δ(n+k), (8)

Dd
C;C is regarded to be a subspace of Exp(C)δ.
Note. This Proposition and Theorem 1 are already proved in [4]

and [5].

We can extend µ−x,Ψ on Exp(C)δ. Then we obtain the map

ϑ ◦ µ−x,Ψ : Exp(C)δ → ā.
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This map becomes an isomorphism if we define ā to be

{
∑
n

cnΨ
(n)(1 + s)|

∑
n

cnz
n ∈ Exp(C)} (9)

Definition 2. We set

aexp = {
∞∑
n=0

cnΨ
(n)(1 + s)|

∞∑
n=0

cnz
n ∈ Exp(C)}. (10)

The Lie algebra C
d

ds
⊕ aexp, with the brackets

[
d

ds
,Ψ(n)(1 + s)] = Ψ(n+1)(1 + s), n = 0, 1, 2, . . . ,

is denoted by gR;exp.

The sum
∑∞

n=0 cnΨ
(n)(1+s) is formal. We ask can we give mean-

ings to these formal sum?
We also denote A♮

C;exp♮ the multiplicative group µ−x;ΨExp(C)δ.
Then we have

A♮
C;exp = {

∞∏
n=0

(ecnΨ
(n−1)(1+s))|

∞∑
n=0

cnz
n ∈ Exp(C)}. (11)

Here Ψ−1(1 + s) = log(Γ(1 + s)). We denote A♮
R:exp the subgroup

A♮
R;exp consisted those elements whose coefficients cn in (11) are real

numbers.

Lemma 4. We can define the action τa; τaf(x) = f(x + a) on
aexp

Proof. First we note that Ψ(k)(1+ s+ a), a ̸= 0 does not appear

directly in aexp. It appears as the sum
∑∞

n=0

an

n!
Ψ (k + n)(1 + s).

Hence to handle
∑

k ckΨ
(k)(1 + s+ a) in aexp, we need to rewrite

∞∑
k=0

ckΨ(1 + s+ a) =
∞∑
k=0

ck(
∞∑
n=0

an

n!
Ψk+n(1 + s)

=
∞∑

m=0

(
∑

k+n=m

ck
an

n!
)Ψ(m)(1 + s).
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Since
∑

k ckz
k is a finite exponential type function, |ck| satisfies es-

timate |ck| ≤ C
Ln

n!
. Hence we have

|
∑

k+n=m

ck
an

n!
| ≤

∑
k+n=m

C
Lk

k!

|a|n

n!
= C

(|a|+ L)m

m!
.

Hence
∑∞

m=0(
∑

k+n=m ck
an

n!
)zm is a finite exponential type function.

Therefore we obtain Lemma.

By this Lemma and (11), τa acts on A♮
R;exp.

Definition 3. We denote GR;exp the extension of A♮
R;exp by R =

{τa|a ∈ R}. The group GC;exp is similarly defined.

Note. In Exp(C)δ, we identify δa and
∑∞

n=0(−1)n
an

n!
δ(n). Then

by the same computations and estimate as in the proof of Lemma

4, τa; τaδ
(n) = δ

(n)
a , acts on Exp(C)δ.But since

δ(n)a [f(z)] = (−1)nf (n)(a) = δ(n)[τaf(z)],

we obtain this conclusion more simply by Theorem 1, not only for
Exp(C)δ but also for Ent(C)δ..

Then we have
Rn Exp(C)δ ∼= GC;exp. (12)

We also note by previous discussions, the following isomorphisms
hold.

µ−x;Ψ : Exp(C)δ ∼= A♮
C:exp, ϑ : A♮

C;exp
∼= aexp. (13)

Proposal. We take aexp, etc., as appropriate completions of a,
etc..

Note. To define ϑ : A♮
R → ā,

∑
n

an

n!
Ψ(n)(1 + s) should belong to

ā. Therefore, to define ϑ, it seems aexp is the minimal completion of
a (or a⊗ C).

56



4. The map ιΨ = ϑ ◦ µ−x,Ψ

We denote ϑ ◦ µ−x,Ψ by ιΨ. Let T be a (generalized) function (or 
distribution), then we have by the definitions of ϑ and µ−x;Ψ

ιΨT = TtΨ(1 + x+ t). (14)

Strictly saying, Ψ(1 + x + t) needs to belong the domain of Tt.
Otherwise, we need some modification to give meanings of (14). For
example, to get

ιΨδ
(n) = (−1)nΨ(n)(1 + x), n = 0, 1, 2, . . . , (15)

we need to assume |x + t| < 1. But since Ψ(n)(1 + x) is a single
valued meromorphic function on C, we justify (14) for all x ∈ C, by
analytic continuation.

Adopting this argument, we justify

ιΨ : Exp(C)δ ∼= aexp, (16)

as an adaptation of (15). Note that since Ψ(1+x+ t) /∈ Ent(C), we
need take care to use discussions in §1 to the study of ιΨ.

The topology of aexp is transfered from the topology of Exp(C)
via the map (16). For the simplicity, we denote

∑
n cnΨ

(n)(1 + x)
by f ♯(Ψ(1 + x)), where f(z) =

∑
n cnz

n ∈ Exp(C), then we define

Definition 4. A series {f ♯
m(Ψ(1 + x))} of aexp is said to be

f ♯(Ψ(1 + x)) if and only if the series fn(x) converges to f(x) ∈
Exp(C) by the topology of Exp(C).

Since Ψ(1 + x) is holomorphic on the unit disc D = {x||x| < 1},
if a ∈ D then

|d
nΦ(1 + x)

dxn
| < n!Ca,ϵM

n+1
a,ϵ ,

where Ca,ϵ = maxx∈Sa,ϵ |Φ(1 + x)| and M−1 = minx∈Sa,ϵ,y∈S|x − y|.
Here Sa,ϵ = {y||y − a| = ϵ} is assumed to be contained in D and
S = {x||x| = 1}. Hence if f(x) = B[g(s)](x), where g(s) is an entire
function, f ♯(Ψ(1 + x)) converges on {y||y − a| < ϵ}. Because set
g(x) =

∑
n cnx

n, we have

|f ♯(Ψ(1 + x))(s)| ≤
∑
n

Ca,ϵM |cn|Mn
a,ϵ, |y − a| < ϵ.

Hence we have
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Proposition 2. If f(x) = B[g(s)](x), g(s) is an entire function,
then f ♯(Ψ(1 + x)) converges and holomorphic on D.

Note. We denote formal series
∑

n cnΦ
(n)(x) by f ♯(Φ(x)), where∑

n cnx
n = f(x). Then denoting f̌(x) =

∑
n(−1)ncnx

n(= f(−x)),
we have

f ♯(Φ(x)) = f̌δ[Φ(x)], (17)

provided f ♯(Φ(x)) has a meaning.

Since
∑

n

an

n!
δ(n) and δa are identified and δa is regarded as an

element of Exp(C)δ, we can identify
∑

n

an

n!
Ψ(n)(1 + x) and Ψ(1 +

x+a), so that we may regard Ψ(1+x+a) to be an element of a;exp.

To search meanings of f ♯(Ψ(1 + x)) is a problem. For example,
denoting fs(t) = f(st), we have fs(t) =

∑
n(cns

n)tn. if f(t) =∑
n cnt

n. Hence, since

Ψ(1 + x) = −γ +
∞∑
n=1

(−1)n+1ζ(n+ 1)xn,

f ♯
s(Ψ(1 + x)) converges if |sx| is sufficiently small. This suggests we
may give meanings of f ♯(Ψ(1 + x)) by using analytic continuation
of f ♯

s(Ψ(1 + x)) to s = 1. When f(t) = eat, originally, it should be

f ♯
t (Ψ(1 + tx)) = Ψ(1 + ts+ ta), |ts+ ta| < 1.

But by analytic continuation, we regard this wright hand side to
be a (single valued) meromorphic function on the (t, s)-space C2.
Then put t = 1, we get f ♯(Ψ(1 + x)) = Ψ(1 + s + a) on the whole
x-space C. We note if fa(t) = eat, we have allowing to use analytic
continuation

f ♯
a(Ψ(1+x)) = δte

a d
dtΨ(1+t+x) = δtτaΨ(1+t+x+a) = Ψ(1+x+a),

which gives another justification of f ♯
a(Ψ(1 + x)) = Ψ(1 + x + a) if

we allow to use analytic continuation.

In these discussions, we use the following properties of Ψ(1 + x);

1. Ψ(1+ x),Ψ′(1 + x),Ψ(2)(1 + x), . . . are linear independent over
C.
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2. Ψ(1 + x) is a single valued meromorphic function on C.

Other properties of Ψ(1 + x) are not used above discussions. We
ask to search the reason why Ψ(1 + x) is selected in the definition
of ιΨ in one hand and are there exist a function ϕ which satisfy the
above 1, 2, and ιϕ : ιϕT = Ttϕ(x+ t) is useful to the study Exp(C)δ
or similar space of generalized functions, on the other hand.

In general, if T = f(δ) ∈ Exp(C)δ, where f(z) =
∑

n cne
anz, then

ιΨT =
∑
n

cnΨ(1 + x+ an). (18)

We also note we can regard T =
∑

n cnτan as a linear operator on
Ent(C). We ask can we extend these arguments for more general f .
For example, if f allows Fourier expansion f =

∑
n cne

2nπiz, are the
followings have meanings ?;

µΨT =
∑
n

cnΨ(1 + x+ 2nπi), (19)

Here T = f(δ) and f(x) =
∑

n cne
2nπix.

Note. If f(x) =
∫∞
−∞ g(t)ectxdt, we may have

µΨf(δ) =

∫ ∞

−∞
g(t)(ectx|t→δ)dt =

∫ ∞

−∞
g(t)Ψ(1 + x+ ct)dt.

Since Ψ(1 + t) has poles on real axis, if c is an imaginary number,
Ψ(1 + x + ct) is smooth on R \ {0}. Hence we need not to take
care on singularities when f = F [g], F is the Fourier transform.
For example, by the Paley-Wiener Theorem ([12], [15], Chap.VI), if
f(x) ia a finite exponential type function and rapidly decreasing at
|x| → ±∞, on real axis, then µΨf(δ) is smooth except x = 0.

On the other hand, when f = L[g], we need to take care of
singularities on real axis.

Similarly if f(x) is a finite exponential type function, then f(x) =
B[ϕ(t)](x),where ϕ(t) is holomorphic at the origin ([10]). This sug-
gests the following formula holds for any finite exponential type
function f .

µΨf(δ) =
1

2πi

∫
|ξ|=ϵ

ϕ(ξ)

ξ
Ψ(1 + x+

1

ξ
)dξ. (20)
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Since Ψ(1 + x+
1

ξ
) has poles at ξ = −x− 1

n
, n = 1, 2, . . ., this right

hand side depends on the choice of ϵ If f(x) is an entire function,

then we can take ϵ sufficiently large to include all poles of Ψ(1+x+
1

ξ
)

inside {x||x| < ϵ} which should be the appropriate choice of ϵ. But
otherwise, how to choose ϵ in (20) should be a problem,

If (20) is valid, we can give concrete meaning of the map µΦ :
Exp(C) → aexp.

5. Interpretation of elements of aexp as operators

Taking suitable function space as the space of testing functions, we 
have

xaR[f(s)](x) =

∫ ∞

∞

xs+a

Γ(1 + s)
f(s)ds

=

∫ ∞

−∞

xt

Γ(1 + t)

Γ(1 + t)

Γ(1 + t− a)
f(t− a)dt = R[

Γ(1 + t)

Γ(1 + t− a)
τ−af(t)](x),

where t = s + a.Then since log x =
dxa

da
|a=0 and

dτ−a

da
|a=0 = − d

dx
,

we obtain

log xR[f(s)](x) =
dxa

da
R[f(s)](x)|a=0

=

∫ ∞

−∞

d

da
(

Γ(1 + s)

Γ(1 + s− a)
τ−af(s))ds|a=0 =

∫ ∞

−∞
(Ψ(1 + s)− d

ds
)f(s)ds

=−R[Γ(1 + s)
d

ds
(

1

Γ(1 + s)
f(s))](x).

Hence we have

Lemma 5. If R−1 log xR is defined as an operator on a function
space, then

R−1 log xR = Γ(1 + s)
d

ds

1

Γ(1 + s)
. (21)

Here log x and Γ(1; x) are regarded as multiplication operators
log x(f(x)) = log xf(x) and Γ(1 + s)(f(s)) = Γ(1 + s)f(s).
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Corollary. We have

R−1(log x)nR = (−1)nΓ(1 + s)
dn

dsn
1

Γ(1 + s)
. (22)

By the above calculation and log(
d

dx
)R[f(s)](x) = R[

df(s)

ds
])x),

we also have

(log x+ log(
d

dx
))R[f(s)](x) = R[Ψ(1 + s)f(s)](x). (23)

Adopting (21), we have

[log(
d

dx
), log x+ log(

d

dx
)]R[f(s)](x)

=R[
d

ds
(Ψ(1 + s)f(s))−Ψ(1 + s)

df(s)

ds
](x) = R[Ψ′(1 + s)f(s)](x)

Repeating same calculations, we obtain

Proposition 3. If Ψ(n)(1 + s) is defined as an operator of a
function space, then

R−1

n︷ ︸︸ ︷
[log(

d

dx
), · · · [ log( d

dx
), log x+ log(

d

dx
)

n︷︸︸︷
] · · · ]R

=Ψ(n)(1 + s). (24)

Examples of spaces on which Ψ(n)(1 + s); Ψ(n)(1 + s)[f(s)] =
Ψ(n)(1 + s) is defined, are H−N;n+1 and H−N,∞ = ∩n≥1H−N,n, where
H−N;n is the space of those smooth function f such that f(−i) =

0, i ∈ N with order at least n and
f(s)

Γ(1 + s)
f(s) is rapidly decreasing

at s → ±∞. We may use Hω,+
−N,n which is horomorophic on upper

half plane and extended to the completion of the upper half plane
whose restriction on the real axis belongs to H−N;n. The space H

ω,−
−N;n

is similarly defined. By definition, we have ∩n≥1H
ω,±
−N,n = {0}, we can

not consider Hω,±
−N,∞.

Note. Proposition 3 is essentially obtained in our previous study
of the structure of gR ([6]). But its explicit description (24) was not
given.
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6.
∑

n cnδan as an element of Exp(C)δ
Let a = (a1, a2, . . .) ̸= 0 and c = (c1, c2, . . .) ≠ 0. We have discussed
under what conditions on a, c, the sum

∑
n cnδan has a meaning ([7]).

In this section, we treat same problem describing δa =
∑

n

an

n!
δ(n).

By this description, formally we have∑
n

cnδan =
∑
m

∑
n

cn
anm
m!

δ(m). (25)

Hence if |
∑

n cna
n
m| ≤ CMm,

∑
m cmδam belongs to Exp(C)δ. To

evaluate
∑

n cna
m
n , we assume a ∈ ℓp(N), that is ∥a∥p < ∞, ∥a∥P =

(
∑

n |an|p)1/p, p ≥ 1. By assumption {|a1|, |a2|, . . .} is a bounded
set. We set

supn{|a1|, |a2|, . . .} = u, b =
1

u
a.

Then set b = (b1.b2, . . .), we have |bn| ≤ 1, n = 1, 2, . . .. Since
a = ub, ∥b∥p = u−1∥a∥p < ∞. We denote (bm1 , b

m
2 , . . .) = bm.

Then, since |bn| ≤ 1 for all n, we have ∥bm∥p ≤ ∥b∥p < ∞.Hence
we get

∥am∥p = um∥bm∥p ≤ um∥b∥p. (26)

Therefore, if p > 1 and c ∈ ℓq(N),
1

p
+

1

q
= 1, by the Hölder

inequality ([15]), we obtain

|
∑
n

cna
m
n | ≤ ∥a∥q∥am∥p ≤ ∥c∥qum∥bm∥p = um−1∥c∥q∥a∥p. (27)

For the convenience, we set ∥a∥∞ = sup{|a1|, |a2|, . . .} and set ℓ∞(N) =
{a|∥a∥∞ < ∞}. Then we have

|
∑
n

cna
m
n | ≤ um−1∥c∥∞∥a∥1, a ∈ ℓ1(N), c ∈ ℓ∞(N), (28)

|
∑
n

cna
m
n | ≤ ∥a∥m∞∥c∥1, a ∈ ℓ∞(N), c ∈ ℓ1(N). (29)

By (27), (28) and (29), we obtain

Theorem 2([7]). Let (p, q) a pair of positive numbers including

∞, such thatp ≥ 1, q ≥ 1 and
1

p
+

1

q
= 1, where q = ∞ if p = 1
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and q = 1 if p = ∞. Then by the identification δa and
∑

n

an

n!
δ(n),∑

n cnδan belongs to Exp(C)δ, if a ∈ ℓp(N) and c ∈ ℓq(N).
Corollary. Under the same assumptions on (p, q),

∑
n cnδan acts

on Ent(C), if a ∈ ℓp(N) and c ∈ ℓq(N).
Note. We introduce Sobolev k-norm ∥a∥2,k by

√∑
n(n

k|an|)2.
Then

∑
n cnδan ∈ Exp(C)δ, if a ∈ ℓ 2, k(N), k < 0 and c ∈ ℓ2(N).

But when k > 0, it seems there are no appropriate class of c to
contain

∑
m cnδan in Exp(C)δ.

Let D be a positive elliptic operator whose spectral ζ-function
ζD(s) =

∑
n λ

−s
n is defined and allow analytic continuation to whole

C. We set
TD,t(s) =

∑
n

λ−s
n δλt

n
.

Describing δtλn =
∑

n

λtn
n

n!
δ(n), formally, we can set

TD,t(s) =
∑
m

1

m!
(
∑
n

λ−s+tm
n )δ(m) =

∑
m

ζD(s− tm)

m!
δ(m). (30)

Hence if ℜt < 0, TD,t belongs to Exp(C)δ.In this case, we have
limn→∞ λt

n = 0. So this conclusion seems not interesting. But as
a function of t, it is analytic. Therefore we can consider analytic
continuation of TD,t to t = t0, ℜt0 > 0 (cf.[3]).

Example We assume λn = n, that is ζD(s) = ζ(s), the Riemann

ζ-function. Since ζ(−n) = −Bn+1

n+ 1
, where Bn is the n-th Bernoulli

number, TD,2k(2ℓ) is a finite sum, hence belong to Exp(C)δ. While 
if t is a odd positive integer and s is even, or t is a positive even
integer and s is odd, TD,t(s) does not belong to Exp(C)δ.

7. Remarks on several variables case

The group GRn generated by { ∂a1

∂xa1
1

, . . . ,
∂an

∂xan
n

|a = (a1, . . . , an) ∈

Rn} and {xa1
1 , . . . , xan

n |a ∈ Rn} is isomorphic to the extension of
the multiplicative free abelian group R−1ARnR by Rn, where ARn
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is generated by { Γ(1 + x1)

Γ(1 + x1 − a1)
, . . . ,

Γ(1 + xn)

Γ(1 + xn − an)
|a ∈ Rn}. Here

R = Rx is defined by

Rx[f(s)[x) =

∫
Rn

n∏
i=1

xsi
i

Γ(1 + si)
f(s)ds,

Consequently, we have

GRn ∼=
n︷ ︸︸ ︷

GR × · · · ×GR ., ARn ∼=
n︷ ︸︸ ︷

AR × · · · × AR (31)

The groups G♮
Rn and A♮

Rn are also n-products of G♮
R and A♮

R.

Similarly, the Lie algebra gRn generated by log(
∂

∂x1

), . . . , log(
∂

∂xn

)

and log x1, . . . , log xn is isomorphic to

n︷ ︸︸ ︷
gR ⊕ · · · ⊕ gR.It is generated

by
∂

∂s1
, . . . ,

∂

∂sn
and Ψ(1+ s1)ds1, . . . ,Ψ(1+ sn)dsn. Let aRn be the

ideal of gRn generated by Ψ(1 + s1)ds1, . . . ,Ψ(1 + sn)dsn. Then we
have

aRn ∼= ads1 ⊕ · · · ⊕ adsn.

Definition 5. We define aRn;exp by

aRn;exp = aexpds1 ⊕ · · · ⊕ aexpdsn. (32)

Precisely, aexpdsi in (31) means

aexpdsi = {(
∑
m

cmΨ
(m)(1 + si))dsi|

∑
m

cmx
m ∈ Exp(C)}.

We consider aRn;exp to be a good completion of aRn . We also

define A♮
Rn;exp by

A♮
Rn;exp =

n︷ ︸︸ ︷
A♮
R;exp × · · · × A♮

R;exp . (33)

Then by the map ρ : ρ(g) = g−1dg, we have

ρ : A♮
Rn;exp

∼= aRn;exp. (34)
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For the simplicity, we set Exp(C)δ|x=x1dx1⊕· · ·⊕Exp(C)δ|x=xndxn =
(Λ1Exp(C)δ)n. Then as vector spaces, we have

aCn;exp
∼= (Λ1Exp(C)δ)n.

Note. To regard elements of aRn to be 1-forms reflects to this
isomorphism.

On the other hand, it seems we can not use Λ1Exp(Cn), the space
of 1-forms having Exp(Cn) as coefficients, and its subspaces as the

origin of A♮
Rn;exp. instead of Exp(C)n;

Exp(C)n = Exp(C)|x=x1 ⊕ · · · ⊕ Exp(C)|x=x1 .

. In fact, take the submodule Exp(Cn)s;

Exp(Cn)s = {
∑
i

fi(xi)|fi(x) ∈ Exp(C)},

there is a map σ : Exp(C)n → Exp(Cn)s;

σ(f1(x1)⊕ · · · ⊕ fn(xn)) = f1(x1) + · · ·+ fn(xn).

Then we have

σ(Exp(C)n) = Exp(Cn)s,

Kerσ = {x1 ⊕ · · · ⊕ xn|(x1, . . . , xn) ∈ Cn, x1 + · · ·+ xn = 0}
Therefore Exp(C)n and Exp(Cn)s are different.

The isomorphism from Exp(C)nδ is given by

µ−x1;Ψ × · · · × µ−xn;Ψ : Exp(C)nδ ∼= A♮
Rn:exp. (35)

Here, T ∈ Exp(Cn)δ;X is written as T = ⊕n
i=1Ti, Ti ∈ Exp(C)δ|x=xi

.
Hence Th.2 is automatically extended to the elements of Exp(C)nδ .
But definitions of aCn;exp, etc. depend on the choice of coordinate
of Cn. Moreover, even a linear transform of Cn, it does not acts
on Exp(C)nδ , etc. To extend aCn;exp, etc., to allow action by suitable
class of linear transform of Cn .should be a problem.

Note. To define Exp(Cn)δ, etc., we introduce the notation δi1,...,in ;

δi1,...,in(xk1
1 · · · xkn

n )

=

{
(−1)k1+···+kni1! · · · in!, (k1, . . . , kn) = (i1, . . . , in),

0, (k1, . . . , kn) ̸= (i1, . . . , in).
(36)
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Then if f(x) =
∑

i1,...,in
ci1,...,inx

i1
1 · · · xin

n is holomorphic at the origin
of Cn, we set

f(δ) =
∑

i1,...,in

ci1,...,inδ
i1,...,in . (37)

By using this notation, we define Exp(Cn)δ, etc., by

Exp(Cn)δ = {f(δ)|f(x) ∈ Exp(Cn)}.

Then we have

Exp(Cn)δ = Ent(Cn)†, Ent(Cn)δ = Exp(Cn)†. (38)

As noted in §2, (39) is a reinterpretation of the duality of On, the
algebra of germs of holomorphic functions at the origin of Cn and
Ent(Cn);

On ∼= Ent(Cn)†, Ent(Cn) ∼= (On)†,

(f(x), g(x)) =
1

(2πi)n

n︷ ︸︸ ︷∮
· · ·

∮
f(x)

g( 1
x1
, · · · , 1

xn
)

x1 · · · xn

dx,

via the isomorphism B : On ∼= Exp(Cn). Because e have

δi1,...,in [f(x] =(−1)i1+···+in
∂i1+···+inf(x)

∂xi1
1 · · · ∂xin

n

=(−1)i1+···+in

n︷ ︸︸ ︷∮
· · ·

∮
f(x)

xi1+1
1 · · · xin+1

n

dx.

Although Exp(Cn)δ do not have direct relation between comple-

tions of aRn and A♮
Rn as remarked above, we expect (38) may serve 

to the study of aCn;exp, etc., near future.
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