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Abstract 

Containers and storage tanks for oil, flammable and poisonous liquids are widely used in various fields of engineering 
practice, such as aircraft engineering, chemical, oil and gas industries, power engineering, and transport. These tanks 
function in conditions of high technological loads and are often filled with oil, flammable or poisonous substances. As a 
result of sudden actions of loadings caused by earthquakes, other force majeure, the intensive sloshing of liquid stored 
in tanks is occurred. This can lead to dangerous phenomena associated with the filler spraying. Therefore, studying the 
dynamic behavior of liquids in reservoirs is an urgent task. In this paper, we propose methods for solving fluid vibration 
problems in rigid tanks with partitions. The numerical method for modeling the external influence upon liquid storage 
tanks is proposed. It is assumed that the fluid is incompressible and ideal one, and its motion, caused by the action of 
external loading, is vortex-free. In these conditions, there exists a velocity potential that satisfies the Laplace equation. 
The mixed boundary value problem is formulated for defining the velocity potential. This is the base to obtain the own 
modes of free liquid vibrations in the cylindrical tanks, that are considered as basic functions for studying the force 
liquid vibrations in the baffled cylindrical tank. The lateral excitations caused by harmonic, impulse, and seismic 
loading are considered and their influence on the free surface elevation is examined. 
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Introduction 

        Sloshing is a phenomenon associated with the intense movement of fluid in partially filled tanks. This 
phenomenon can lead to negative consequences caused by the action of suddenly applied loads (earthquakes, 
fall of planes, etc.). The intensive liquid sloshing is usually caused by external container lateral excitations. 
The filler sloshing is accompanied by an intense movement of fluid inside the reservoir that can lead to 
dangerous environmental effects. To reduce the amplitude of the sloshing, different devices in the form of 
partitions of various shapes [1-4] were proposed and investigated. Most research works were limited to the 
study of horizontal partitions in reservoirs. In [3], the approach to the analysis of influence of conical 
partitions on the frequencies of fluid vibrations was proposed. In [1, 3], it was found that the shape of the 
partition and its location are significant in the design of reservoirs with optimal parameters, taking into 
account geometric and strength constraints. Analysis of studies on the problems of fluid sloshing in 
reservoirs is given in [5-13]. In these works the shells filled with a liquid, with or in without horizontal 



partitions were considered. The problem of influencing the vertical baffles on a free surface elevation was 
considered for prismatic tanks only [8]. 

Model and Analysis 

        In this paper, the problem of free vibrations of a liquid in a rigid cylindrical reservoir with radius R, and 
with two vertical partitions, is considered. The scheme of the tank is shown in Fig. 1b). Let S1 is the wetted 
shell surface, and S0 is the liquid free surface. For comparing results we also consider un-baffled cylindrical 
tank, Fig 1a). It is necessary for clarifying the effect of partitions on the change in the level of free surface 
elevation. The lateral excitations caused by periodic, impulse, and seismic loadings are under consideration. 
It is supposed that these lateral excitations are acted along the 0x axis, Fig.1,  

 

а)                                                   b) 

Figure 1. Cylindrical reservoirs with and without baffles 

        We suppose that the fluid is an inviscid and incompressible one, and its movement cause by reservoir 
exitation is potential. In these conditions, there exist a velocity potential φ(x, y, z, t) defined as 
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        In above formulated suppositions this potential satisfies the Laplace equation. A mixed boundary value 
problem for this equation is formulated below. In this case, the conditions of non-penetration are given on 
the lateral surfaces and the bottom of the reservoir (surface S1), and the kinematics and dynamic conditions 
are stated on a free surface (surface S0). The kinematics condition consists in following. If the point belongs 
to the free surface of the liquid at the initial time, it will remain on this surface throughout the whole process 
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of motion. A dynamic condition characterizes the equality of atmospheric and fluid pressures on the free 
surface. Unknown functions here are the velocity potential φ(x, y, z, t) and a function ζ ( )tyx ,,ζ= , describing 

the changes in the free surface level in time. The connection between these two unknown functions is 
obtained from the following boundary dynamic condition: 
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        Here g is the gravity acceleration. Let the equation of free surface at the initial moment of time look like 

( ) 00,, =ζ yx ,  (3) 

i.e. we suppose that the surface z=0 corresponds to the liquid free surface, and the surface z= - h is associated 
with the tank bottom. The zero initial conditions for finding unknown functions are selected that 
corresponded to the assumption that at the initial moment the liquid in the reservoir was in a state of rest. The 
boundary conditions of the mixed boundary-value problem for the quarter tank acquire the next form [13]: 
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        The liquid pressure on the surfaces of the reservoir is received from the linearized Bernoulli’s integral. 
This allows us to express the fluid pressure through the velocity potential. An expression for the Bernoulli 
integral is obtained considering the presence of external lateral influences 
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where 0p  is an atmospheric pressure, lρ  if for the liquid density, )(tas  is an acceleration corresponding to 

external influence,  z is the vertical coordinate of the point inside the liquid volume. 
        Cylindrical reservoirs are considered here. For cylindrical tanks without partitions (un-baffled tanks) the 
modes of liquid vibrations are obtained using the method of integral equations [4]. This made it possible to 
carry out the study of fluid vibrations in both un-baffled cylindrical reservoirs and in presence of internal 
horizontal and conical baffles (baffled tanks) [3].  
        The following mixed boundary value problem is formulated for finding unknowns functions φ(x, y, z, t) 
and ζ(x, y, z, t) as in [5]: 
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        The zero own values obviously exist for problem (5), but they are excluded by the next orthogonality 
condition [14]: 
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        Supposing ( ) ( )zyxezyxt ti ,,,,, ϕ=ϕ ω  we obtain the next boundary condition on the free surface as in 
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        In [13], the solution of above formulated boundary-value problem (5) for was obtained for the potential 
φ in the cylindrical coordinate system. It takes the following form  

( ) ( ) ( )[ ]
( ) 






 ξ

ξ
+ξ

ωθ=θϕ ∑∑
∞

=

∞

= R
r

h
RhztmAtzr mn

m
mn

mn
mn

m n
mn 2

0 1

J
cosh

/coshsin2cos,,, .   (7) 

        Frequencies of free liquid vibrations are calculated by the formula 
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        The function ζ  for describing the variable level of free surface is given in the following form 

( ) ( ) 





 ξωθω=θζ ∑∑

∞

=

∞

= R
rtmAtzr mn

mmn
m n

mnmn 2
0 1

Jcos2cos,,, .    (9) 

        In the above expressions m2J  are Bessel functions of the first kind, and mnξ  are the roots of the equation 

below 
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        This equation is a consequence of the first equation in boundary conditions (4). 

        So the following systems of basic functions for considering the dynamical conditions at free surface for 
each harmonics 2,1,0=α  for quarter reservoir  
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are obtained that will be used for analyzing forced vibrations of the liquid in quarter reservoirs. 

        In [5, 15] the analogical systems were received for forced vibration analysis of the linear liquid sloshing 
both in cylindrical reservoirs with circular rigid baffles and in un-baffled ones. 
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        We now turn to the problem of forced vibrations of the liquid in baffled and un-baffled reservoirs. For 
this purpose, the boundary value problem is formulated 
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        Here n is an external unit normal to the corresponding surfaces. 

        Let us suppose that the velocity potential can be presented as a following series [14] 
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where functions kϕ are own modes of liquid vibrations described above, and ( )td k  are unknown coefficients 

depending on time only. 

        Substituting expression (11) to the dynamical boundary condition at the free surface in (10), we obtain 
the next differential relationship: 
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        Consider now the forced vibrations of liquids in cylindrical shells under different loadings. 

        It would be  noted that in main relation (11)  there is 

x=ρcosθ, 

because the only lateral exitations are considered.  
        So to solve the problem in the linear approximation, it suffices to consider only the eigen modes 
corresponding to the first harmonic (m=1). Using the orthogonality of the eigen modes of oscillations of the 
liquid in cylindrical tanks [14] and the boundary condition on the free surface (4), we obtain after the dot 
product of relation (11) by ( )Mmm ,...1=ϕ the following system of second-order differential equations: 
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        It allows us to carry out the investigation of changing in the free surface levels in baffled and un-baffled 

tanks. 

Analysis and Discussion 

        As an example of numerical simulation, consider the cylindrical shell with two vertical partitions, as 
well as the cylindrical shells without partitions. The radius of the shell R=1m, and the level of liquid filling is 
h=1m According to formula (8) we obtain the following values of free liquid oscillation frequencies as 

461.511 =ω 11.812 =ω 889.913 =ω 45.1114 =ω . 
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        If there are no partitions, then the values of the frequencies are as follows [5]: 

14.411 =ω , 22.712 =ω , 14.913 =ω , 7.1014 =ω  

        Thus, the installation of partitions leads to increasing the lowest own frequencies. 

        Fluctuations of the free surface at wave number m = 1 are depicted in Fig. 2, 3 for the first and third 

forms of oscillations, respectively. 

    

а)                                                      b) 

Figure 2. The first modes of the liquid free surface oscillation in cylindrical shells, m=1 

   

а)                                                   b) 

Figure 3. The third modes of the liquid free surface oscillations in cylindrical shells, m=1 

        Figures 2a) and 3a) correspond to fluid fluctuations in a cylindrical shell without partitions, and Figures 
2b) and 3b) are for the shell with vertical partitions. 

        Suppose that the shell is subjected to the harmonic loading ( ) ttas ω= cos  applied along the axis Ox. 
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        The solution of the differential equations (12) in this case is obtained in the form 
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        For the analysis of the method convergence, the calculations of the change in the free surface level with 

a different number of eigenmodes in expression (11) are carried out. Figure 4 shows the results obtained for 

M = 1 and M = 2. Dot line corresponds to M = 1, and the solid line to M = 2. 

 Figure 4. Convergence of the numerical method 

        We see that using even one mode of own oscillations in series (11) is sufficient for a satisfactory 

description of the process of changing in the free surface level. 

        Figures 5a) and 5b) show changing the liquid free surface elevation in quarter cylindrical tank via time 

at the following forced oscillation frequencies: ω=9.9Hz and ω=5.5Hz, respectively  
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а)                                                         b) 

Figure 5. Time-history of the liquid  free surface level at ω=9.9Hz and ω =5.5Hz 

        It would be noted that these frequencies of lateral harmonic excitations are near values of free liquid 

oscillations. So we see the enormous.
 

        Comparing with the results obtained in [15], we see that the installation of vertical partitions moves the 

spectrum of resonant frequencies towards high frequencies oscillations. It would be noted that the frequency 

of harmonic excitation increasing of liquid elevations. It is the reason to study these effects in non-linear 

statements. 

        Next we have compared the behavior of baffled and un-baffled cylindrical reservoirs under impulse and 

seismic loadings. 

        First, the impulse loading is considered. We suppose that the impulse loading has the form 
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        The behavior of this impulse loading is shown in Figure 6a).  

        For receiving the solution of system (12) we use Laplace transform. We suppose that  
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        Supposing T=3.41 sec, we received data characterized the changing in liquid free surface level via time. 

Figure 6b) shows the time-history of liquid free surface levels in baffled and un-baffled cylindrical tanks. 
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а)                                                         b) 

Figure 6. Impulse loading and time-history of liquid free surface levels. 

        Here the black line denotes the free surface elevation of un-baffled tank, and green line is for the tank 
with the two vertical baffles. 

        For numerical simulation of seismic influence we consider the model seismic impulse as following 
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        Determining mD  from here and returning to Laplace originals one can received at t<T 
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where t>T. 
        Figure 7a) below demonstrates the behavior of seismic loading, and figure 7b) shows the time-history of 
free surface level under the seismic exitation. 
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а)                                                               b) 

Figure 7. Seismic loading and time-history of changing in liquid free surface level 

        Black line here corresponds to reservoir without baffles, and green one is for cylindrical tank with 
vertical partitions. 
        It would be noted that the free surface level does not decrease with time having a periodic behaviour. 
The reason is in limitations of the proposed model consisting in using the classical dynamics equations for 
un-damped systems. 
        From results obtained here one can conclude that baffle installation can be useful for preventing spillage 
of dangerous fillers. In [15] the impulse loading were studied for cylindrical reservoirs with horizontal 
baffles. The frequencies of baffled reservoirs are smaller compares with un-baffled ones. But both 
installation of vertical and horizontal baffles lead to decreasing the level of the free surface elevation. So 
having data about external force excitation it is possible to tune out unwanted frequencies by installing 
appropriate partitions. 

Conclusions 

        The behavior of fluid in cylindrical tanks without partitions and with vertical partitions is investigated. 
The installation of vertical partitions moves the spectrum of resonant frequencies toward high frequency 
oscillations. This will allow us to set off unwanted excitation frequencies at the design stage and prevent loss 
of stability. The proposed approach allows us to carry out the numerical simulation for liquid storage tanks 
with baffles of different forms instead of expensive field experiments. 
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