Higher Order Derivative on Meromorphic Functions in Terms of Subordination

Sh. Najafzadeh *
Department of Mathematics, Payame Noor University, P.O. Box 19395-3697 Tehran, Iran

Abstract

This paper investigates sharp coefficient bounds, integral representation, extreme point, and operator properties of a certain class associated with functions which are meromorphic in the punctured unit disk.

keywords and phrases: Meromorphic function, Coefficient estimate, Extreme point, Integral representation, Integral operator.
2000 Mathematics Subject Classification : 30C45, 30C50.

1 Introduction

Let \sum denote the class of meromorphic functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=3}^{\infty} a_{n} z^{n} \quad\left(a_{n} \geq 0, \quad n \in \mathbb{N}\right) \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in the punctured unit disk $\Delta^{*}=\{z: \quad 0<|z|<1\}$. For $f(z) \in \sum$, Ghanim and Darus [3] were defined a linear operator $I^{k} \quad(k=0,1,2, \ldots)$ as follows:

$$
\begin{align*}
& I^{0} f(z)=f(z) \\
& I^{k} f(z)=z\left(I^{k-1} f(z)\right)^{\prime}+\frac{2}{z}=\frac{1}{z}+\sum_{n=3}^{+\infty} n^{k} a_{n} z^{n} . \tag{1.2}
\end{align*}
$$

For $A=B+(C-B)(1-D),-1 \leq B<C \leq 1$ and $0 \leq D<1$, we let $\sum_{A, B}^{K}$ consists of function $f \in \sum$ satisfying the condition

$$
\begin{equation*}
-\frac{z F^{(4)}(z)}{F^{\prime \prime \prime}(z)}<4 \frac{1+A z}{1+B z}, \tag{1.3}
\end{equation*}
$$

where $F(z)=I^{k} f(z)$ is defined by (1.2).
For other subclass of meromorphic univalent functions, we can see the recent works of many authors in [1] and [2].

2 Main results

In this section we find sharp coefficient bounds and Integral representation for the class $\sum_{A, B}^{k}$.

[^0]Theorem 2.1 Let $f(z) \in \sum$, then $f(z) \in \sum_{A, B}^{k}$ if and only if

$$
\begin{equation*}
\sum_{n=3}^{+\infty} n^{k+1}(n-1)(n-2)[2 n-5+4(B+(C-B)(1-D))] a_{n}<24(C-B)(1-D) . \tag{2.1}
\end{equation*}
$$

The result is sharp for the function $G(z)$ given by

$$
\begin{equation*}
G(z)=\frac{1}{z}+\frac{24(C-B)(1-D)}{n^{k+1}(n-1)(n-2)[2 n-5+4(B+(C-B)(1-D))]} z^{n} \quad(n=3,4, \ldots) \tag{2.2}
\end{equation*}
$$

Proof. Let $f(z) \in \sum_{A, B}^{k}$, then the inequality (1.3) or equivalently

$$
\left|\frac{z F^{(4)}(z)+4 F^{\prime \prime \prime}(z)}{z B F^{(4)}(z)+4[B+(C-B)(1-D)] F^{\prime \prime \prime}(z)}\right|<1,
$$

holds true, therefore by making use of (1.2) we have
$\left|\frac{\sum_{n=3}^{+\infty} n^{k+1}(n-1)(n-2)^{2} a_{n} z^{n-3}}{-24(C-B)(1-D) z^{-4}+\sum_{n=3}^{+\infty} n^{k+1}(n-1)(n-2)[n-3+4(B+(C-B)(1-D))] a_{n} z^{n-3}}\right|<1$.
Since Rez $\leq|z|$ for all z, thus
$\operatorname{Re}\left\{\frac{\sum_{n=3}^{+\infty} n^{k+1}(n-1)(n-2)^{2} a_{n} z^{n-3}}{-24(C-B)(1-D) z^{-4}+\sum_{n=3}^{+\infty} n^{k+1}(n-1)(n-2)[n-3+4(B+(C-B)(1-D))] a_{n} z^{n-3}}\right\}<1$.
By letting $z \rightarrow 1$ through real values, we get the required result.
Conversely, let (2.1) holds true. If we let $z \in \partial \triangle^{*}$, where $\partial \triangle^{*}$ denotes the boundary of \triangle^{*}, then we have

$$
\begin{aligned}
& \leq \frac{z F^{(4)}(z)+4 F^{\prime \prime \prime}(z)}{24(C-B)(1-D)-\sum_{n=3}^{+\infty} n^{k+3}(n-1)(n-2)[n-3+4(B+(C-B)(1-D))]\left|a_{n}\right|}<1 .
\end{aligned}
$$

Thus by the maximum modolus Theorem we conclude $f(z) \in \sum_{A, B}^{k}$.
Now the proof is complete.
Theorem 2.2 If $f(z) \in \sum_{A, B}^{k}$, then

$$
f(z)=\int_{0}^{z} \int_{0}^{z} \int_{0}^{z} \exp \int_{0}^{z} \frac{4(A W(z)-1)}{z(1-B W(z))} d \alpha d \beta d \gamma d \theta
$$

where $A=B+(C-D)(1-D)$ and $|W(z)|<1$.
Proof. Since $f(z) \in \sum_{A, B}^{k}$, so (1.3) holds true or equivalently we have

$$
\left|\frac{z F^{(4)}(z)+4 F^{\prime \prime \prime}(z)}{z B F^{(4)}(z)+4 A F^{\prime \prime \prime}(z)}\right|<1,
$$

where $A=B+(C-D)(1-D)$. Hence

$$
\frac{z F^{(4)}(z)+4 F^{\prime \prime \prime}(z)}{z B F^{(4)}(z)+4 A F^{\prime \prime \prime}(z)}=W(z),
$$

where $|W(z)|<1, z \in \Delta^{*}$. This yields

$$
\frac{F^{4}(z)}{F^{\prime \prime \prime}(z)}=\frac{4(A W(z))-1}{z(1-B W(z))} .
$$

after four times integration we obtain the required result.
Remark. Theorem 2.1 shows that if $f(z) \in \sum_{A, B}^{k}$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{24(C-B)(1-D)}{2 \times 3^{k+1}(1+4 A)}, \quad n=3,4, \ldots \tag{2.3}
\end{equation*}
$$

where $A=B+(C-B)(1-D)$.

3 Extreme points and convex linear combination

Our next theorems involve extreme points and convex linear combination property.
Theorem 3.1 The function $f(z)$ of the form (1.1) belongs to $\sum_{A, B}^{k}$ if and only if it can be expressed by

$$
f(z)=\sum_{n=2}^{+\infty} d_{n} f_{n}(z) \quad d_{n} \geq 0,
$$

where

$$
\begin{aligned}
& f_{2}(z)=z^{-1}, \\
& f_{n}(z)=z^{-1}+\frac{24(C-B)(1-D)}{n^{k+1}(n-1)(n-2)[2 n-5+4(B+(C-B)(1-D))]} z^{n} \\
& \quad\left(n=3,4, \ldots \text { and } \sum_{n=2}^{+\infty} d_{n}=1\right)
\end{aligned}
$$

Proof. Let $f(z)=\sum_{n=2}^{+\infty} d_{n} f_{n}(z)$

$$
\begin{gathered}
=d_{2} f_{2}(z)+\sum_{n=2}^{+\infty} d_{n}\left[z^{-1}+\frac{24(C-B)(1-D)}{n^{k+1}(n-1)(n-2)[2 n-5+4(B+(C-B)(1-D))]} z^{n}\right] \\
=z^{-1}+\sum_{n=3}^{+\infty} \frac{24(C-B)(1-D)}{n^{k+1}(n-1)(n-2)[2 n-5+4(B+(C-B)(1-D))]} d_{n} z^{n} .
\end{gathered}
$$

Now by Theorem 2.1 we conclude that $f(z) \in \sum_{A, B}^{k}$.
Conversely if $f(z)$ is given by (1.1) belongs to $\sum_{A, B}^{k}$, by letting $d_{2}=1-\sum_{n=3}^{+\infty} d_{n}$ where

$$
d_{n}=\frac{n^{k+1}(n-1)(n-2)[2 n-5+4(B+(C-B)(1-D))]}{24(C-B)(1-D)} a_{n} \quad n=3,4, \ldots
$$

we conclude the required result.

Theorem 3.2 The class $\sum_{A, B}^{k}$ is closed under convex linear combination.
Proof. Suppose that the function $f_{1}(z)$ and $f_{2}(z)$ defined by

$$
f_{j}(z)=\frac{1}{z}+\sum_{n=3}^{+\infty} a_{n, j} z^{n} \quad j=1,2, z \in \Delta^{*}
$$

are in the class $\sum_{A, B}^{k}$. Setting

$$
f(z)=\eta f_{1}(z)+(1-\eta) f_{2}(z), \quad(0 \leq \eta<1)
$$

we obtain

$$
f(z)=\frac{1}{z}+\sum_{n=3}^{+\infty}\left(\eta a_{n, 1}+(1-\eta) a_{n, 2}\right) z^{n} .
$$

In the view of Theorem 2.1, we have

$$
\begin{aligned}
& \sum_{n=3}^{+\infty} n^{k+1}(n-1)(n-2)[2 n-5+4(B+(C-B)(1-D))]\left(\eta a_{n, 1}+(1-\eta) a_{n, 2}\right) \\
& =\eta \sum_{n=3}^{+\infty} n^{k+1}(n-1)(n-2)[2 n-5+4(B+(C-B)(1-D))] a_{n, 1} \\
& +(1-\eta) \sum_{n=3}^{+\infty} n^{k+1}(n-1)(n-2)[2 n-5+4(B+(C-B)(1-D))] a_{n, 2} \\
& <\eta[24(C-B)(1-D)]+(1-\eta)[24(C-B)(1-D)] \\
& =24(C-B)(1-D),
\end{aligned}
$$

which completes the proof.

4 Special operators

The main objective of this section is to define two operators on the functions $f \in \sum_{A, B}^{k}$. Furthermore, we verify properties of these operators.
For $f \in \sum_{A, B}^{k}$ we define

1. $\tau^{\gamma}(f(z))=\gamma \int_{0}^{1} u^{\gamma} f(u z) d u, \quad \gamma>1$
2. $L^{*}(a, c) f(z)=\tilde{\phi}(a, c ; z) * f(z)$, where

$$
\tilde{\phi}(a, c ; z)=\frac{1}{z}+\sum_{n=3}^{+\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| a_{n} z^{n}, \quad c \neq 0,-1,-2, \ldots \quad, a \in \mathbb{C}-\{0\},
$$

$(x)_{n}$ is the pochhammer symbol and "*" denotes the Hadamard product.
We note that $\tilde{\phi}(a, c ; z)=\frac{1}{z} 2 F_{1}(1, a, c ; z)$ where

$$
{ }_{2} F_{1}(b, a, c ; z)=\sum_{n=0}^{+\infty} \frac{(b)_{n}(a)_{n}}{(c)_{n}} \frac{z^{n}}{n!}
$$

is the well-known Gaussian hypergeometric function, see [4].

Theorem 4.1 If $f \in \sum_{A, B}^{k}$ then $\tau^{\gamma}(f(z))$ and $L^{*}(a, c) f(z)$ are also in the same class.
Proof. By a simple calculation we conclude that

$$
\tau^{\gamma}(f(z))=\frac{1}{z}+\sum_{n=3}^{+\infty} \frac{\gamma}{\gamma+1+n} a_{n} z^{n}
$$

and since $\frac{\gamma}{\gamma+1+n}$, by theorem 2.1 we conclude the required result. Also by using Hadamdard product we obtain

$$
L^{*}(a, c) f(z)=\frac{1}{z}+\sum_{n=3}^{+\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| a_{n} z^{n}
$$

and we easily conclude the result.

References

[1] M. K. Aouf, On certain class of meromorphic univalent functions with positive coefficient, Rend. Math. Appl., 7(11), No. 2, 209-219 (1999)
[2] N. E. Cho, S.H. Lee and S. Owa, A class of meromorphic univalent functions with positive coefficients, Kobe J. Math., 4 (1), 43-50, (1987)
[3] F. Ghanim and M. Darus, Subordinations for analytic functions defined by the linear operator, American Journal of Scientific Research, 2 (2009), 52-59.
[4] F. Ghanim and M. Darus, Linear operators associted with a subclass of hypergeometric meromorphic uniformaly convex functions, Acta Universitatis Apulensis, 17 (2009), 49-60.

[^0]: *Email addresses: najafzadeh1234@yahoo.ie (Sh. Najafzadeh).

