

Higher Order Derivative on Meromorphic Functions in Terms of Subordination

Sh. Najafzadeh^{*}

Department of Mathematics, Payame Noor University, P.O. Box 19395-3697 Tehran, Iran

Abstract

This paper investigates sharp coefficient bounds, integral representation, extreme point, and operator properties of a certain class associated with functions which are meromorphic in the punctured unit disk.

keywords and phrases: Meromorphic function, Coefficient estimate, Extreme point, Integral representation, Integral operator. 2000 Mathematics Subject Classification : 30C45, 30C50.

1 Introduction

Let \sum denote the class of meromorphic functions of the form

$$f(z) = \frac{1}{z} + \sum_{n=3}^{\infty} a_n z^n \quad (a_n \ge 0, \quad n \in \mathbb{N}),$$
(1.1)

which are analytic and univalent in the punctured unit disk $\Delta^* = \{z : 0 < |z| < 1\}$. For $f(z) \in \Sigma$, Ghanim and Darus [3] were defined a linear operator I^k (k = 0, 1, 2, ...) as follows:

$$I^{0}f(z) = f(z)$$

$$I^{k}f(z) = z(I^{k-1}f(z))' + \frac{2}{z} = \frac{1}{z} + \sum_{n=3}^{+\infty} n^{k}a_{n}z^{n}.$$
(1.2)

For A = B + (C - B)(1 - D), $-1 \le B < C \le 1$ and $0 \le D < 1$, we let $\sum_{A,B}^{K}$ consists of function $f \in \sum$ satisfying the condition

$$-\frac{zF^{(4)}(z)}{F^{'''}(z)} < 4\frac{1+Az}{1+Bz},$$
(1.3)

where $F(z) = I^k f(z)$ is defined by (1.2).

For other subclass of meromorphic univalent functions, we can see the recent works of many authors in [1] and [2].

2 Main results

In this section we find sharp coefficient bounds and Integral representation for the class $\sum_{A,B}^{k}$.

^{*}Email addresses: najafzadeh1234@yahoo.ie (Sh. Najafzadeh).

Theorem 2.1 Let $f(z) \in \sum$, then $f(z) \in \sum_{A,B}^{k}$ if and only if

$$\sum_{n=3}^{+\infty} n^{k+1} (n-1)(n-2) [2n-5+4(B+(C-B)(1-D))]a_n < 24(C-B)(1-D). \quad (2.1)$$

The result is sharp for the function G(z) given by

$$G(z) = \frac{1}{z} + \frac{24(C-B)(1-D)}{n^{k+1}(n-1)(n-2)[2n-5+4(B+(C-B)(1-D))]}z^n \quad (n=3,4,\dots) \quad (2.2)$$

Proof. Let $f(z) \in \sum_{A,B}^{k}$, then the inequality (1.3) or equivalently

$$\left|\frac{zF^{(4)}(z) + 4F^{'''}(z)}{zBF^{(4)}(z) + 4[B + (C - B)(1 - D)]F^{'''}(z)}\right| < 1,$$

holds true, therefore by making use of (1.2) we have

$$\left| \frac{\sum_{n=3}^{+\infty} n^{k+1} (n-1)(n-2)^2 a_n z^{n-3}}{-24(C-B)(1-D)z^{-4} + \sum_{n=3}^{+\infty} n^{k+1} (n-1)(n-2)[n-3+4(B+(C-B)(1-D))]a_n z^{n-3}} \right| < 1.$$

Since $Rez \leq |z|$ for all z, thus

$$Re\left\{\frac{\sum_{n=3}^{+\infty}n^{k+1}(n-1)(n-2)^2a_nz^{n-3}}{-24(C-B)(1-D)z^{-4}+\sum_{n=3}^{+\infty}n^{k+1}(n-1)(n-2)[n-3+4(B+(C-B)(1-D))]a_nz^{n-3}}\right\}<1.$$

By letting $z \to 1$ through real values, we get the required result. Conversely, let (2.1) holds true. If we let $z \in \partial \Delta^*$, where $\partial \Delta^*$ denotes the boundary of Δ^* , then we have

$$\left| \frac{zF^{(4)}(z) + 4F^{\prime\prime\prime}(z)}{zBF^{(4)}(z) + 4[B + (C - B)(1 - D)]F^{\prime\prime\prime}(z)} \right|$$

$$\leq \frac{\sum_{n=3}^{+\infty} n^{k+1}(n-1)(n-2)^2 |a_n|}{24(C - B)(1 - D) - \sum_{n=3}^{+\infty} n^{k+1}(n-1)(n-2)[n-3 + 4(B + (C - B)(1 - D))]|a_n|} < 1.$$

Thus by the maximum modolus Theorem we conclude $f(z) \in \sum_{A,B}^{k}$. Now the proof is complete.

Theorem 2.2 If $f(z) \in \sum_{A,B}^{k}$, then

$$f(z) = \int_0^z \int_0^z \int_0^z exp \int_0^z \frac{4(AW(z) - 1)}{z(1 - BW(z))} d\alpha d\beta d\gamma d\theta$$

where A = B + (C - D)(1 - D) and |W(z)| < 1.

Proof. Since $f(z) \in \sum_{A,B}^{k}$, so (1.3) holds true or equivalently we have

$$\left|\frac{zF^{(4)}(z) + 4F^{'''}(z)}{zBF^{(4)}(z) + 4AF^{'''}(z)}\right| < 1,$$

where A = B + (C - D)(1 - D). Hence

$$\frac{zF^{(4)}(z) + 4F^{'''}(z)}{zBF^{(4)}(z) + 4AF^{'''}(z)} = W(z),$$

where $|W(z)| < 1, z \in \Delta^*$. This yields

$$\frac{F^4(z)}{F'''(z)} = \frac{4(AW(z)) - 1}{z(1 - BW(z))}.$$

after four times integration we obtain the required result.

Remark. Theorem 2.1 shows that if $f(z) \in \sum_{A,B}^{k}$, then

$$|a_n| \le \frac{24(C-B)(1-D)}{2 \times 3^{k+1}(1+4A)}, \quad n = 3, 4, \dots$$
(2.3)

where A = B + (C - B)(1 - D).

3 Extreme points and convex linear combination

Our next theorems involve extreme points and convex linear combination property.

Theorem 3.1 The function f(z) of the form (1.1) belongs to $\sum_{A,B}^{k}$ if and only if it can be expressed by

$$f(z) = \sum_{n=2}^{+\infty} d_n f_n(z) \quad d_n \ge 0$$

where $f_2(z) = z^{-1}$,

$$f_n(z) = z^{-1} + \frac{24(C-B)(1-D)}{n^{k+1}(n-1)(n-2)[2n-5+4(B+(C-B)(1-D))]} z^n$$

$$(n = 3, 4, \dots \text{ and } \sum_{n=2}^{+\infty} d_n = 1)$$

Proof. Let $f(z) = \sum_{n=2}^{+\infty} d_n f_n(z)$

$$= d_2 f_2(z) + \sum_{n=2}^{+\infty} d_n \left[z^{-1} + \frac{24(C-B)(1-D)}{n^{k+1}(n-1)(n-2)[2n-5+4(B+(C-B)(1-D))]} z^n \right]$$
$$= z^{-1} + \sum_{n=3}^{+\infty} \frac{24(C-B)(1-D)}{n^{k+1}(n-1)(n-2)[2n-5+4(B+(C-B)(1-D))]} d_n z^n.$$

Now by Theorem 2.1 we conclude that $f(z) \in \sum_{A,B}^{k}$. Conversely if f(z) is given by (1.1) belongs to $\sum_{A,B}^{k}$, by letting $d_2 = 1 - \sum_{n=3}^{+\infty} d_n$ where

$$d_n = \frac{n^{k+1}(n-1)(n-2)[2n-5+4(B+(C-B)(1-D))]}{24(C-B)(1-D)}a_n \quad n = 3, 4, \dots$$

we conclude the required result.

Theorem 3.2 The class $\sum_{A,B}^{k}$ is closed under convex linear combination.

Proof. Suppose that the function $f_1(z)$ and $f_2(z)$ defined by

$$f_j(z) = \frac{1}{z} + \sum_{n=3}^{+\infty} a_{n,j} z^n \qquad j = 1, 2, \ z \in \Delta^*$$

are in the class $\sum_{A,B}^{k}$. Setting

$$f(z) = \eta f_1(z) + (1 - \eta) f_2(z), \quad (0 \le \eta < 1)$$

 $we \ obtain$

$$f(z) = \frac{1}{z} + \sum_{n=3}^{+\infty} (\eta a_{n,1} + (1-\eta)a_{n,2})z^n.$$

In the view of Theorem 2.1, we have

$$\begin{split} &\sum_{n=3}^{+\infty} n^{k+1} (n-1)(n-2) [2n-5+4(B+(C-B)(1-D))] (\eta a_{n,1}+(1-\eta)a_{n,2}) \\ &= \eta \sum_{n=3}^{+\infty} n^{k+1} (n-1)(n-2) [2n-5+4(B+(C-B)(1-D))] a_{n,1} \\ &+ (1-\eta) \sum_{n=3}^{+\infty} n^{k+1} (n-1)(n-2) [2n-5+4(B+(C-B)(1-D))] a_{n,2} \\ &< \eta [24(C-B)(1-D)] + (1-\eta) [24(C-B)(1-D)] \\ &= 24(C-B)(1-D), \end{split}$$

which completes the proof.

4 Special operators

The main objective of this section is to define two operators on the functions $f \in \sum_{A,B}^{k}$. Furthermore, we verify properties of these operators. For $f \in \sum_{A,B}^{k}$ we define

- 1. $\tau^{\gamma}(f(z)) = \gamma \int_0^1 u^{\gamma} f(uz) du, \quad \gamma > 1$
- 2. $L^*(a,c)f(z) = \tilde{\phi}(a,c;z) * f(z)$, where

$$\tilde{\phi}(a,c;z) = \frac{1}{z} + \sum_{n=3}^{+\infty} \left| \frac{(a)_{n+1}}{(c)_{n+1}} \right| a_n z^n, \quad c \neq 0, -1, -2, \dots, a \in \mathbb{C} - \{0\},$$

 $(x)_n$ is the pochhammer symbol and " * " denotes the Hadamard product. We note that $\tilde{\phi}(a,c;z)=\frac{1}{z}_2F_1(1,a,c;z)$ where

$$_{2}F_{1}(b, a, c; z) = \sum_{n=0}^{+\infty} \frac{(b)_{n}(a)_{n}}{(c)_{n}} \frac{z^{n}}{n!}$$

is the well-known Gaussian hypergeometric function, see [4].

Theorem 4.1 If $f \in \sum_{A,B}^{k}$ then $\tau^{\gamma}(f(z))$ and $L^{*}(a,c)f(z)$ are also in the same class.

Proof. By a simple calculation we conclude that

$$\tau^{\gamma}(f(z)) = \frac{1}{z} + \sum_{n=3}^{+\infty} \frac{\gamma}{\gamma + 1 + n} a_n z^n$$

and since $\frac{\gamma}{\gamma+1+n}$, by theorem 2.1 we conclude the required result. Also by using Hadamdard product we obtain

$$L^{*}(a,c)f(z) = \frac{1}{z} + \sum_{n=3}^{+\infty} \left| \frac{(a)_{n+1}}{(c)_{n+1}} \right| a_{n} z^{n},$$

and we easily conclude the result.

References

- M. K. Aouf, On certain class of meromorphic univalent functions with positive coefficient, Rend. Math. Appl., 7(11), No. 2, 209-219 (1999)
- [2] N. E. Cho, S.H. Lee and S. Owa, A class of meromorphic univalent functions with positive coefficients, Kobe J. Math., 4 (1), 43-50, (1987)
- [3] F. Ghanim and M. Darus, Subordinations for analytic functions defined by the linear operator, American Journal of Scientific Research, 2 (2009), 52-59.
- [4] F. Ghanim and M. Darus, Linear operators associted with a subclass of hypergeometric meromorphic uniformaly convex functions, Acta Universitatis Apulensis, 17 (2009), 49-60.