"Science Stays True Here" S S PU b $

Journal of Mathematics and Statistical Science (ISSN 2411-2518), Vol.5, 15-25 | Science Signpost Publishing

Bayesian Sequential Estimation of the Parameter
of a Class of Life Distributions

Mohamed Tahir

Department of Statistics, Sultan Qaboos University, Muscat, Oman

Abstract

A Bayesian sequential procedure for estimating the parameter of a class of life distributions under the squared
loss is proposed. It is assumed that the cost per observation is one unit and that the parameter is the value of a
random variable having the Inverse Gamma distribution with known parameters. The procedure has two
components, a stopping time and the Bayes estimator based on the observations taken up to the stopping time. An
upper bound is obtained for the Bayes regret, that is used as a measure of the performance of the proposed. It is
found that the proposed procedure performs better than the best fixed-sample-size procedure, asymptotically.
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1. Introduction

Consider the class of life distributions with probability density function of the form

g'x) -9

fo(x) = 5 e ° ifx > x, )
0 if not,
where 6 is an unknown positive number, g is a differentiable real-valued function such that g(x,) = 0,
g'(x) >0 for x >x, and x, = 0 is a known number. This class includes distributions that have been
widely used in the analysis of data arising from life-testing experiments. In fact, this class contains the
following probability distributions:

1

ge_g for x >0 (g(x) =x and x, = 0);

a) The Exponential distribution with p.d.f. fp(x) =
x¥

b) The Weibull distribution with p.d.f. fy(x) = gxy‘le_? forx >0 (g(x)=x¥ with y known and

xo = O),

c) The Pareto distribution with p.d.f. fa(x) = %x‘é‘l for x >1 (g(x) =Inx and x5 =1)
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2

d) The Rayleigh distribution with p.d.f. fy(x) = %xe_% forx >0 (g(x) = x? and x, = 0)

1
e) The Burr distribution with p.d.f. fy(x) = %(1 +xB)7" for x>0 (g(x) = In(1 + xP) with B
known and x, = 0).

Let X;, X,,... be independent observations to be taken one at a time from the population with
probability density function given by (1). The sampling process will stop after N observations have been

taken, at which time the parameter 6 is estimated by ®, subject to the loss function
L,(68,0)) = a(®y —8)2 + N, 2

where a is a known positive and ®, is the Bayes estimator of 8 obtained under the assumption that 8
is a value of a random variable ® whose prior distribution is the Inverse Gamma distribution with
parameters a, and B,; thatis ® has prior density function

Bo® B
£(0) = T(ag)6@0+i € 6 ifg >0

0 if not,

3)

where a, and B, are known positive numbers and I'(a,) = f;o t%~le=tdt. The loss function in (2)

includes the loss due to estimation error, (®y — 8)2%, the sampling cost, which is based on one unit per
observation and the number a, which is determined by the importance of estimation error relative to the
cost of sampling. The sample size N is not chosen in advance. It is determined as a stopping time, which
is a random variable determined by X;, X,, ... This is accomplished in Section 2. An upper bound for the
Bayes regret incurred by the sequential procedure (N,®y) is provided in Section 3. Finally, some
asymptotic results, as a — oo, are presented in Section 4. The advantage of using a sequential estimation
procedure is that it can be constructed with a substantially smaller number of observations compared to

any equally reliable procedure based on a random sample with a predetermined size.

Bayesian sequential estimation problems were studied by several authors, notably Bickel and Yahav
(1969), Alvo (1977), Rasmussen (1980), Shapiro and Wardrop (1980), Woodroofe (1985), Tahir (1989),
Woodroofe and Hardwick (1990) and Hwang (1997) and Rekab, Tahir (2004) and Jokiel-Rokita (2008).
Recently, Tahir (2016) considered Bayesian sequential estimation of the inverse of the Pareto shape
parameter. He proposed a sequential procedure and obtained a second-order asymptotic expansion for the

Bayes regret incurred by the proposed procedure, under the assumption that the prior density function has
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a compact support.

2. The Proposed Stopping Time

Suppose that N is chosen in advance. If x; > x,,...,xy > x, are observed values of X, ..., Xy,

respectively, then the likelihood function is given by

N N
N 1

hy(8) = | | g'(xl-)] exp {—Nln@ — 537,\,} for 6 > 0, where yy = Nz g(x;).

i=1 i=

=1

It follows that the posterior distribution of ®, given that X; = x4, ..., Xy = xy, based on (3), is the
Inverse Gamma distribution with parameters ay = ag+ N and By = o + Nyy. Thus, the Bayes

estimate of 6 is the mean of the posterior distribution of ®; that is

By

ay—1

eN = E{@le = xl, 'XN = ‘XN} =

Definition 2.1 The risk incurred by estimating 6 by ©, under the loss (2) is defined as
Ra(N,0) = Eg[La(0,0y)] = aEg[(Oy — 6)?] + N

for any value of a > 0, where Ey denotes conditional expectation, given ® = 6 and

_ ﬂo +nYn

= E109|Xy, .., X
G)n {®| 1’ 4 n} n+a0—1

n
_ 1
with == g(t) @
=
for n > 1.
Using (4) with n = N and the fact that, given ® = 6, Y3, ...,Yy are independent random variables

with common distribution the Exponential distribution with mean 8 yields

_ _ af?
R,(N,8) = aEg[(Yy — 0 + Uy)?] + N = aEg[(Yy —0)?]+ N = - taw+ N

for any value of a > 0, where
Bo 1—a

0 p— p—
UN == N i ao — 1 + N n ao — 1YN andTN = ZEQ[(YN - G)UN] + EQ[UI%]]
Next,
= BoEgl(Yy —0)] (1 — ap)Egl(Yy — 6)?] (1—ay)6? (1)
E Y - = = — J—
ol(y = 6)Un] N+ay—1 * N+a,—1 NN+a,—-1) N
and

17



Bayesian Sequential Estimation of the Parameter of a Class of Life Distributions

EglUR] <

2B + (1 — @p)0]* | 2(1 — ag)*Ep[(Yy — 6)%] _ . (1)

(N + ap — 1)2 (N +ay—1)2 N

ab?

as N - . Thus, if N is large, then R,(N,0) zT+ N for any value of a > 0. It follows that the

approximate risk is minimized with respect to N by choosing N adjacent to N, = 6+/a. The minimum risk
or the risk incurred by the best fixed-sample-size procedure is R,(N,, 8)~260+/a for large values of a.
The sample size N, cannot be used in practice since it depends on the unknown value of 8. Thus, there is
no fixed-sample-size procedure that attains the minimum risk in practice. To overcome this problem, we
use the stopping time N, defined as follows: Observe the values of X;, ..., X, and compute the value of
®,, using (4) for n = m, where m = 2 is an initial sample size chosen in advance. Stop the sampling

process after taking N observations, where

N = N, = the smallest integer n > m such thatn > /a®,,. (5)

The proposed sequential procedure is the pair (N,®y), where ®y = E{O|Xy, ..., Xy} and is
defined by Oy (w) = E{®|Xy, ..., Xn(w)} foreach w € 2. Note that N(w) is an integer.

3. Analysis of the Bayes regret

The performance of the sequential procedure (N,®,) is measured by the Bayes regret, (@, Bo)-
Definition 3.1 The regret, r,(6), incurred by the procedure (N,®y) is the difference between the
risk incurred by the sequential procedure (N,®,) and the risk incurred by the best fixed-sample-size

procedure; that is
1,(0) = Eg[L,(6,0))] — 26vVa = Egla(®y — 6)? + N] — 26+/a
for a > 0.

Definition 3.2 The Bayes regret incurred by the procedure (N, ®y) is defined by

o fo) = | ra(@)5(@)ae,
0
for a > 0.
For n > 1, let D,, denote the o-algebra generated by X3, ..., X,,. Then, the conditional variance of

®, given D, is
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¥,)? 0%
E{(® — E{O|D, })2|D,} = — Lol _

(ao+n-1)2(ag+n—2)  ag+n—2' (6)

Next, let (Q, &, P) denote the probability space on which Xj, ..., X, are defined and let N be
defined by (5). Then, Dy ={D € & D n{N < n} € D,} represents the information available up to the
sampling stage N.

Lemma 3.1. For any positives values of a, and S,

E{®|Dy} = Oy w.p.1 (P)
and

2

®
_ 2 - N

Proof. Forany D € &,

fE{@IDN} dP = Z f E{®|D,} dP = Z f ©,dP =Df ®ydP,

D n=1pn{N=n} n=1pn{N=n}
since ©, = E{®|D,} for n > 1. Likewise, forany D € §,

[RACEEREEN S D | re-omar

D n=1pn{N=n}

03 03
N - Sy . S
ag+n—2

N+ay—2
n=1pn{N=n} D

by using (6), to complete the proof.

To analyze the Bayes regret, observe first that 7, (a,, 8,) can be rewritten as

fa(@o, Bo) = a’E[(Oy — ©)?] + E[N] — 2aE[6] (7)
for a > 0. Next, condition on Dy in the first and third expectations in (8) and apply Lemma 3.1 to
obtain

2

®
7. (ao, Bo) = aE [WZ—Z] + E[N] - 2VaE[®, ]

a
_E[m@),zv+N+ao—2—2\/E®N]+2—ao

N+ag—2 2
—F [N+;‘0_2( —_ ] +2—a, (8)
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Theorem 3.1. If a, > 2, then

@

Bova

‘Fa(ao, ﬁo) < +2 - Qo

for a > 0.

Proof. Since N > +/a®y, by definition of N, it follows that
N+ayg—2 _a—2 N ag— 2

Oy = +—=—-0y > >0
Va Y7o Va va "7 va
if g > 2. Next,
N+ay—-2 o _N—1+a0—1 0. <® ® +a0—1
\/E N — \/a \/a N = YN-1 N \/a
Oy ap—1 1 ag—1

)

Oo
< + <—+ —
N+ay—2 Va Va Va JVa

if a¢g > 2, since N —1 < a®y_q, by definition of N and

N+a0—1_ ®N

Oy SOy ——— =0y + —r,
NT="NNta,—2" N "Nta,—2

by (4). Thus, if ay > 2, then

£ a <N+a0—2 @)2 <E
N+ay—2 Va NI =

by using (9) and the fact that N > +/a®,. Since

ag] at 11
sl
N]™ Va Loy

1 1

®_=WSE{%|DN} w.p.1(P)
N N

by Jensen's inequality, it follows that
a ay+N—2 2] at (11 a3 (*1 al
E ( —@) s—st:—f— 6)d6 = 10
[a0+N—2 Va N Va 1O \/Eoef() Bova (10
if @y > 2. Now substitute (10) in (8) to complete the proof.

Corollary 3.1. If ay > 2, then

llm 'Fa(ao, ﬁo) =2 - (24))
a—o
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for any value of 3, > 0.

Proof. (8) implies that 7, (@, By) =2 —ay for a > 0. Also, if g > 2,

L)

Bova

Ta(o, Bo) < +2—ay—>2—apasa— x,

by Theorem 4.1. Thus,

2 — ay < liminf 7, (ag, Bo) < limsup 7y (@, Bo) < 2 — g
a—oo

a-»
if @y > 2. The corollary follows.

If a is large and a, > 2, then 7,(aq, By ) < 0, by Corollary 3.1. This means that the sequential
procedure (N,®,) performs better than the best fixed-sample-size procedure, in the sense that it has a
smaller Bayes risk. Table 1 below shows that the upper bound r;, say, for the Bayes regret in Theorem
3.1 gets very close to 2 — a, for very large values of a. Table 2, on the other hand, shows that when g,

is very large and «a is not large, the upper bound 7, gets very close to 2 — a, for values of a starting
at 30.

Table 1
a 30 50 100 500 1000 5000 10000 50000 100000 500000
a, 3 3 3 3 3 3 3 3 3 3
Bo 5 5 5 5 5 5 5 5 5 5
Ty -0.014 | -0.236 -0.46 -0.758 -0.829 -0.924 -0.946 -0.976 -0.983 -0.992
2—a -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Table 2
a 30 50 100 500 2500 30 50 100 500 2500
ag 3 3 3 3 3 5 5 5 5 5
Bo 500 500 500 500 500 500 500 500 500 500
Ty -0.990 | -0.992 | -0.995 -0.998 -0.999 -2.954 -2.965 -2.975 -2.989 -2.995
2—a, -1 -1 -1 -1 -1 -3 -3 -3 -3 -3
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4. Asymptotic results

Lemma4.1. Let N be defined by (5).

1
(i) If @g>1, then N+ ay—1>/Boa* w.p.1 forany value of a > 0.
(il) Oy = E{O|Xy, ..., Xy} = 0 w.p.1as a - «.
N
(iii) \/—E—>0w.p.1as a— o,

Proof. If ay > 1, then

Bo + NYy BoVa
N+ag—1>N>a0, = >
%o Vady =vay— -1 N+ag—1

for any value of a > 0, by using the definition of N and (4) with n = N. Thus,

1

(N+ag—1)?>> fpva= N+ay—1>,/B,a%
for a > 0. For (ii), observe that E{®|X,...,X,}, n > 1, is a sequence of martingales such that @, =
E{®|Xq, ..., X} — ®w.p.1as n —»a by the Martingale Convergence Theorem. This implies that

Oy —m Ow.p.1as a —» o, since N »>oow.p.1as a — o, by (i). For (iii), use the fact that

m—1
+

N
METETE

for any value of a > 0, by definition of N to obtain that

iminf O < lminf < i < imeup (00 + ).
so that
0 < liminf — < limsup ﬂ <6 w.np.l
a0 \/_ aso Na
by (ii). Thus, \/N_—>@Wp 1as a > o,

The following proposition shows that % — @ as a — oo in mean square or in L2,

Proposition 4.1. Let N be defined by (6). Then,

im=|(%-e) | =0
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ooy el - ol
e ofpu) = L stom = Lo, - orasa

by Assertions (ii) and (iii) of Lemma 4.1. It follows that

liminfE[ ] = liminf E —@N] > E[67?]

a—oo a—o

by Fatou's Lemma. Moreover, N < va®, + m — 1, by definition of N. This implies that

li E[N0]<E[@l' (@ +m_1)]
imsu —0o| < imsu ;
a—>°0p va a—»oop N va

or

limsup E —0] < E[6?]

a—o

by Fatou's Lemma and Assertion (ii) of Lemma 4.1. Thus,

lim E %@] = E[02]. (12)

a—oo a

Next, use Fatou's Lemma and Assertion (ii) of Lemma 4.1 to obtain

liminf E [(\I/V—a)z] > E[6?].

a—oo

Also,

N\?2 2(m—1) (m —1)2

since N <+/a®y +m — 1, by definition of N. It follows that

limsup E [( N )
1msu -
ol AW

by Fatou's Lemma and Assertion (ii) of Lemma 4.1. Therefore,

2
< E[6?]
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lim E [(\]/V—_)Z] - E[07]. (13)

a—oo a
Now take the limitas a — c« in (11) and use (12) and (13) to obtain
N 2
lim E [(— - @) ] = E[62] - 2E[07] + E[6?] = 0.
Va
5. Conclusion

We proposed a Bayesian sequential procedure for estimating the parameter of a class of life

distributions under the squared loss and using the Inverse Gamma distribution as the prior distribution. We

obtained an upper bound for the Bayes regret that was used as a measure of the performance of the

proposed procedure. We found that, asymptotically, the regret can be negative, which means that the

proposed procedure performs better than the best fixed-sample-size procedure, asymptotically.
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