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Abstract 
A Bayesian sequential procedure for estimating the parameter of a class of life distributions under the squared 

loss is proposed. It is assumed that the cost per observation is one unit and that the parameter is the value of a 

random variable having the Inverse Gamma distribution with known parameters.  The procedure has two 

components, a stopping time and the Bayes estimator based on the observations taken up to the stopping time. An 

upper bound is obtained for the Bayes regret, that is used as a measure of the performance of the proposed. It is 

found that the proposed procedure performs better than the best fixed-sample-size procedure, asymptotically. 

Keywords: Bayes estimator, Bayes regret, Jensen's inequality, Fatou’s Lemma, martingale, posterior 
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1. Introduction 

Consider the class of life distributions with probability density function of the form 

                     𝑓𝜃(𝑥) = �
𝑔′(𝑥)
𝜃

𝑒−
𝑔(𝑥)
𝜃   if 𝑥 > 𝑥0    

 0         if not,       
�                           (1) 

where 𝜃 is an unknown positive number, 𝑔 is a differentiable real-valued function such that 𝑔(𝑥0) = 0, 

𝑔′(𝑥) > 0 for 𝑥 > 𝑥0 and 𝑥0 ≥ 0 is a known number. This class includes distributions that have been 

widely used in the analysis of data arising from life-testing experiments. In fact, this class contains the 

following probability distributions: 

a) The Exponential distribution with p.d.f. 𝑓𝜃(𝑥) = 1
𝜃
𝑒−

𝑥
𝜃 for 𝑥 > 0 (𝑔(𝑥) = 𝑥 and 𝑥0 = 0); 

b) The Weibull distribution with p.d.f. 𝑓𝜃(𝑥) = 𝛾
𝜃
𝑥𝛾−1𝑒−

𝑥𝛾

𝜃  for 𝑥 > 0  (𝑔(𝑥) = 𝑥𝛾 with 𝛾 known and 

𝑥0 = 0); 

c) The Pareto distribution with p.d.f. 𝑓𝜃(𝑥) = 1
𝜃
𝑥−

1
𝜃−1  for 𝑥 > 1 (𝑔(𝑥) = ln 𝑥  and 𝑥0 = 1)  
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d) The Rayleigh distribution with p.d.f. 𝑓𝜃(𝑥) = 2𝑥
𝜃
𝑒−

𝑥2

𝜃  for 𝑥 > 0 (𝑔(𝑥) = 𝑥2 and 𝑥0 = 0)  

e) The Burr distribution with p.d.f. 𝑓𝜃(𝑥) = 1
𝜃
�1 + 𝑥𝛽�−

1
𝜃−1  for 𝑥 > 0 (𝑔(𝑥) = ln�1 + 𝑥𝛽� with 𝛽 

known and 𝑥0 = 0). 

Let 𝑋1, 𝑋2, … be independent observations to be taken one at a time from the population with 

probability density function given by (1). The sampling process will stop after 𝑁 observations have been 

taken, at which time the parameter 𝜃 is estimated by Θ𝑁, subject to the loss function                                                         

                      𝐿𝑎(𝜃, Θ𝑁) = 𝑎(Θ𝑁 − 𝜃)2 + 𝑁,                            (2) 

where 𝑎 is a known positive and Θ𝑁 is the Bayes estimator of 𝜃 obtained under the assumption that 𝜃 

is a value of a random variable Θ whose prior distribution is the Inverse Gamma distribution with 

parameters 𝛼0 and 𝛽0; that is Θ has prior density function                                       

                  𝜉(𝜃) = �
𝛽0
𝛼0

Γ(𝛼0)𝜃𝛼0+1
𝑒−

𝛽0
𝜃    if 𝜃 > 0     

 0          if not,   
�                         (3) 

where 𝛼0 and 𝛽0 are known positive numbers and Γ(𝛼0) = ∫ 𝑡𝛼0−1𝑒−𝑡𝑑𝑡.∞
0  The loss function in (2) 

includes the loss due to estimation error, (Θ𝑁 − 𝜃)2, the sampling cost, which is based on one unit per 

observation and the number 𝑎, which is determined by the importance of estimation error relative to the 

cost of sampling. The sample size N is not chosen in advance.  It is determined as a stopping time, which 

is a random variable determined by 𝑋1, 𝑋2, … This is accomplished in Section 2. An upper bound for the 

Bayes regret incurred by the sequential procedure (𝑁, Θ𝑁) is provided in Section 3. Finally, some 

asymptotic results, as 𝑎 → ∞, are presented in Section 4. The advantage of using a sequential estimation 

procedure is that it can be constructed with a substantially smaller number of observations compared to 

any equally reliable procedure based on a random sample with a predetermined size. 

Bayesian sequential estimation problems were studied by several authors, notably Bickel and Yahav 

(1969), Alvo (1977), Rasmussen (1980), Shapiro and Wardrop (1980), Woodroofe (1985), Tahir (1989), 

Woodroofe and Hardwick (1990) and Hwang (1997) and Rekab, Tahir (2004) and Jokiel-Rokita (2008). 

Recently, Tahir (2016) considered Bayesian sequential estimation of the inverse of the Pareto shape 

parameter. He proposed a sequential procedure and obtained a second-order asymptotic expansion for the 

Bayes regret incurred by the proposed procedure, under the assumption that the prior density function has 
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a compact support. 

2. The Proposed Stopping Time 

Suppose that 𝑁 is chosen in advance. If 𝑥1 > 𝑥0, … , 𝑥𝑁 > 𝑥0 are observed values of 𝑋1, … ,𝑋𝑁, 

respectively, then the likelihood function is given by 

ℎ𝑁(𝜃) = ��𝑔′(𝑥𝑖)
𝑁

𝑖=1

� 𝑒𝑥𝑝 �−𝑁 ln 𝜃 −
𝑁
𝜃
𝑦�𝑁�  for 𝜃 > 0, where 𝑦�𝑁 =

1
𝑁
�𝑔(𝑥𝑖).
𝑁

𝑖=1

    

    It follows that the posterior distribution of Θ, given that 𝑋1 = 𝑥1, … ,𝑋𝑁 = 𝑥𝑁 , based on (3), is the 

Inverse Gamma distribution with parameters 𝛼𝑁 = 𝛼0 + 𝑁  and 𝛽𝑁 = 𝛽0 + 𝑁𝑦�𝑁 .  Thus, the Bayes 

estimate of 𝜃 is the mean of the posterior distribution of Θ; that is 

                    θ𝑁 = 𝐸{Θ|𝑋1 = 𝑥1, … ,𝑋𝑁 = 𝑥𝑁} =
𝛽𝑁

𝛼𝑁 − 1
.                        

Definition 2.1 The risk incurred by estimating 𝜃 by Θ𝑁 under the loss (2) is defined as 

𝑅𝑎(𝑁,𝜃) = 𝐸𝜃[𝐿𝑎(𝜃, Θ𝑁)] = 𝑎𝐸𝜃[(Θ𝑁 − 𝜃)2] + 𝑁 

for any value of 𝑎 > 0, where 𝐸𝜃 denotes conditional expectation, given Θ = θ and 

            Θ𝑛 =  𝐸{Θ|𝑋1, … ,𝑋𝑛} =
𝛽0 + 𝑛𝑌�𝑛
𝑛 + 𝛼0 − 1

 with 𝑌�𝑛 =
1
𝑛
�𝑔(𝑋𝑖)            (4)
𝑛

𝑖=1

 

for 𝑛 ≥ 1.  

Using (4) with 𝑛 = 𝑁 and the fact that, given Θ = 𝜃, 𝑌1, … ,𝑌𝑁 are independent random variables 

with common distribution the Exponential distribution with mean 𝜃 yields 

𝑅𝑎(𝑁,𝜃) = 𝑎𝐸𝜃[(𝑌�𝑁 − 𝜃 + 𝑈𝑁)2] + 𝑁 = 𝑎𝐸𝜃[(𝑌�𝑁 − 𝜃)2] + 𝑁 =
𝑎𝜃2

𝑁
+ 𝑎𝑟𝑁 + 𝑁 

for any value of 𝑎 > 0, where 

𝑈𝑁 =
𝛽0

𝑁 + 𝛼0 − 1
+

1 − 𝛼0
𝑁 + 𝛼0 − 1

𝑌�𝑁 and 𝑟𝑁 = 2𝐸𝜃[(𝑌�𝑁 − 𝜃)𝑈𝑁] + 𝐸𝜃[𝑈𝑁2]. 

    Next,  

𝐸𝜃[(𝑌�𝑁 − 𝜃)𝑈𝑁] =
𝛽0𝐸𝜃[(𝑌�𝑁 − 𝜃)]
𝑁 + 𝛼0 − 1

+
(1 − 𝛼0)𝐸𝜃[(𝑌�𝑁 − 𝜃)2]

𝑁 + 𝛼0 − 1
=

(1 − 𝛼0)𝜃2

𝑁(𝑁 + 𝛼0 − 1)
= 𝑜 �

1
𝑁
� 

and 
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𝐸𝜃[𝑈𝑁2] ≤
2[𝛽0 + (1 − 𝛼0)𝜃]2

(𝑁 + 𝛼0 − 1)2
+

2(1 − 𝛼0)2𝐸𝜃[(𝑌�𝑁 − 𝜃)2]
(𝑁 + 𝛼0 − 1)2

=  𝑜 �
1
𝑁
� 

as 𝑁 → ∞.  Thus, if 𝑁 is large, then 𝑅𝑎(𝑁, 𝜃) ≈ 𝑎𝜃
2

𝑁
+ 𝑁 for any value of 𝑎 > 0.  It follows that the 

approximate risk is minimized with respect to N by choosing N adjacent to 𝑁𝑎 = 𝜃√𝑎. The minimum risk 

or the risk incurred by the best fixed-sample-size procedure is 𝑅𝑎(𝑁𝑎, 𝜃)≈ 2𝜃√𝑎 for large values of 𝑎. 

The sample size 𝑁𝑎 cannot be used in practice since it depends on the unknown value of 𝜃. Thus, there is 

no fixed-sample-size procedure that attains the minimum risk in practice. To overcome this problem, we 

use the stopping time 𝑁, defined as follows: Observe the values of 𝑋1, … ,𝑋𝑛 and compute the value of 

Θ𝑛 using (4) for 𝑛 ≥ 𝑚, where 𝑚 ≥ 2 is an initial sample size chosen in advance. Stop the sampling 

process after taking 𝑁 observations, where 

            𝑁 = 𝑁𝑎 = the smallest integer 𝑛 ≥ 𝑚 such that 𝑛 > √𝑎Θ𝑛.                    (5) 

 The proposed sequential procedure is the pair (𝑁, Θ𝑁),  where Θ𝑁 = 𝐸{Θ|𝑋1, … ,𝑋𝑁}  and is 

defined by Θ𝑁(𝜔) = 𝐸�Θ�𝑋1, … ,𝑋𝑁(𝜔)� for each 𝜔 ∈ 𝛺. Note that 𝑁(𝜔) is an integer. 

3. Analysis of the Bayes regret 

The performance of the sequential procedure (𝑁, Θ𝑁) is measured by the Bayes regret, 𝑟̅𝑎(𝛼0,𝛽0).  

Definition 3.1 The regret, 𝑟𝑎(𝜃), incurred by the procedure (𝑁, Θ𝑁) is the difference between the 

risk incurred by the sequential procedure (𝑁, Θ𝑁) and the risk incurred by the best fixed-sample-size 

procedure; that is 

𝑟𝑎(𝜃) = 𝐸𝜃[𝐿𝑎(𝜃, Θ𝑁)] − 2θ√𝑎 = 𝐸𝜃[𝑎(Θ𝑁 − 𝜃)2 + 𝑁] − 2𝜃√𝑎 

for 𝑎 > 0.  

Definition 3.2 The Bayes regret incurred by the procedure (𝑁, Θ𝑁) is defined by 

𝑟̅𝑎(𝛼0,𝛽0) = � 𝑟𝑎(𝜃)𝜉(𝜃)𝑑𝜃,
∞

0
 

for 𝑎 > 0.  

For 𝑛 ≥ 1, let 𝒟𝑛 denote the 𝜎-algebra generated by 𝑋1, … ,𝑋𝑛. Then, the conditional variance of 

Θ, given 𝒟𝑛, is 
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        𝐸{(Θ − 𝐸{Θ|𝒟𝑛�})2|𝒟𝑛�} = (𝛽0+𝑛𝑌�𝑛)2

(𝛼0+𝑛−1)2(𝛼0+𝑛−2) = Θ𝑛
2

𝛼0+𝑛−2
.                      (6) 

 Next, let (Ω,𝔉,𝑃) denote the probability space on which 𝑋1, … ,𝑋𝑛 are defined and let 𝑁 be 

defined by (5). Then, 𝒟𝑁 = {𝐷 ∈ 𝔉:𝐷 ∩ {𝑁 ≤ 𝑛} ∈ 𝒟𝑛} represents the information available up to the 

sampling stage 𝑁. 

Lemma 3.1. For any positives values of 𝛼0 and 𝛽0, 

𝐸{Θ|𝒟𝑁�} = Θ𝑁 𝑤.𝑝. 1 (𝑃)  

and 

 𝐸{(Θ − Θ𝑁)2|𝒟𝑁} =  
Θ𝑁
2

𝑁 + 𝛼0 − 2
  𝑤.𝑝. 1 (𝑃). 

Proof. For any 𝐷 ∈ 𝔉, 

� 𝐸{Θ|𝒟𝑁�} 𝑑𝑃 = � � 𝐸{Θ|𝒟𝑛�} 𝑑𝑃 = � � Θ𝑛𝑑𝑃 =
𝐷∩{𝑁=𝑛}

� Θ𝑁𝑑𝑃,
𝐷

∞

𝑛=1𝐷∩{𝑁=𝑛}

∞

𝑛=1𝐷

 

since Θ𝑛 = 𝐸{Θ|𝒟𝑛�} for 𝑛 ≥ 1. Likewise, for any 𝐷 ∈ 𝔉, 

 

� 𝐸{(Θ − Θ𝑁)2|𝒟𝑁}𝑑𝑃 = � � 𝐸{(Θ − Θ𝑛)2|𝒟𝑛}𝑑𝑃
𝐷∩{𝑁=𝑛}

∞

𝑛=1𝐷

 

                            = � �
Θ𝑛
2

𝛼0 + 𝑛 − 2
𝑑𝑃

𝐷∩{𝑁=𝑛}

∞

𝑛=1

= �
Θ𝑁
2

𝑁 + 𝛼0 − 2
  𝑑𝑃,

𝐷

 

                                        

by using (6), to complete the proof.  

To analyze the Bayes regret, observe first that 𝑟̅𝑎(𝛼0,𝛽0) can be rewritten as  

               𝑟̅𝑎(𝛼0,𝛽0) = 𝑎2𝐸[(Θ𝑁 − Θ)2] + 𝐸[𝑁] − 2𝑎𝐸[Θ]                              (7) 

for 𝑎 > 0.  Next, condition on 𝒟𝑁 in the first and third expectations in (8) and apply Lemma 3.1 to 

obtain 

𝑟̅𝑎(𝛼0,𝛽0) = 𝑎𝐸 �
Θ𝑁
2

𝑁 + 𝛼0 − 2
� + 𝐸�𝑁] − 2√𝑎E[Θ𝑁� 

= 𝐸 �
𝑎

𝛼0 + 𝑁 − 2
Θ𝑁
2 + 𝑁 + 𝛼0 − 2 − 2√𝑎Θ𝑁� + 2 − 𝛼0 

= 𝐸 � 𝑎
𝑁+𝛼0−2

�𝑁+𝛼0−2
√𝑎

− Θ𝑁�
2
� + 2 − 𝛼0.                                    (8) 
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Theorem 3.1. If 𝛼0 > 2, then 

𝑟̅𝑎(𝛼0,𝛽0) ≤
𝛼03

𝛽0√𝑎
+ 2 − 𝛼0 

for 𝑎 > 0.   

Proof. Since 𝑁 > √𝑎Θ𝑁, by definition of 𝑁, it follows that 
𝑁 + 𝛼0 − 2

√𝑎
− Θ𝑁 =

𝛼0 − 2
√𝑎

+
𝑁
√𝑎

− Θ𝑁 >
𝛼0 − 2
√𝑎

> 0 

if 𝛼0 > 2.  Next, 

 

  0 <
𝑁 + 𝛼0 − 2

√𝑎
− Θ𝑁 =

𝑁 − 1
√𝑎

+
𝛼0 − 1
√𝑎

− Θ𝑁 ≤ Θ𝑁−1 − Θ𝑁 +  
𝛼0 − 1
√𝑎

       

                          ≤
Θ𝑁

𝑁 + 𝛼0 − 2
+
𝛼0 − 1
√𝑎

≤
1
√𝑎

+
𝛼0 − 1
√𝑎

=
𝛼0
√𝑎

                                              (9) 

                  

if 𝛼0 > 2, since 𝑁 − 1 ≤ 𝑎Θ𝑁−1, by definition of 𝑁 and 

Θ𝑁−1 ≤ Θ𝑁
𝑁 + 𝛼0 − 1
𝑁 + 𝛼0 − 2

= Θ𝑁 +
Θ𝑁

𝑁 + 𝛼0 − 2
, 

by (4). Thus, if 𝛼0 > 2, then 

  𝐸 �
𝑎

𝑁 + 𝛼0 − 2
�
𝑁 + 𝛼0 − 2

√𝑎
− Θ𝑁�

2
� ≤ 𝐸 �

𝛼02

𝑁
� ≤

𝛼02

√𝑎
𝐸 �

1
Θ𝑁

� 

by using (9) and the fact that 𝑁 > √𝑎Θ𝑁 . Since 

1
Θ𝑁

=
1

𝐸{Θ|𝒟𝑁} ≤ 𝐸 �
1
Θ
�𝒟𝑁�  𝑤. 𝑝. 1 (𝑃) 

by Jensen's inequality, it follows that  

   𝐸 �
𝑎

𝛼0 + 𝑁 − 2
�
𝛼0 + 𝑁 − 2

√𝑎
− Θ𝑁�

2
� ≤

𝛼02

√𝑎
𝐸 �

1
Θ
� =

𝛼02

√𝑎
�

1
θ

∞

0
𝜉(𝜃)𝑑𝜃 =

𝛼03

𝛽0√𝑎
       (10) 

if 𝛼0 > 2.  Now substitute (10) in (8) to complete the proof. 

Corollary 3.1. If 𝛼0 > 2, then 

lim
𝑎→∞

𝑟̅𝑎(𝛼0,𝛽0) = 2 − 𝛼0     
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for any value of 𝛽0 > 0. 

Proof. (8) implies that 𝑟̅𝑎(𝛼0,𝛽0) ≥ 2 − 𝛼0 for 𝑎 > 0.  Also, if 𝛼0 > 2,  

𝑟̅𝑎(𝛼0,𝛽0) ≤
𝛼03

𝛽0√𝑎
+ 2 − 𝛼0 → 2 − 𝛼0 as 𝑎 → ∞,  

by Theorem 4.1. Thus, 

2 − 𝛼0 ≤ liminf
𝑎→∞

𝑟̅𝑎(𝛼0,𝛽0) ≤ limsup
𝑎→∞

𝑟̅𝑎(𝛼0,𝛽0) ≤ 2 − 𝛼0 

if 𝛼0 > 2. The corollary follows. 

If 𝑎 is large and 𝛼0 > 2, then 𝑟̅𝑎(𝛼0,𝛽0 ) < 0, by Corollary 3.1. This means that the sequential 

procedure (𝑁, Θ𝑁) performs better than the best fixed-sample-size procedure, in the sense that it has a 

smaller Bayes risk. Table 1 below shows that the upper bound 𝑟𝑎∗, say, for the Bayes regret in Theorem 

3.1 gets very close to 2 − 𝛼0 for very large values of 𝑎. Table 2, on the other hand, shows that when 𝛽0 

is very large and 𝛼0 is not large, the upper bound 𝑟𝑎∗ gets very close to 2 − 𝛼0 for values of 𝑎 starting 

at 30. 

Table 1 

𝑎 30 50 100 500 1000 5000 10000 50000 100000 500000 

𝛼0 3 3 3 3 3 3 3 3 3 3 

𝛽0 5 5 5 5 5 5 5 5 5 5 

𝑟𝑎∗ -0.014 -0.236 -0.46 -0.758 -0.829 -0.924 -0.946 -0.976 -0.983 -0.992 

2 − 𝛼0 -1 -1 -1 -1 -1 -1 -1  -1 -1  -1 

Table 2 

𝑎 30 50 100 500 2500 30 50 100 500 2500 

𝛼0 3 3 3 3 3 5 5 5 5 5 

𝛽0 500 500 500 500 500 500 500 500 500 500 

𝑟𝑎∗ -0.990 -0.992 -0.995 -0.998 -0.999 -2.954 -2.965 -2.975 -2.989 -2.995 

2 − 𝛼0   -1   -1 -1 -1 -1 -3 -3 -3   -3 -3 
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4. Asymptotic results 

Lemma 4.1. Let 𝑁 be defined by (5).    

(i) If 𝛼0 > 1, then 𝑁 + 𝛼0 − 1 > �𝛽0𝑎
1
4 w. p. 1 for any value of 𝑎 > 0. 

(ii) Θ𝑁 = 𝐸{Θ|𝑋1, … ,𝑋𝑁} → 𝛩 w. p. 1 as 𝑎 → ∞. 

(iii) 𝑁
√𝑎
→ 𝛩 w. p. 1 as 𝑎 → ∞. 

Proof. If 𝛼0 > 1, then     

𝑁 + 𝛼0 − 1 > 𝑁 > √𝑎Θ𝑁 = √𝑎
𝛽0 + 𝑁𝑌�𝑁
𝑁 + 𝛼0 − 1

>
𝛽0√𝑎

𝑁 + 𝛼0 − 1
           

for any value of 𝑎 > 0, by using the definition of 𝑁 and (4) with 𝑛 = 𝑁.  Thus, 

(𝑁 + 𝛼0 − 1)2 >  𝛽0√𝑎 ⟹  𝑁 + 𝛼0 − 1 > �𝛽0𝑎
1
4 

for 𝑎 > 0. For (ii), observe that 𝐸{Θ|𝑋1, … ,𝑋𝑛}, n ≥ 1, is a sequence of martingales such that Θ𝑛 =

𝐸{Θ|𝑋1, … ,𝑋𝑛} ⟶ Θ w. p. 1 as 𝑛 → ∞, by the Martingale Convergence Theorem. This implies that 

Θ𝑁 ⟶ Θ w. p. 1 as 𝑎 → ∞, since 𝑁 → ∞ w. p. 1 as 𝑎 → ∞, by (i). For (iii), use the fact that 

Θ𝑁 ≤
𝑁
√𝑎

≤ Θ𝑁 +
𝑚 − 1
√𝑎

 

for any value of 𝑎 > 0, by definition of 𝑁 to obtain that 

𝑙𝑖𝑚𝑖𝑛𝑓 
𝑎→∞

Θ𝑁 ≤ 𝑙𝑖𝑚𝑖𝑛𝑓
𝑎→∞

𝑁
√𝑎

≤ 𝑙𝑖𝑚𝑠𝑢𝑝
𝑎→∞

𝑁
√𝑎

≤ 𝑙𝑖𝑚𝑠𝑢𝑝
𝑎→∞

�Θ𝑁 +
𝑚 − 1
√𝑎

� ; 

so that 

Θ ≤ 𝑙𝑖𝑚𝑖𝑛𝑓 
𝑎→∞

𝑁
√𝑎

≤ 𝑙𝑖𝑚𝑠𝑢𝑝 
𝑎→∞

𝑁
√𝑎

≤ 𝛩   𝑤.𝑝. 1  

by (ii). Thus, 𝑁
√𝑎
→ 𝛩 w. p. 1 as 𝑎 → ∞. 

The following proposition shows that 𝑁
√𝑎
→ 𝛩 as 𝑎 → ∞ in mean square or in 𝐿2.  

Proposition 4.1. Let N be defined by (6). Then, 

lim
𝑎→∞

𝐸 ��
𝑁
√𝑎

− 𝛩�
2
� = 0. 

22 
 



Bayesian Sequential Estimation of the Parameter of a Class of Life Distributions 

Proof. Write 

               𝐸 ��
𝑁
√𝑎

− 𝛩�
2
� = 𝐸 ��

𝑁
√𝑎
�
2
� − 2𝐸 �

𝑁
√𝑎

𝛩� + 𝐸[𝛩2]                                         (11) 

and observe that 

𝐸 �
𝑁
√𝑎

𝛩�𝒟𝑁� =
𝑁
√𝑎

𝐸{Θ|𝒟𝑁�} =
𝑁
√𝑎

Θ𝑁 → 𝛩2𝑎𝑠 𝑎 → ∞, 

by Assertions (ii) and (iii) of Lemma 4.1. It follows that 

liminf
𝑎→∞

𝐸 �
𝑁
√𝑎

𝛩� = liminf
𝑎→∞

𝐸 �
𝑁
√𝑎

Θ𝑁� ≥ 𝐸[𝛩2] 

by Fatou's Lemma. Moreover, 𝑁 ≤ √𝑎Θ𝑁 + 𝑚 − 1, by definition of 𝑁. This implies that 

limsup
𝑎→∞

𝐸 �
𝑁
√𝑎

𝛩� ≤ 𝐸 �𝛩 limsup
𝑎→∞

�Θ𝑁 +
𝑚 − 1
√𝑎

�� ; 

or 

limsup
𝑎→∞

𝐸 �
𝑁
√𝑎

𝛩� ≤ 𝐸[𝛩2] 

by Fatou's Lemma and Assertion (ii) of Lemma 4.1. Thus, 

                         lim
𝑎→∞

𝐸 �
𝑁
√𝑎

𝛩� = 𝐸[𝛩2].                                                                   (12) 

    Next, use Fatou's Lemma and Assertion (ii) of Lemma 4.1 to obtain 

liminf
𝑎→∞

𝐸 ��
𝑁
√𝑎
�
2
� ≥ 𝐸[𝛩2]. 

    Also, 

𝐸 ��
𝑁
√𝑎
�
2
� ≤ 𝐸[𝛩𝑁2 ] +

2(𝑚 − 1)
√𝑎

𝐸[Θ] +
(𝑚 − 1)2

𝑎
 

since 𝑁 ≤ √𝑎Θ𝑁 + 𝑚 − 1, by definition of 𝑁.  It follows that 

limsup
𝑎→∞

𝐸 ��
𝑁
√𝑎
�
2
� ≤ 𝐸[𝛩2] 

by Fatou's Lemma and Assertion (ii) of Lemma 4.1. Therefore, 
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                          lim
𝑎→∞

𝐸 ��
𝑁
√𝑎
�
2
� = 𝐸[𝛩2].                                                               (13) 

    Now take the limit as 𝑎 → ∞ in (11) and use (12) and (13) to obtain 

lim
𝑎→∞

𝐸 ��
𝑁
√𝑎

− 𝛩�
2
� =  𝐸[𝛩2] − 2𝐸[𝛩2] + 𝐸[𝛩2] = 0. 

5. Conclusion 

We proposed a Bayesian sequential procedure for estimating the parameter of a class of life 

distributions under the squared loss and using the Inverse Gamma distribution as the prior distribution. We 

obtained an upper bound for the Bayes regret that was used as a measure of the performance of the 

proposed procedure. We found that, asymptotically, the regret can be negative, which means that the 

proposed procedure performs better than the best fixed-sample-size procedure, asymptotically. 
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