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Abstract 

This paper presents an entirely new approach to obtaining self-starting Top Order Methods (TOMs) which we shall 
called Extended Top Order Methods (ETOMs). ETOMs were obtained through hermite polynomial used as basis 
function. Stability analysis of the new approach shows a uniform order six method for k = 3, they also possess very good 
absolute stability regions which made them highly suitable for the numerical integration of stiff ordinary differential 
equations. Implementation of the method in block form eliminates the need for starters and hence, generating 
simultaneously approximate solutions yi, i = 1, 2, ..., 6on the go. To further observe the effect of the new approach, it was 
implemented on four numerical initial value problems of stiff ordinary differential equations occurring in real life and 
was shown to compete favorably with the work of existing scientists. 
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1. Introduction  

Many field of applications, notably Science and Technology yields initial value problems of first order 
ordinary differential equations. Some of these equations may not be easily solved theoretically, therefore 
numerical methods are provided as a means to approximating their solutions. A potentially good numerical 
method for the solution of stiff system of ODEs of the form 

),,( ytfy =′ ],[,)( 000 nTttyty ∈=′                                                                      (1) 
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must have good accuracy and some reasonably wide region of absolute stability [5, 12]. One of the first and most 
important stability requirements particularly for linear multistep method is A-stability which was proposed in [6, 
12]. However, the requirement of A-stability put some limitations on the choice of suitable LMMs.  

Top Order Method (TOM) is group into a family of Boundary Value Methods (BVMs) and was introduced by 
[3]. According to these authors, the method belongs to the group of symmetric Schemes. 

Boundary Value Methods have also been extensively discussed by the following authors: [4, 7, 8]. 
 

A. Symmetric schemes 

        Brugnano grouped as symmetric schemes BVMs having the following general properties: 

a. They have an odd number of steps, ,12 −= vk ,1≥v and must be used with ( )1, −vv  –boundary conditions 

(that is, they require 1−v initial and 1−v final additional methods). 

b. The corresponding polynomials )(zρ have skew-symmetric coefficients. That is 

 )()( 1 zzz k ρρ −=− ; 

c. The corresponding polynomials )(zσ have symmetric coefficients. That is 

 )()( 1 zzz k σσ =−  

d. −
− ≡⊂1,vvD  

B. Lemma: The sixth order Top Order Method is symmetric. 

Proof: 

       From the first discrete scheme, we get that 
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i. Consider the LHS of (b) in subsection A , we obtained 
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Then,  

        
32113

60
11

60
27

60
27

60
11)( zzzzz −−+=−ρ  

Now, RHS of (b), yields 
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ii. From the LHS of (c), we have that 
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          From RHS of (c), yields 
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So far, scholars are finding it difficult to derive schemes from the same continuous formulation in form of 
TOMs that can effectively be implemented in block form for the approximate solution of first order ordinary 
differential equations of the form (1). 

The approach by [3], yields self starting block TOMs however, with some boundary conditions provided, 
called initial additional equation(s) and final additional equations. The equations were obtained from three or 
more different formulae.   

The author [1], constructed block methods by pairing k -step Top Order Methods (TOMs) with k2 -step 
Backward Differentiation Formulas (BDF) and then shifting the equations 22 −k times. 

The approach which has been adopted in this paper allows for flexibility of obtaining all the discrete schemes 
from the same continuous formulation of the main method and then implementing in block form, thereby 
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eliminating the need for starters and pairing. The boundary condition imposed by some referred scholars (that is, 
the 1−v initial and 1−v final additional equations stated above) is also eliminated.  

 

2. Derivation of the Method 

      The approach adopted in this paper entails substituting into (1) a trail solution of the form 
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where s and r are the interpolation and collocation points, )(xH j is the hermite polynomial generated by the 

formula: 
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     For sake of reporting, we present some few terms of the hermite polynomial as 
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    From (2) 
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putting (4) into (1) we obtained 
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    Interpolating (2) at 1, =ixi

 
and collocating (5) at 3,...,1,0, =ixi gives a system of equation which can be put in 

the form 

111 uzM =

                                                                                                                                      

(6) 

where,
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    Solving (6) for the 6,...,1,0, =ja j  yields  

6

6

5

5

4

4

3

3

2

2

0 4
1

4
91

2
15

4
45

4
27

hhhhh
a ψψψψψ

−++−+−=
 

6

6

3

3

4

4

5

5

2

2

1 11
2

11
20

11
15

11
12

11
36

hhhhh
a ψψψψψ

−−−+=
 

4

4

6

6

2

2

3

3

5

5

2 22
195

44
19

44
153

44
415

44
147

hhhhh
a ψψψψψ

+++−−=
 

4

52

5

6

2

3

3

4

3 44
31

33
109

66
5

44
183

33
82

hhhhh
a ψψψψψ

+−−+−=
 

4

52

5

6

2

3

3

4

4 22
79

11
63

44
19

11
145

44
467

hhhhh
a ψψψψψ

+−−+−=
 

4

52

5

6

2

3

3

4

5 44
59

22
27

11
2

44
151

11
37

hhhhh
a ψψψψψ

+−−+−=

  

4

52

5

6

2

3

3

4

6 22
1

33
1

132
1

11
1

132
13

hhhhh
a ψψψψψ

−++−=

                                                                                          

(7) 

5 

 



A New Multi-Step Approach based on Top Order Methods (TOMs) for the Numerical Integration of Stiff Ordinary 
Differential Equations 

substituting (7) into (2) for 3=s

 

and 4=r  gives 

         

        

       

       

      

       

                                                                    (8) 

 

    Definition 1: A numerical method is said to be of order p if pcccc ==== ...210  and ,01 ≠+pc 1+pc is called 

the error constant. 

    Evaluated (8) at some points of interest yields the desired sixth order Extended Top Order Methods 

)99(
20

)11272711(
60
1

321123 ++++++ +++=−−+ nnnnnnnn ffffhyyyy  

order ,6=p
2800

1
−=pc  

 

)3512343(
200

)1129727281(
600
1

4321123 +++++++ −++=−−+ nnnnnnnn ffffhyyyy   

order ,6=p  
1540

47
−=pc  

 
6 

 



A New Multi-Step Approach based on Top Order Methods (TOMs) for the Numerical Integration of Stiff Ordinary 
Differential Equations 

)5153450105(
703

)1118700472523436(
42180

1
6543345 +++++++ −++=−−− nnnnnnnn ffffhyyyy  

 order ,6=p  
77
345

−=pc  

 

)3411434(
180

)(
2
1

432113 ++++++ −+++−=− nnnnnnn fffffhyy   

order ,6=p  
42
5

=pc  

 

)10432559800236011(
15300

)771693(
170

1
5432234 +++++++ −+++−=−− nnnnnnnn fffffhyyy  

 order ,6=p  
231
328

=pc  

 

)4701398639825877011(
62100

)9932131(
230
1

6543345 +++++++ −+++−=−− nnnnnnnn fffffhyyy  order 

,6=p  
154
1191

=pc  

    The first equation is shifted 3+= nn times and in combination with other discrete schemes; they are 

perfectly netted together in block form to generate simultaneously the values of 6,...,2,1, =iyi  for the 

numerical solution of (1).  

3. Analysis of the Method 

C. Region of absolute stability of the Extended Top Order Methods (ETOMs) 

Solving the characteristics equations of ETOMs, that is 0))(det( =−− BCzAr for ,r we obtain the 

stability function in the following ways 
 

6 5 5 4 4

5 3 3 2 2

9268800 37858920 645748 16252121 91440260
121 44157850 146727150 156087800 77811740

371078550000000
10189800 72930600 30488400 30488400

rz rz z z rz
fz r z rz rz z

rz z r

 − − + +
 

= − − − + − 
 − − − + 

         (9) 

 
differentiating (9) to get (10) 
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Dividing equation (9) by (10) to obtain the stability function (11) 
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Plotting (11) into MatLab code yields the absolute stability region of the Extended Top Order Methods below 

 
Figure 1: Completely A-Stable ETOMs 

Definition 2: A numerical method is said to be A-stable if its region of absolute stability contains, the whole of 
the left-hand half plane 𝑅𝑒ℎ𝜆 < 0 
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4. Numerical Implementation 
Example 4.1: The SIR model is an epidemiological model that computes the theoretical numbers of people 
infected with a contagious illness in a closed population over time. The name of this class of models derives 
from the fact that they involves coupled equations relating the number of susceptible people )(tS , number of 

people infected )(tI and the number of people who have recovered )(tR . This is a good and simple model for 

many infectious diseases including measles, mumps and rubella [9-11]. The SIR model is described by the 
three coupled equations. 

ISS
dt
ds βµ −−= )1( and  ISII

dt
dI βγµ +−−= and  IR

dt
ds γµ +−=  

where ,µ γ  and β are positive parameters.  

Define y to be RISy ++=  

Adding all these equations give  

)1( yy −=′ µ  

Taking 5.0=µ and attaching an initial condition 5.0)0( =y (for a particular closed population), we obtain 

),1(5.0)( yty −=′ 5.0)0( =y
 

whose analytical solution is tety 5.05.01)( −−=  

Table 1: Absolute Errors for Example 4.1 

X Error in [14]   6=p  Error in ETOMs                                                                                                     
6=p          

0.2 3.946177E-012 2.914E-012 

0.4 3.436118E-011 3.48E-012 

0.6 1.879040E-010 1.364E-012 

0.8 1.724676E-010 9.170E-012 

1.0 3.005770E-010 1.577E-012 

1.2 - 2.003E-012 
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1.4 - 2.160E-013 

1.6 - 3.570E-013 

1.8 - 2.196E-013 

2.0 - 7.012E-013 

 

Example 4.2: Consider a highly stiff ordinary differential equation 

0=− y
dx
dy λ , 610−=λ , 10 ≤≤ x , 1.0=h  

Table 2: Errors for Example 4.2 

X Error in [13] 

4th order method 

Error in [13] 

6th order method 

Error in ETOMs                                                                                                                 
6=p  

0.2 2.49× 110−  1.67× 110−  6.54× 210−  

0.4 6.24× 210−  3.00× 010  1.54× 310−  

0.6 1.56× 210−  5.00× 110−  3.96× 210−  

0.8 3.90× 310−  9.00× 010  2.59× 310−  

1.0 9.76× 410−  1.50× 010  6.10× 510−  

1.2 2.44× 410−  2.70× 110  1.57× 310−  

1.4 6.10× 510−  4.50× 010  1.03× 410−  

1.6 1.52× 510−  8.10× 110  2.42× 610−  

1.8 3.81× 610−  1.35× 110  6.21× 510−  

2.0 9.52× 710−  2.43× 210  4.06× 610−  
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Example 4.3: We consider the Initial Value Problem with step-size 1.0=h  

,0=− xy
dx
dy 1)0( =y  

Analytical Solution of the given problem is 2

2

)(
x

exy =  

Table 3: Maximum Errors for Example 4.3 

X Theoretical Solution Approximate Solution of 
ETOMs 

Error in [9] Error in ETOMs 

0.1 1.00501252085940 1.00501242569890 5.29E-007 9.516E-008 

0.2 1.02020134002676 1.02020128492574 1.77E-007 5.510E-008 

0.3 1.04602785990872 1.04602775890690 8.99E-007 1.010E-007 

0.4 1.08328706767496 1.08328699334416 3.09E-007 7.433E-008 

0.5 1.13314845306683 1.13314834060707 1.91E-006 1.125E-007 

0.6 1.19721736312181 1.19721734591591 4.48E-006 1.721E-008 

0.7 1.27762131320489 1.27762053049684 1.02E-005 7.827E-007 

0.8 1.37712776433596 1.37712725489948 7.74E-005 5.094E-007 

0.9 1.49930250005677 1.49930158822846 1.44E-005 9.118E-007 

1.0 1.64872127070013 1.64872050644375 2.93E-005 7.643E-007 

 

Example 4.4: Consider the discharge valve on a 200-gallon tank that is full of water opened at time 0=t and 
3 gallons per second flow out. At the same time 2 gallons per second of 1 percent chlorine mixture begin to 
enter the tank. Assume that the liquid is being stirred so that the concentration of chlorine is consistent 
throughout the tank. The task is to determine the concentration of chlorine when the tank is half full. It takes 
100 seconds for this moment to occur, since we lose a gallon per second. If )(ty  is the amount of chlorine in 

the tank at time ,t  then the rate chlorine is entering is 
100

2
 gal/sec and it is leaving at the rate 





− t
y

200
3  

gal/sec. 

Thus, the resulting IVP is   
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,
200

3
100

2
t

y
dt
dy

−
−= 10 ≤≤ t , ,0)0( =y 1.0=h  

whose analytical solution is 

3

1000
512

100
12)( 



 −−−=

ttty  

Source: Areo et al., (2013, 2014) 

Table 4: Maximum Errors for Example 4.4 

X Theoretical Solution 
Approximate Solution of 

ETOMs 
Error in [2] 6th Order 

Method 
Error in ETOMs 

0.1 0.00199850025000 0.00199850025000016 0 16106.1 −×  

0.2 0.00399400200000 0.00399400200000018 0 16108.1 −×  

0.3 0.00598650675000 0.00598650675000016 111040.2 −×  
16106.1 −×  

0.4 0.00797601600000 0.007976016000000018 111040.2 −×  
16108.1 −×  

0.5 0.00996253125000 0.00996253125000018 111040.2 −×  
16108.1 −×  

0.6 0.01194605400000 0.0119460540000002 11103 −×  
16100.2 −×  

0.7 0.01392658575000 0.0139265857500004 11103 −×  
16100.4 −×  

0.8 0.01590412800000 0.0159041280000005 11103 −×  
16100.5 −×  

0.9 0.01787868225000 0.0178786822500003 11103 −×  
16100.3 −×  

1.0 0.01985025000000 0.0198502500000006 11103 −×  
16100.6 −×  
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5. Conclusion 

This paper has been able to derived TOMs (called ETOMs) schemes from the same continuous formulation and 
was effectively implemented in block form for the numerical approximate of first order ordinary differential 
equations of the form (1). Stability analysis of the method showed a uniformly order six method for 3=k . Figure 
1 presents the region of absolute stability of the block ETOMs and was shown to be the entire shaded portion 
including the left hand half complex plane (fulfilling definition 2). From the graph, the A-stability property of the 
method was established, making them highly suitable for the numerical integration of stiff ordinary differential 
equations. Implementation of the method in block form generates simultaneously approximate solutions

6,...,2,1, =iyi on the go, thereby eliminating the need for starters and pairing. This approach also eliminates the 

restriction imposed by some scholars (boundary conditions). Table (1-4) shows better performance of the ETOMs 
in terms of accuracy over existing methods.  
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