
The Differences Among Methods for Computation
of Quartiles Do Matter

Darja Rupnik Poklukar and Janez Žerovnik1
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Abstract

The choice of the method for computation of quartiles may have a direct impact on practical

decisions. As the differences among the methods tend to vanish with growing sample size, a

common belief is that the methods are practically equivalent. To the contrary, we show on several

experiments with various sample sizes that in some examples, the differences may be very likely.

For a discrete distribution, exact estimates of differences between expected values of sample

quartiles, given by two different methods, are derived. This implies that it is crucial that in any

application, the choice of the method for computation of quartiles (or, percentiles) is explicitly given.

Keywords: quantiles, percentiles, sample quartiles

1 Introduction

In the increasingly competitive global arena of business in the twenty first century, decision making

is necessarily backed by statistics. No longer is the production of statistics confined to quantitative

analysis and market research divisions only, but are increasingly useful when they are applied to improve

decision making (Borozan, 2017; Gurgul and Machno, 2017; Hunjet et al., 2015; Marek and Vrabec,

2016). Statistics is based on probability theory, and thus mathematical rigor is expected in theory and

application. In this paper, we discuss importance of clarification of some basic definitions of a notion

that in practice may result in some unclarities in interpretation of results.

Quantiles play a fundamental role in statistics: they are the critical values used in hypothesis testing

and interval estimation. Often they are the characteristics of distributions we usually wish to estimate.

The use of quantiles as primary measure of performance has gained prominence, particularly in microe-

conomic, financial and environmental analyses and others.

In statistics a set of observed values (maybe with repetitions) is usually a sample drawn from some

distribution, and a natural question is how to estimate the quartiles of the original distribution from the

given sample. Sometimes there is additional information available about the type of distribution that may

allow some assumptions giving arguments for various methods for estimation of quartiles yielding a

variety of methods for computing the quartiles in the literature and in software (Hyndman and Fan, 1996;

Langford, 2006). While there may be good reasons to use different algorithms (and different definitions!)

for quartiles in various contexts, it is very important to know that various methods will either converge

(the differences will vanish) or to understand that they may provide different results. It is well known

among statisticians that there are a number of different definitions in the literature of the first and third

quartile values of a finite data set. Furthermore, different methods based on these definitions are used by

some statistical computing packages (Hyndman and Fan, 1996).

1Part time researcher at Institute of Mathematics, Physics and Mechanics, Jadranska 19, Ljubljana, Slovenia.
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Langford (2006) answered on question “Why worry? The differences are small so who cares? ” with

words of Freund and Perles (1987):

“Before we go into any details, let us point out that the numerical differences between answers

produced by the different methods are not necessarily large; indeed, they may be very small.

Yet if quartiles are used, say to establish criteria for making decisions, the method of their

calculation becomes of critical concern. For instance, if sales quotas are established from

historical data, and salespersons in the highest quarter of the quota are to receive bonuses,

while those in the lowest quarter are to be fired, establishing these boundaries is of interest to

both employer and employee. In addition, computer-software users are sometimes unaware of

the fact that different methods can provide different answers to their problems, and they may

not know which method of calculating quartiles is actually provided by their software.”

We have discussed the problem from teachers’ perspective elsewhere (Ž erovnik and Rupnik Pok-
lukar, 2017), and argued that Langford’s method is the best choice for considering quartiles at elemen-

tary level. Langford (2006) writes “the situation is, I believe, far worse than most realize.” He examined

various methods which are actually used in elementary statistics textbooks and the methods employed by

various commonly-used calculator and computer packages, and using a precise definition of percentile,

identified which of the methods satisfy this definition. When discussing the issue with (anonymous)

reviewers and editors it seems that in general, the statisticians do not find the issue to be very serious.

Namely, it is believed that in statistics, due to consideration of large populations, large samples, and

many repetitions the difference in the definitions of quartiles will vanish: “It is of the utmost importance

to emphasize that data quartiles and medians are providing estimates of theoretical or population values,

and that differences we see in small samples in ways of calculating data values, do not tend to matter

in large samples.” At first, we agreed with the statement, even illustrated the vanishing effect with an

example (Ž erovnik and Rupnik Poklukar, 2017). After a second thought, we however think that the in-
consistencies may not be so easy to overcome, or at least a deeper argument is needed. In particular, the

questions related may be much more tricky when considering discrete distributions.

The rest of this paper is organized as follows. We will recall some basic definitions in Section 2,

describe two among the most popular methods for finding quartiles in Section 3 and we will look in
detail at differences that occur in Section 4. Some exact estimates of those differences will be derived

and the results will be discussed in conclusions.

2. Definitions

For a random variable X let F denote the (unknown) cumulative distribution function F (x) = P (X ≤
x). The p−th quantile qp is given by qp = F −1(p), where

F−1(p) = inf{t | F (t) ≥ p}, p ∈ (0, 1) (1)

denotes the generalized inverse of distribution function. Note that F−1 is nondecreasing as F (qp−) ≤
p ≤ F (qp) and F (qp) = p in case of continuous distribution. The quartiles are special cases of per-

centiles: first quartile Q1 = q0.25, second quartile (or median) Q2 = M = q0.5, third quartile

Q3 = q0.75.

The sample cumulative distribution function of a sample X1, . . . ,Xn of size n is defined as

Fn(x) =
1

n

n
∑

i=1

I(Xi ≤ x), −∞ < x < ∞,
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where I(·) denotes the indicator function. Then the sample p−th quantile based on the sample cumulative

distribution function can be represented as

q̂p = inf{x | Fn(x) ≥ p}, p ∈ (0, 1). (2)

Quite a lot of work has been done dealing with the limit properties of q̂p. Miao, Chen and Xu (2011) 
studied some asymptotic properties of the deviation between p−th quantile and the estimator including 
moderate and large deviations and also Bahadur representation. Ma, Genton and Parzen (2011) gave the 
definition of sample p−th quantile based on mid-distribution function to provide a unified framework for 
asymptotic properties of sample p−th quantile from discrete distributions.

For discrete quantitative random variables the most common idea is to arrange the data in ascending 
order and divide them into fixed number of roughly equal parts. (For finding quartiles, divide the ordered 
sample into four quarters having the same number of observations in each quarter, Joarder and Firozza-

man (2001).) However, there are some differences in the details and also different definitions are used 
by various statistical software packages (Hyndman and Fan, 1996).

Langford (2006) uses the following definition of data percentiles.

Definition of data percentile. A i-th percentile value is a number which puts at least i percent of 
the data values at that number or below and at least (100 - i) percent of the data values at that number 
or above. If more than one such number exists, there will be an entire interval of such and we choose 
the i-th percentile value to be the midpoint of that interval. (We propose to call this value the canonical 
value of the quartile.)

3. Two methods for discrete data quartiles

       Two methods among the most popular methods listed in Langford (2006) are described below. Both 
methods first compute the data median, and then compute a median of the two halves. In the first method 
(M1) the median is included in both halves if the number of data points in the entire set is odd and 
excluded if the number of data points is even (Tukey, 1977).

In the second method (M2), Langford (2006) suggests to divide the data set into two halves, a bottom 
half and a top half. If n is odd, include or exclude the median in the halves so that each half has an odd 
number of elements. The first and the third quartiles are then the medians of the bottom and top halves 
respectively. If n is even, the median is taken to be the average of the middle two values.

Both methods can be summarized by the following four rules (write n = 4q + r, where q is an 
integer, and assume the dataset is ordered v1 ≤ v2 ≤ v3 · · · ≤ vn):

Tukey’s method (M1)

if r = 3, then Q1 =
vq+1+vq+2

2 , Q2 = v2q+2 and Q3 =
v3q+2+v3q+3

2 .

if r = 2, then Q1 = vq+1, Q2 =
v2q+1+v2q+2

2 and Q3 = v3q+2.

if r = 1, then Q1 = vq+1, Q2 = v2q+1 and Q3 = v3q+1.

if r = 0, then Q1 =
vq+vq+1

2 , Q2 =
v2q+v2q+1

2 and Q3 =
v3q+v3q+1

2 .

Langford’s method (M2)

if r = 3, then Q1 = vq+1, Q2 = v2q+2 and Q3 = v3q+3.

if r = 2, then Q1 = vq+1, Q2 =
v2q+1+v2q+2

2
and Q3 = v3q+2.

if r = 1, then Q1 = vq+1, Q2 = v2q+1 and Q3 = v3q+1.

if r = 0, then Q1 =
vq+vq+1

2
, Q2 =

v2q+v2q+1

2
and Q3 =

v3q+v3q+1

2
.

381



We can see that there are only differences in case n = 4q + 3 so we will consider only this case in 
the following section.

4. Sample quartiles of discrete distributions

In case of absolutely continuous distribution it is well known that the asymptotic distribution of sample 
quantiles in the classical definition is normal (see Ma, Genton and Parzen (2011), Theorem 1 and further 
references therein). If the underlying distribution is discrete, the situation is much more delicate (Jentsch 
and Leucht, 2014). Sample quantiles may not even be consistent in general with the population quantiles 
in this case. In the following subsection we will consider an example of a discrete distribution.

4.1 Simulation throwing a (fair) dodecahedron

Suppose a dodecahedron is thrown independently n-times and we observe a sequence X1, . . . , Xn of 
scores. Assume that the faces of dodecahedron are labelled with numbers 1, 2, . . . , 12.

Example 12. In simple case with n = 1000 we found some interesting results (in only four attempts). 
Frequencies are written in Table 1, cumulative frequencies and sample quartiles, derived by definition 
(2), in Table 2.

Table 1: Frequencies of n = 1000 dodecahedron throws in four attempts.

1 2 3 4 5 6 7 8 9 10 11 12

1 69 84 86 69 92 88 71 77 86 104 87 87

2 72 76 89 81 83 84 75 88 76 91 89 96

3 76 76 85 92 102 77 98 87 75 83 76 73

4 74 82 95 82 81 90 95 83 84 74 72 88

Table 2: Some cumulative frequencies and sample quartiles from Table 1.

≤2 ≤3 ≤4 ≤5 ≤6 ≤7 ≤8 ≤9 ≤10 Q1 Q2 Q3

1 153 239 308 400 488 559 636 722 826 4 7 10

2 148 237 318 401 485 560 648 724 815 4 7 10

3 152 237 329 431 508 606 693 768 851 4 6 9

4 156 251 333 414 504 599 682 766 840 3 6 9

As seen, sample quantiles are not consistent in general with the population quantiles. This issue 
occurs due to the fact that the cumulative distribution function (cdf) in this case is a step function. This 
leads to inconsistency if the level of the quartile lies in the image of the cdf and, consequently, the Central 
limit theorem does not hold anymore. In other words, the first quartiles of samples are most likely either 
3, 4 or 3.5, regardless of the sample size. We may however anticipate that the expected value of the

2All numerical examples in this paper were done with R, version 3.1.0 (2014-04-10) The R Foundation for 
Statistical Computing.
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sample quartiles will converge, hopefully to the quartile values of the population. We will look at this

(phenomena) more closely below.

Suppose a dodecahedron is thrown independently n = 4q + 3 times. Clearly, we can assume that

P (Xi = k) = 1
12 for i = 1, 2, . . . , n and k = 1, 2, . . . , 12. The random variables Xi are thus distributed

uniformly over the set of twelve values. The canonical values of quartiles are thus Q1 = 3.5, Q2 = M =
6.5 and Q3 = 9.5.

Let v1 ≤ v2 ≤ . . . ≤ vn be the ordered dataset of scores, each vi ∈ {1, 2, . . . , 12}. We will compare

two different methods computing the first quartile. Recall that the first quartile of ordered sample is

(A) QA
1 = vq+1 by Langford’s method (M2), and

(B) QB
1 =

vq+1+vq+2

2 by Tukey’s method (M1) .

Let E(X) denote the expected value of random variable X.

It is obvious that E(QA
1 ) ≤ E(QB

1 ) since QA
1 ≤ QB

1 . The relationship between the two expected

values is more precisely enlightened by the following two lemmas. (The proofs are given in the ap-

pendix A.)

Lemma 1 At a fixed sample size n = 4q + 3,

(a) the expected values of first quartiles due to different methods are different E(QA
1 ) < E(QB

1 ),

(b) there is a constant ∆ > 0 such that

E(QB
1 )− E(QA

1 ) > ∆=
10
∑

i=1

△i =
1

2

(

4q + 3

q + 1

) 10
∑

i=1

(

1−
i

12

)3q+2

·

(

i

12

)q+1

.

Lemma 2 lim
n→∞

E(QB
1 )− E(QA

1 ) = 0.

Numerically, exact differences ∆ from Lemma 1(b) for some different sample sizes n = 4q + 3 are

given in Table 3.

Table 3: Some examples of differences lower bound ∆ from Lemma 1.

n 23 43 203 403 803 1203

q 5 10 50 100 200 300

∆ 0.2499 0.1364 0.0338 0.0229 0.0162 0.0133

1 1

B
1

A
1

Our main concern is to observe how fast the difference E(QB) − E(QA) vanishes. Namely, as 
quartiles are used in several ways in practical applications, it is important to know whether the choice 
of computational method has any impact on practical decisions. Bearing this in mind, we run several 
experiments with various population and sample sizes.

In the next example, 1000 fair dodecahedron throws of size n = 4q + 3 were randomly generated 
and the differences between the first quartiles given with two different methods were calculated.

Example 2. We randomly generated 1000-times a sample of size n of fair dodecahedron throws and then 
compared the difference D between the first quartiles calculated by Langford’s method and by Tukey’s 
method:

                                                                      D = Q    − Q   .
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Table 4: Percentage of differences D for samples of size n.

n 31 35 39 43 103 123 203 4003

D = 0 67.4 67.2 70.9 74.3 87.6 89.7 93.1 98.4

D = 0.5 30.6 31.7 28.4 25.2 12.4 10.3 6.9 1.6

D = 1 2.0 1.1 0.7 0.5 0 0 0 0

We measure the percentages of samples in which the differences are 0, 0.5 or 1 and write the results in

Table 4.

Observe that for sample sizes up to n = 43 there is about 25.7% possibility to get a different result

from a different methods. Samples of this size are often used in practical applications. Note that the

differences appear often also for larger samples, even for sample of size n = 4003, the difference

occurred in 1.6% cases in our simulation.

So, if quartiles are used to establish criteria for making decisions, the method of their calculation

becomes of critical concern, as we mentioned earlier in the introduction, citing Langford (2006).

A more comprehensive batch of simulations was done for 1000 generated samples of each size

n = 4q + 3 for q = 7, 8, . . . , 500. The summary of the results is plotted in Figure 1.
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Figure 1: Differences between two methods.

Recall our main question: does the method of calculating quantiles matter? Theoretically, the dif-

ferent methods compute different estimates and have different properties. We have seen that there are 
examples with practical population and sample sizes, where the choice of the method can have important 
impact on the conclusions that are to be taken. Which method should be used? It depends on user’s needs 
to choose the methods that suits him. However, it is crucial that the choice of the method is not hidden 
as a technical detail!
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1 1

1

5. Conclusions

     In this paper, our goal was to show that the choice of method for computation of quartiles may 
have a direct impact on practical decisions.

We have shown on an example of throwing fair dodecahedron that in contrary to rather common 
belief that because the differences between the methods tend to vanish, in some examples, they may be 
very likely. Recall the Example 2 with samples sizes 43 where the differences appear in almost 26% of 
cases!

If, for example, scores are results of the entrance exam for the University and those in the lowest 
quarter are not to be accepted, it may be very inconvenient to have two methods providing different 
results. In other words, there may be people that may enter the University by one method, and are not 
admitted to enter by another method. The discussion can easily be transformed into a legal issue!

Our experiment was chosen in a way to show the differences in quartile computations. However, 
for any given percentile, it is straightforward to design an experiment, where similar phenomena can be 
shown. For example, estimating the differences caused by different methods in calculating the 30−th 
percentile q0.30 we can use the simulation throwing of icosahedron (regular polyhedron with 20 faces).

It is therefore crucial that in any application, the choice of the method for computation of quartiles 
(or, percentiles) is explicitly given. Or in other words, any method that uses quartile (or percentile) values 
that come from a hidden computational method may be misleading.

A Detailed proofs

Before proving the Lemma 1 and Lemma 2, we write suitable expressions for E(QA) and E(QB).
QA is a discrete random variable with possible values i ∈ {1, 2, 3, . . . , 12}, randomly selected with 

probabilities

p
(q+1)
i = P [vq+1 = i].

Thus,

E(QA
1 ) = 1 · p

(q+1)
1 + 2 · p

(q+1)
2 + · · ·+ 12 · p

(q+1)
12 =

12
∑

i=1

i · P [vq+1 = i]. (3)

For j ≥ i denote

p
(q+2)
j,i = P [vq+2 = j | vq+1 = i].

Then the expected value E(QB
1 ) equals

E(QB
1 ) =

12
∑

i=1

12
∑

j=i

i+ j

2
· P [vq+1 = i ∧ vq+2 = j]

=

12
∑

i=1

12
∑

j=i

i+ j

2
· P [vq+1 = i] · P [vq+2 = j | vq+1 = i]

=

12
∑

i=1

12
∑

j=i

i+ j

2
· p

(q+1)
i · p

(q+2)
j,i . (4)

Proof: (of Lemma 1) We will estimate each term in eq. (3). First observe that

p
(q+1)
1 · 1 < p

(q+1)
1

[

p
(q+2)
1,1 · 1 + p

(q+2)
2,1 ·

1 + 2

2
+ p

(q+2)
3,1 ·

1 + 3

2
+ · · ·+

+ p
(q+2)
12,1 ·

1 + 12

2

]

.
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The expression in brackets is obviously greater than 1 since
∑12

j=1 p
(q+2)
j,1 = 1, p

(q+2)
j,1 ≥ 0 and the

multiplication factors are 1+j
2 > 1, j = 2, 3, . . . , 12.

Similarly,

p
(q+1)
2 · 2 < p

(q+1)
2

[

p
(q+2)
2,2 ·

2 + 2

2
+ p

(q+2)
3,2 ·

2 + 3

2
+ p

(q+2)
4,2 ·

2 + 4

2
+ · · ·+

+ p
(q+2)
12,2 ·

2 + 12

2

]

,

p
(q+1)
3 · 3 < p

(q+1)
3

[

p
(q+2)
3,3 ·

3 + 3

2
+ p

(q+2)
4,3 ·

3 + 4

2
+ p

(q+2)
5,3 ·

3 + 5

2
+ · · ·+

+ p
(q+2)
12,3 ·

3 + 12

2

]

,

· · · · · ·

p
(q+1)
11 · 11 < p

(q+1)
11

[

p
(q+2)
11,11 ·

11 + 11

2
+ p

(q+2)
12,11 ·

11 + 12

2

]

,

p
(q+1)
12 · 12 = p

(q+1)
12 · p

(q+2)
12,12 ·

12 + 12

2
,

since p
(q+2)
12,12 = 1.

Summing together all those inequalities on the left side gives E(QA
1 ) and on the right side exactly

E(QB
1 ). This proves (a) of Lemma 1. Now we consider the difference E(QB

1 )− E(QA
1 ).

We have

p
(q+1)
1

[

p
(q+2)
1,1 · 1 + p

(q+2)
2,1 ·

1 + 2

2
+ p

(q+2)
3,1 ·

1 + 3

2
+ · · ·+ p

(q+2)
12,1 ·

1 + 12

2

]

> p
(q+1)
1 ·

[

p
(q+2)
1,1 · 1 +

(

1− p
(q+2)
1,1

)

·
3

2

]

= p
(q+1)
1 ·

[

p
(q+2)
1,1 · 1 +

(

1− p
(q+2)
1,1

)

·

(

1 +
1

2

)]

= p
(q+1)
1 · 1 +△1,

where

△1 =
1

2
p
(q+1)
1 ·

(

1− p
(q+2)
1,1

)

.

Similarly, for i = 2, 3, . . . , 10

p
(q+1)
i

[

p
(q+2)
i,i ·

2i

2
+ p

(q+2)
i+1,i ·

2i+ 1

2
+ p

(q+2)
i+2,i ·

2i+ 2

2
+ · · ·+ p

(q+2)
12,i ·

i+12

2

]

> p
(q+1)
i ·

[

p
(q+2)
i,i · i+

(

1− p
(q+2)
i,i

)

·
2i+ 1

2

]

= p
(q+1)
k ·

[

p
(q+2)
i,i · i+

(

1− p
(q+2)
i,i

)

·

(

i+
1

2

)]

= p
(q+1)
i · i+△i,
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where

△i =
1

2
p
(q+1)
i ·

(

1− p
(q+2)
i,i

)

.

Summing together we get

E(QB
1 ) > E(QA

1 ) +△1 +△2 +△3 + · · · +△10

or

E(QB
1 )− E(QA

1 ) >

10
∑

i=1

△i.

Hence we only need to find an estimate of

10
∑

i=1

△i =

10
∑

i=1

1

2
p
(q+1)
i ·

(

1− p
(q+2)
i,i

)

.

Since

△i =
1

2
p
(q+1)
i ·

(

1− p
(q+2)
i,i

)

=
1

2
· P [vq+1 = i] · (1− P [vq+2 = i | vq+1 = i])

=
1

2
· P [vq+1 = i] · P [vq+2 > i | vq+1 = i]

=
1

2
· P [vq+2 > i ∧ vq+1 = i]

=
1

2

(

n

q + 1

) (

1−
i

12

)n−(q+1)

·

(

i

12

)q+1

,

it follows
10
∑

i=1

△i =
1

2

(

n

q + 1

) 10
∑

i=1

(

1−
i

12

)n−(q+1)

·

(

i

12

)q+1

> 0,

as claimed in Lemma 1(b). �

Proof: (of Lemma 2) From (3) and (4) we have

E(QB
1 )− E(QA

1 ) =
12
∑

i=1

12
∑

j=i

i+ j

2
· p

(q+1)
i · p

(q+2)
j,i −

12
∑

i=1

i · p
(q+1)
i .

Taking into account that
∑12

j=i p
(q+2)
j,i = 1 and, in particular, p

(q+2)
12,12 = 1 , we have

12
∑

j=12

12 + j

2
· p

(q+1)
12 · p

(q+2)
j,12 − 12 · p

(q+1)
12 = 0

and, for i < 12,

12
∑

j=i

i+ j

2
· p

(q+1)
i · p

(q+2)
j,i − i · p

(q+1)
i =

12
∑

j=i

i+ j

2
· p

(q+1)
i · p

(q+2)
j,i − i · p

(q+1)
i

12
∑

j=i

p
(q+2)
j,i = p

(q+1)
i

12
∑

j=i+1

j − i

2
· p

(q+2)
j,i .
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Recall the meaning of p
(q+2)
j,i ≤ P [vq+2 > i ∧ vq+1 = i] and observe that the later event occurs

exactly when the number of occurrences of values ≤ i is exactly q + 1, hence

p
(q+2)
j,i ≤ P [vq+2 > i ∧ vq+1 = i] =

(

n

q + 1

)(

1−
i

12

)n−(q+1)

·

(

i

12

)q+1

.

As n = 4q + 3 we have

lim
n→∞

(

n

q + 1

)(

1−
i

12

)n−(q+1)

·

(

i

12

)q+1

= 0

and consequently

lim
n→∞

(E(QB
1 )−E(QA

1 )) = 0 .

�
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