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Abstract 
The four-color theorem, also known as the four-color conjecture and the four-color problem, is 

one of the three major mathematical problems in the modern world. The Four color theorem was 
proposed by a British college student named Goodrich Francis Guthrie in the map coloring. Augustus 
De Morgan (1806-1871) A letter to Hamilton on October 23, 1852, provided the most original account 
of the source of the four-color theorem. For a century and a half, in order to prove this theorem, 
mathematicians are closely related to contemporary mathematical combination, graph theory, topology, 
generalization, fractal, collection, and computer computing foundation. The concepts and methods 
introduced are stimulated. The growth and development of topology and graph theory. 

In 1975, Bemanh-Hartmanis conjectured that there is a pair of G(•) and F(•) reciprocal. If the 
proof is true, then the polynomial time can be calculated, with polynomial time isomorphism [1]. 

In 1983, Chinese mathematician Xu Lizhi said in the "Selection of Mathematical Methodology" 
that the main point of calculus polynomial is continuous regularization[2]. If anyone can make a very 
useful relationship structure (S), it is very useful to introduce it, and G(•) and F(•) can perform 
important inversions [3]. 

The four-color theorem lies in the sufficiency, necessity, and uniqueness proof of the infinite 
non-repetition of the "four-four combination" under the infinite block. Most mathematicians think that 
relying on the existing traditional mathematics system can't solve it, at least it is very difficult. In 1976 
and 1994, American mathematicians K. Appel and W. Haken announced the use of electronic 
computers to obtain the proof of the four-color theorem; through the computer, after 100 billion power 
(power dimension) calculation.  

Mathematicians expect traditional simple mathematical proofs. In this paper, we propose that "any 
four-color non-repetitive combination of spliced tiles, plus a final closed curve" becomes a polynomial, 
converted into "abstract circular logarithmic equation without specific element (color) content, and 
arithmetic four operations. Number (relativistic construction). Conveniently prove the four-color 
theorem, replacing the 1976 American computer with 10 billion calculations. 

I hope this article can provide useful help to relevant scholars, teachers and seniors at home and 
abroad. If you are not good, please criticize and teach, and welcome exchanges and cooperation. 
Keywords: high-order multivariable polynomial, four-color theorem, combination coefficient, average 
of block, round logarithm 
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1. Introduction 
The four-color theorem, also known as four-color conjecture and four-color 

problem, is one of the three major mathematical problems in the modern world. The 
Four Color Theorem was proposed by a British university student named Guderim 
Francis Guthrie in the map coloring. A letter from Augustus De Morgan (1806-1871) 
to Hamilton on October 23, 1852 provided the most original account of the source of 
the four-color theorem. For a century and a half, mathematicians have proved that the 
mathematical meaning of the theorem is closely related to the combination of 
contemporary mathematics, graph theory, topology, generality, fractals, collections, 
and the foundation of computer computing. The concepts and methods introduced are 
stimulated. The growth and development of topology and graph theory. 
In 1975 Bemanh-Hartmanis conjectured that there is a pair of G(•) and F(•) reciprocal. 
If the proof is true, they are all polynomially timed and have polynomial time 
isomorphism [1]. 

In 1983, Chinese mathematician Xu Lizhi said in the "Selected Lectures in 
Mathematical Methodology": The main point of the calculus polynomial is the 
continuity of regularization[2]. If anyone can very usefully introduce some very 
important relational structures, S, to be very useful, and have G(•) and F(•) energy 
inversions, they can make important contributions [3]. 

The four-color theorem is based on an infinite block, and the sufficient, necessary, 
and uniqueness proof of the existence of infinite four-four combinations is not 
repeated. Most mathematicians believe that relying on the existing traditional 
mathematics system can not be solved, at least very difficult. In 1976 and 1994, the 
American mathematicians K.Appel and W.Haken announced the proof of the 
four-color theorem with the aid of an electronic computer; and it was proved by a 
computer with 10 billion power (power-dimensional) calculations. Mathematicians 
expect traditional simple mathematical proofs. 

In this paper, the block theory establishes an abstract circular logarithm equation 
with no specific element (color) content and performs four arithmetic operations. It 
clarifies the basic rules of the mathematical combination and level transformation of 
the block, and establishes a circular function. The base logarithm is called “circular 
logarithm (relativistic structure).” It is convenient to prove the four-color theorem, 
which is a substitute for the 1976 American computer’s proof of 10 billion 
calculations. 

I hope this article can provide useful help to domestic and foreign scholars, 
teachers, and teachers. Improperly please criticize and teach, welcome exchanges and 
cooperation. 

2. The Basic Concept 
2.1. Tile elements, levels, basic tiles 

Define the tile: in the range of infinite area (plane, spherical) (Z), any combination 
of four colors that are not repeated and different from adjacent blocks, splicing 
without gaps, and finally a block surrounded by closed curves {X} K (Z±S±N±P). 
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Definition element: any graph, block, or layer containing four basic colors called 
elements {X}K (Z±S±N±4) 

Define the composition of any graph, block, and level to participate in 
non-repeating combinations: dimension (S=1, 2, 3,... natural number), hierarchy (N=1, 
2, 3,..., natural number), item order (P=4 ,3,2,1):(n≥3)•4; 

S=4: {xa,xb,…,xp,…,xq })∈{X4}K(Z±4±1±P)，P=(N=1)·4。 
S=5: {{xa},{xb},…,{xp},…,{xq})∈{{X4}} K(Z±5±2±P) ，P=(N=2)·4,… 

S=N: {{{{xa}}}},{{{xb}}},…,{{{xp}},…,{xq})∈{{X4}} K(Z±5±N±P) ，P=(N≥3)·4。,… 
2.2. Tiles and Graphs 

Standard basic tiles: Tiles with only a set of four elements (colors) that are not 
repeated, (±N=1; ±P=4). 

Non-standard basic tiles; there are some incomplete combinations (P) in the 
combination of tiles (±N=1; P=4,3,2,1) that are randomly in an incomplete 
combination of standard basic tiles. 

Composite Tile: Tile (±N•P) combining two or more standard and non-standard 
basic tiles; (±N≥2 (arbitrary finite; ±P=4,3,2,1); 

Graphics Tile Hierarchy: The combined set of any finite tiles is called the graphic 
surrounded by the last closed curve. The graph is composed of any 
power-dimensional polynomial {X}Z; (±S≥1 (arbitrary finite) (arbitrary finite); ±
N≥1; ±P=1,2,3,4). 
    {X}Z=A{x}K(Z±S±N±0)+B{x}K(Z±S±N±1)+…+P{x}K(Z±S±N±P)+…+Q{x}K(Z±S±N±Q);（1.1）    
        Z=K(Z±S±N±4);  K=(+1 reduction; -1 expansion);           （1.2） 
Among them: Graph power function: K(Z±S±N±P) respectively represent infinite 
graph Z; finite graph power S, level N, P : for 

Define graphics: four colors: P=4 (four-four combinations), P=3 (three-three 
combinations), P=2 (two-two combinations), P=1 (one-to-one combinations) not 
repeating combinations, and finally added A closed boundary curve.  

The basic block {{{1+4+6+4+1}...}...}={24-1}={42-1}={15} values. The number 
of tile colors that the graph satisfies (completely combined tiles); non-completely 
combined tiles {{{24-q}-q...}-q...}={24-q}={42-q} . The number of tiles that the graph 
satisfies 
2.3. Tiles and Calculus 

Blocks are converted to polynomial or integro-differential equations that can be 
smoothly entered into the block theory. When the traditional calculus arbitrary (N) 
order sign is transformed into a polynomial calculus power function, it is combined 
with time to become a dynamic equation. 
There are: The differential dynamic equation of the block {xS} 

∂(N)f(xS)/∂t(N) = ∂(N-1)f(xS)/∂t(N-1)+∂( N-2)f(xS)/∂t(N-2)+… 
+∂(N-p)f(xS)/∂t(N-p)+…+∂(N-q)f(xS)/∂t (N-q)

 

       = A{x} K(Z±S-N±0)/t+B{x}K(Z±S-N±1)/t +…+P{x} K(Z±S-N±p)/t +…+Q{x} K(Z±S-N±q)/t 

                         = {x} K(Z±S-N)/t；                               （1.3） 

Block and integral dynamic equation {DS}： 

∫N(DS)dtN =∫(N-1){DS}dt(N-1)+∫(N-2){DS}dt(N-2)+… 
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+∫(N-P){DS}dt(N-P)+…+∫(N-q){DS}dt(N-q) 

= A{D} K(Z±S+N±0)/t +B{D} K(Z±S+N±0)/t +…+P{D} K(Z±S+N±0)/t +…+Q{D} K(Z±S+N±0)/t 

= {D} K(Z±S+N)/t；                               （1.4） 

The above merger, written as a general formula: 
    {R}Z ={R}K(Z±S±N±0)/t+{R}K(Z±S±N±1)/t+…+{R}K(Z±S±N±p)/t+…+{R}K(Z±S±N±q)/t；（1.5） 

Among them, {X}z and {D}z represent the closed curves of the blocks, graphic 

elements and boundaries, respectively. 
In the formula: power function Z = K(Z±S±N±P) (called path integral, history 

record, calculation time); Z infinite polynomial power function; S element 
composition polynomial dimension; Z≥S≥N≥P ; K = (+1, -1) Tiles Expanded or 
Reduced Property: Shorthand: K(Z±S±N), K(Z±S±P), K(Z±S), K(Z±) N), K(Z±P), 
(Z); +N=∫(N)) (Increase area) integration order, -N=∂(N) (reduction area) 
differential order; (±P) polynomial Block combination order (increase or decrease); (/t) 
represents the dynamic equation (the general formula does not mark t); {} denotes 
point group combination and set. The introduction of two "...,..." In polynomials (Z) 
represents an infinite tile, which is different from the traditional "..." finite calculation. 
(more than the same) 
2.4. Block Combinations and Polynomial Coefficients 
      According to the Brouwer Center fixed point theorem [4] {D}Z and {X}Z (blocks 
represent boundary curves, center points, line and block elements) combined blocks 
(functions, polynomials, geometric spaces) Has equivalence. 
Definition: The various combination coefficients in the block are the number of 
combinations divided by the corresponding unknown or known average block 
(function), and the average function (average block) is called 
(1/CK(Z±S±N))•Ra,Rb,Rp,…,Rq)∈{R0} K(Z±S±N±P).Polynomials often use their average 
blocks (functions, geometry space, values) as their basis for calculation. 

have：    {R0}K(Z±S±N) = [∑(1/C(S±N)){R}+…]K(Z±S±N) 

= (1/C(S±0)){R}K(Z±S±N±0)+(1/C(S±1)){R}K(Z±S±N±1)+… 
+ (1/C (S±P)){R}K(Z±S±N±P)+…+(1/C(S±q)){R}K(Z±S±N±q)}  

  = {R0}K(Z±S±N±0)+{R0}K(Z±S±N±1)+…+{R0}K(Z±S±N±P)+…+{R0}K(Z±S±N±q)；      （2）       
                   C(Z±S±P)=S(S-1)…(S-P) /P(P-1)…(2)(1) = S!/P！：   （3） 
where: C(Z±S±P)polynomial P term regularization coefficient; coefficient subscript 
letters represent the combination of elements in the block. ! factorial. 
2.5. The boundary of the block and the elements of the block regularization 
polynomial 

      The {X}Z unknown element and {D}Z boundary equilibrium curves in the block 

form a regularized polynomial equation. 
There are: polynomial equations:  
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         {X±D)K(ZN)=AxK(Z0)+BxK(Z±1)+…+PxK(Z±p)+…+QxK(Z±q)±D；    （4） 

In the formula, the coefficients (A, B,...P,...Q) contain the number of blocks formed 
by the combination of different levels.   
2.6. Blocks (functions) Regularization Polynomial equations Reduction logarithm 
equation 

In formula (4), when{x}Z≠{D)Z the relative principle [6] is applied, and the ratio of 

the unknown to the known function is one to one and the relative symmetry balance is 
achieved. get the dimensionless function without specific element content, call the 
circle logarithm (relativistic structure). 

assume:      (1-η2)Z ~ (η)Z = {x} K(Z±S-N)·{D} K(Z±S+N)= [{x} /{D}] K(Z±S±N) 

get： {X±D)K(Z±S±N)=[{x}/{D}]K(Z±S±N-0)·DK(Z±S±N+0)+ [{x}/{D}] K(Z±S±N-1)·D K(Z±S±N+1)+… 

+[{x}/{D}] K(Z±S±N-p)·D K(Z±S±N+P)+…+[{x}/{D}]K(Z±S±N-q)·D K(Z±S±N+q) 

=[(1-η2)K(Z±S±N±0)+(1-η2)K(Z±S±N±1)+…+(1-η2)K(Z±S±N±p)+…

+(1-η2)K(Z±S±N±q) ]·{X0±D0)K(Z±S±N) 

= (1-η2) K(Z±S±N) {X0±D0)K(Z±S±N)；                        （5.1） 

among them: under the condition of balance：{x0}Z ={D0)Z； 

（1）、  {X - D)K(Z±S±N)= (1-η2) K(Z±S±N) {0} K(Z±S±N){D0)K(Z±S±N)；            （5.2） 

（2）、  {X+D)K(Z±S±N) = (1-η2) K(Z±S±N) {2} K(Z±S±N){D0)K(Z±S±N)；            （5.3） 

among them: In the logarithmic equation(1-η2)Z ~ (η)Z it means that one-price and 
second-order have equivalence.   

3. Specification invariance and level limit of circle logarithm 
The circular logarithmic equations (also known as relativistic structures, 

supersymmetric unit matrices) have three gauge invariance theorems and level limits. 
3.1, [Theorem One] The combination of "positive combination" and "reciprocal 
combination" after iteration of the elements in the "block-by-multiplication" 
block hierarchy, with the combination of reciprocal inversion. 

It is known that the same group tile elements are multiplied by "combination set"  
∏(Z±S)(Ra,Rb,…,Rp,…Rq) (omitting N marks from the same level). 
assume:  F(·) = {x0}K(Z±S-F)={∑(C(Z±S)[∏(Z±S) (xa,xb,…,xp,…xq)K+…]}K(Z±S-F)；  

C(Z±S+F)=S(S-1) (S-2)…(S-P) (S-F)/F； 

G (·) = {D0}K(Z±S+G)={∑(C(Z±S)[∏(Z±S) (Da, Db,…,Dp,…Dq)K+…]}K(Z±S+G)；  

C(Z±S-G)=S(S-1) (S-2)…(S-G)/G；  
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among them, the regularization combination coefficient C((Z±S±N)=C(Z±S-F)= C(Z±S-G)；

that is, the number of elements (coefficients) in the same level element combination is 
the same. 
Proof (A): The set of consecutive combinations is divided by the positive plus the 
combined set, resulting in a set of reciprocal combinations, and vice versa. 
have:  

{X0((Z±S)+…}K(Z±S) = {X0(Z±S)+…}K(Z±S) 
/ {X0((Z±S+F)+…}K(Z±S+F)·{X0((Z±S+F)+…}K(Z±S±N+F) 

= [{X0((Z±S±F)+…}/{X0(((Z±S)+…}]- K(Z±S±N+F)·[X0((Z±S±F)+…]K(Z±S+F)； 

move [X0(Z±S±F)+…]K(Z±S+F)to the left of the equal sign (called iteration).You have to 
add the following combination: 

{X0((Z±S)+…}K(Z±S)/{ X0((Z±S+F)+…}K(Z±S+F) = [{X0((Z±S±F)+…}/{X0(S±p)+…}]- K(Z±S±F) 

= {(1/C(Z±S±G))-1[∑(∏(Z±S±G) (X i
-1)-1 +…]}-K(Z±S±G) 

= {Xe(Z±S-G)}K(Z±S-G) = G (·)；                   （6.1） 

among them: 
 [{X0((Z±S+F) +…}/{X0(Z±S) +…}]-K(Z±S±F)= [{X0((Z±S-G) +…}/{X0(Z±S) +…}] K(Z±S-G)=G (·) 
same reasoning 
[{X0((Z±S+G) +…}/{X0(Z±S) +…}]-K(Z±S±G)=[{X0((Z±S-G) +…}/{X0(Z±S) +…}] K(Z±S-F) =F (·) 

proof (B): reciprocity at the same level {S=F±G=P}, 
have: 

{X0(Z±S) +…}K(Z±S) = {X0(Z±S)+…}K(Z±S)/{X0(Z±S)+…}K(Z±S+F)·{X0(Z±S)+…}K(Z±S+F) 

= {X0(Z±S)+…}K(Z±S-G)·{X0(Z±S)+…}K (Z±S+F) 

= G(·)·F(·)；                                     （6.2） 
same reasoning  

{X0(Z±S)+…}K(Z±S) = {X0(Z±S)+…}K(Z±S)/{X0(Z±S)+…}K(Z±S-G)·{X0(Z±S)+…}K(Z±S-G) 

= {X0(Z±S)+…}K (Z±S+F) ·{X0(Z±S)+…}K(Z±S-G) 

= F(·)·G(·)；                                （6.3） 
in the formula：    {X0(Z±S)}K(Z±S±p)/{X0(Z±S)}K(Z±S±p+F) = {Xe(S±p)}K(Z±S±p-G)；  
Proof (C): The reciprocal G(•)•F(•) can be inverted. 
Set: any {p} level:  (1-η(Z±S)

2) K(Z±S±P)={Xe(Z±S)}K(Z±S-P)/{X0(Z±S)}K(Z±S+P)； 
Have:     
{X0(Z±S)+…}K(Z±S±P)={X0(Z±S)+…}K(Z±S±P)/{X0(Z±S)+…}-K(Z±S+P)·{X0(Z±S)+…}+K(Z±S+P)  

Move (iteration) 
{X0(Z±S)+…}+K(Z±S+P) To the left becomes{Xe(Z±S)+…}K(Z±S-P) 

have: 
   {Xe(Z±S)+…}K(Z±S-P) = {Xe(Z±S)+…}K(Z±S-P)/{X0(Z±S)+…}K(Z±S+P)·{X0(Z±S)+…}K(Z±S±P) 

                             = (1-η(Z±S)
2) K(Z±S±P)·{X0(Z±S)+…}K(Z±S±P)；           （6.4） 

get：  
    (1-η(Z±S)

2) K(Z±S±P)=(1-η(Z±S)
2)K(Z±S±P+F)+(1-η(Z±S)

2)K(Z±S±P-G) 
=(1-η(Z±S)

2) K(Z±S+P) ·(1-η(Z±S)
2)K(Z±S-P)；                  （6.5） 

0≤(1-η(Z±S)
2) K(Z±S±P) = [G(·)·F(·) ] K(Z±S±P)≤1；       （6.6） 

Equations (6.1) to (6.6) satisfy the same level regularization, "positive combination 
set" and "reciprocal combination set" can perform isomorphic energy inversion of the 
"self combination of the average of the set divided by its own combination of sets The 
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mean value is not necessarily 1” or becomes proof of Bemanh-Hartmanis conjecture 
[Theorem 2] Homologous circle logarithm (type 1 specification invariance) 

Define isomorphic circle logarithms (invariability of the first type of specification), 
and the self average value divided by its own average value is not necessarily "1". 

assume:      {X} K(Z-S)=∑{ KS√∏(xa xb…xp…xq) } K(Z-S)≠D=∑{KS√D}K(Z±S)； 

∑[ (1/C(Z±S))-1{Xp
-1+…}]K(Z-S) =∑[(1/C(Z±S))+1{KS√D} ]K(Z+S)    

Proof: The isomorphism and expansion of the block uncertainty polynomial 
regularization equilibrium equation: Certificate: Result of applying Theorem One: 

have:       AxK(Z±S±N±0)+ BxK(Z±S±N±1)+…+PxK(Z±S±N±p)+…+QxK(Z±S±N±q) ± D 

= C(S±0)xK(Z±S±N-0)(A/C(S±0))K(Z±S±N+0) + C(S±1)xK(Z±S±N-1)(B/C(S±1))K(Z±S±N+1)+… 

+ C(S±p)xK(Z±S±N-p)(P/C(S±p))K(Z±S±N+p)+…+ C(S±q)xK(Z±S±N-q)(Q/C(S±q)) K(Z±S±N+q) ± D 

= C(S±0)xK(Z±S±N+0) D0
K(Z±S±N+0)+ C(S±1)xK(Z±S±N+0) D0

K(Z±S±N+1)+… 

+ C(S±p)xK(Z±S±N-p) D0
 K(Z±S±N+p)+…+ C(S±q)xK(Z±S±N-q) D0

 K(Z±S±N+q) ± D 

= x0
K(Z±S±N-0) + x0

K(Z±S±N-1)·D0
K(Z±S±N+1)+…+x0

K(Z±S±N-p)·D0
 K(Z±S±N+p)+… 

+ x0
K(Z±S±N-q)·D0

 K(Z±S±N+q) ± D0
K(Z±S±N+0) 

= {(1-η2)K(Z±0)+(1-η2)K(Z±1)+…+(1-η2)K(Z±p) +…+(1-η2)K(Z±q)}· {x0±D0) K(Z±S±N)   

= (1-η2)Z{0,2}K(Z±S){ x0±D0}K(Z±S±N) 

= (1-η2)Z{0,2}K(Z±S){D0}K(Z±S±N)；                          （7.1） 

among them：        (1-η2)K(Z±S)=∑[{X0}/{D0}]K(Z+S±N) =∑[{KS√D} /{D0}]K(Z±S±N)； 

=∑(1/C K(Z±S))K{[ KS√(XK(Z±S))]K(Z-S±N-P)+…}  

/ ∑(1/C K(Z±S))K{DK(Z±S) }K(Z+S±N+P)+…}K(Z+S±N); 

0 ≤ (1-η2)K(Z±S±N)≤ {1} K(Z±S±N)；              （7.2） 
get：        {0} K(Z±S)≤(1-η2)K(Z±0)~(1-η2)K(Z±1)~…~(1-η2)K(Z±p) ~… 
           ~(1-η2)K(Z±q)≤{1} K(Z±S)；                               （7.3） 

or：                (1-η2)Z ~(η)Z = {KS√D / D0}Z 

 {KS√D / D0}K(Z±S±N±0) 

{KS√D / D0}K(Z±S±N±1) 

          =     {…，…} 
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                     {KS√D / D0}K(Z±S±N±p)  

  {KS√D / D0}K(Z±S±N±q)                                                     

                
   (1-η2)K(Z±S±N±0)  0   0 … 0 … 0 

                   0  (1-η2)K(Z±S±N±1)   0 … 0 … 0    
      =        {…，…}                                    （7.4） 

  0   0 (1-η2)K(Z±S±N±p)  … 0 … 0  

  0  0  0 … 0 … (1-η2)K(Z±S±N±q)  

The block is compared by the abstract circle logarithm at the same level, and it is 
obtained that the polynomials have homologous circle logarithm consistency at each 
level. "~" means isomorphism (equivalent). 
 [Theorem 3], the unit circle logarithm (the second type of norm invariance). 

Defining homologous circle logarithms: The same level tile (a,b,...,p,...,q) "The 
collection of each sub-item divided by the total item combination set" has a maximum 
value of {1}, for less than {1} Still take the {1} level, represented by the hierarchical 
nature of the collection of tile combinations, to ensure the unity of different 
combinations within the tile hierarchy, and the position of each sub-item combination 
within the same level. The block unitary circle logarithm ensures the natural number 
order expansion of polynomial power functions (hierarchies). 
have:     

(1-η2)Z ~ (η)Z ={Rh / RH}Z 
{Ra / RH}K(Z K(Z±S±N±0) 

{Rb / RH}K(Z K(Z±S±N±1) 

=     {…，…}          

              {Rp / RH}K(Z K(Z±S±N±p) 
{Rq / RH}K(Z K(Z±S±N±q)     

              (1-ηa
2)K(Z K(Z±S±N±0)   0  0  … 0  … 0 

              0    (1-ηb
2)K(Z K(Z±S±N±1)    0 … 0 … 0          

=    {…，…}                                     
 0   0 … (1-ηp

2)K(Z K(Z±S±N±p) … 0    0  
        0  0  0 …  0 …  (1-ηq 2)K(Z K(Z±S±N±q)                                     
  = (1-ηa

2)K(Z±S±N±0)+(1-ηb
2)K(Z±S±N±1）+…+(1-ηp

2)K(Z±S±N±p)+…-ηq
2)K(Z±S±N±q)   

= {1} K(Z±S±N)                                                    （8.1）   
 
In particular, formula (8.1) is not only (1-η2)Z ~(η)Z for the (quadratic) and (primary) 
equivalents of the logarithm of the circle, and its dimension problem was once 
determined by Cantor in a straight line. The proof between the plane and the plane is 
logically equivalent [5]. It is also extended to be isomorphic to any power dimension. 
heve：  [(ηa

2)+ (ηb
2) +…+(ηp

2)+ …+ (ηq
2)] K(Z±S±N)=[1] K(Z±S±N) ；      （8.2） 

or：     [(ηa
 )+ (ηb

 ) +…+(ηp
 )+ …+ (ηq)] K(Z±S±N)=[1] K(Z±S±N) ；        （8.3） 

 (Note: The circle logarithm is represented by a matrix or a horizontal form and has the same 
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meaning). 
[Theorem IV], property circle logarithm (type 3 specification invariance) 

Defining the total number of combinations of each sub-item in the same layer at 
the same level {RH} divided by the average value of the total item combination {R0} 
to obtain the reciprocal circular logarithm, ensuring that the block combination has 
three levels: expansion, reduction, and invariance. Nature, called topology. Which: 
refers to the level of change or not, does not affect the structure of the internal 
combination). 
have:                (1-η2)Z ~ (η)Z = {RH/R0}K(Z±S)                                         

= {R0-RH}/ R0}K(Z+S)+{R0-RH}/{R0} K(Z±S)+{R0-RH}/ {R0}K(Z-S) 

= [(1-η2) ~ (η)] K(Z+S)+ [(1-η2) ~ (η)] (K(Z±S)+[(1-η2) ~ (η)]- K(Z-S)  
={0~1} K(Z±S) ；                              （9.1) 

Discussion: In each level K (Z±S±N±P), (±P) indicates the increase or decrease of 
the color combination of the item order; (±N) indicates the increase or decrease of the 
level (also referred to as integral, differential order).  

    (1-η2)+K(Z±S) = [{Rep } / {R0p }]K(Z±S)≤1， K=+1； 
A block-level convergence topology;； 

(1-η2) -K(Z±S) = [{Rep } / {R0p }]K(Z±S)≥1，K= -1； 
Tile Level Diffusion Topology； 

(1-η2)0K(Z±S) = [{Rep } / {R0p }]K(Z±S) =1，K=±0；                 （9.2） 
Call the tile level unchanged；                              

[Theorem 5] Hierarchical isomorphic limit values (phase change point, critical 
point): 

Infinite blocks establish regularization polynomials, through infinite logarithm 
equations (point, line, surface, volume, space, hyperspace, high-power polynomials) 
infinite combinations and sets, their isomorphism, unity, and reciprocity integration 
The calculation of the level and the combination of stable zero error is obtained. 
There are isomorphic limit values (phase transition points, critical points) between 
these levels, units, and reciprocity. 

have:            {x0±D0) K(Z±S±N) = (1-η2) K(Z±S±N) { x0±D0}K(Z±S±N)； 

among them: simultaneous equations: （10.1）（10.2） 
      (1-η2) K(Z±S±N) = (1-η2) K(Z±S±N) ·(1-η2) K(Z±S±N)={0,1} K(Z±S±N)；        （10.1） 

(1-η2)K(Z±S±N) = (1-η2) K(Z±S±N)  + (1-η2) K(Z±S±N)={0,1} K(Z±S±N))；      （10.2） 
get the solution： 
                 (1-η2) K(Z±S±N) = {0,1/2,1} K(Z±S±N)；  (K=+1,-1)；         （10.3） 
where: {0, 1} represents the critical value of the hierarchy, and {1/2} represents the 
symmetry of the critical value of the internal reciprocity of the hierarchy.           
[Theorem 6], Changes in Tile Hierarchy and Polynomial Item Order (Calculus 
Order Value) (Leaps) 

The regularization polynomial hierarchy (power-dimensional order, order) 
(Z±S±N)level shows the change of the total combination coefficient value; 
There are: polynomial equation hierarchy F{M} : 

F{M}={x0±D0)K(Z±S±M)= AxK(Z±S±M±0)+ BxK(Z±S±M±1) +…+PxK(Z±S±M±p)+…K(Z±S±M±q)+D 
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= (1-η2)Z{0,2} K(Z±S±M)·{D0}K(Z±S±M);  ∑C K(Z±S±M)={2} 
K(Z±S±M)； 

There are: poly nomial equation hierarchy F{Q}，  

F{Q}={x0±D0) K(Z±S±Q) = AxK(Z±S±Q±0)+ BxK(Z±S±Q±1) +…+PxK(Z±S±Q±p)+…(Z±S±Q±q)+D 

 = (1-η2)Z{0,2} K(Z±S±Q)·{D0}K(Z±S±Q)； ∑C K(Z±S±Q)={2} 
K(Z±S±Q)； 

to: The span between polynomial hierarchy F{M} and F{Q} polynomials: 
              F{M} /F{Q} ={2} K(Z±S±M) / {2} K(Z±S±Q)={2}K(Z±S±[M±Q])；         （11.1） 
there are: changes in tile levels do not affect the polynomial hierarchy (item order, 
calculus) sub-coefficient changes P = [Pm - Pq]; 

{X}K(Z±S±N±m)/{X}K(Z±S±N±q))= {X}K(Z±S±N±m-q) 
=C (Z±S±[M]) / C(Z±S±[Q]) = C(Z±S±[M-Q]) ； 

             = S(S-1)(S-p)(S-m)/m! ]/[ S(S-1)(S-p)(S-q)/q!]    （11.2） 
 [Theorem 7] The serial/parallel theorem of polynomial (data collection, tile 
superposition) at tile level 

Defining the block-level polynomials and different types of full data sets. There 
are "serial/parallel" (called data collection, function collection, and state superposition) 
between elements, space, and hierarchy to get a complex space (called primary and 
sub-quantity particle states). Overlay, or Calculus). Completeness and incompleteness 
based on internal combinations of layers. 

Definitions have the same level of combination called parallel equations, and 
cross-level combinations called serial equations 
(1), Define a combination of the same level called the parallel equation, called the 
parallel equation: 
feature:  H={{A}+{B}+{C}+ … }K(Z±S±N) (H stands for parallel, same level 
combination)，   

        {DH} Z =∑H {DA + DB+ DC +…}K(Z+S) =∑H {DA
+1+DB

+1+DC
+1+…} K(Z±S±N)； 

(2), Definitions There are cross-level combinations of serial equations called serial 
equations: 
feature:  H = {{{{{A}·…B}}·…C}·…} K(Z±S±N) (H stands for serial, cross-level 
combinations)， 

        {DH} Z =∑H {DA·DB·DC·… } K(Z±S±N) =∑H {DA
-1+DB

-1+DC
-1+…} K(Z±S±N) ；              

 (3) ,Serial/parallel block combination and round logarithm: 
Set: power function composition: 

F{H} ={H} K(Z±H)={DA} K{(Z±A) +{DB} K(Z±B)+ {DC}K(Z±C)； 

heve：    (1-η(Z±H)
2)K(Z±H) =∑H{DA

-1+DB
-1+DC

-1}K(Z-H)/∑H{ DA
+1+ DB

+1+ DC
+1}K(Z+H) 

Serial/Parallel unity, according to the combination of theorem one can convert both 
positive and negative combinations and reciprocity. 
There are:    
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(1-η(Z±H)
2)K(Z±H) =∑H{ DA

-1+ DB
-1+ DC

-1}K(Z-H) / ∑H{ DA
+1+ DB

+1+ DC
+1}K(Z+H) 

Proof: Block serial/parallel polynomial equation isomorphism: 

have:       F{X±DH}K(Z±H)= F{X±DA}(Z±A)+F{Y±DB}(Z±B)+F{Z±DC}(Z±C)+… 

= (1-ηA
2)K(Z±A){0,2}K(Z±A){DA}K(Z±A) 

+(1-ηB
2) K(Z±B){0,2}K(Z±B){DB}K(Z±B) 

+(1-ηC
2) K(Z±C){0,2}K(Z±C){DC}K(Z±C) +… 

= (1-η(Z±H)
2)K(Z±H){0,2}K(Z±H)·{ DA

K+DB
K+DC

K+…} K(Z±H) 

= (1-η(Z±H)
2)K(Z±H){0,2}K(Z±H){DH}K(Z±H) ；                                     (12)    

Equation (12) The serial/parallel equations are uniformly described by the circle 
logarithm (K=+1, -1) and have very good contact boundaries. Therefore, various 
combinations between the composite hierarchy and the basic hierarchy can be handled 
and various Hierarchical blocks, graphics. 
Among them: these serial/parallel tiles can be a complete combination and an 
incomplete combination of randomness. 

4. Proof of the Four Color Theorem 
The four-color theorem is a well-known mathematical theorem. If you draw a few 

contiguous finite regions on a plane, you can color these regions with four colors so 
that the color of each two adjacent regions is different. 
For more than a century, mathematicians have racked their brains to prove this 
theorem. The concepts and methods introduced have stimulated the disciplines of 
topology and graph theory. In the course of the study, many new mathematical 
theories have emerged, and many mathematical calculation skills have been 
developed, enriching the content of graph theory. 

The invention of high-speed digital computers prompted more mathematicians to 
study the "four-color problem." In June 1976, on the two different electronic 
computers of the University of Illinois, it took 1200 hours to make a judgment of 10 
billion. It finally proved the four-color theorem and caused a sensation in the world. 
However, computer certification has not received universal recognition in the 
mathematics community. Few experts are not satisfied with the achievements made 
by computers, and they require a simple and fast traditional written proof method to 
prove the four-color problem. 

This paper consists of four color blocks, plus a final closed curve to form a 
hierarchy{2} K(Z±S±N), the establishment of polynomial equations converted to a 
logarithmic equation, to deal with the above calculations. among them: 
(1), Solve the computational problem of levels (tiles, spaces, values, functions) by 
isomorphic circle logarithms. 
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(2),  Through the unitary round logarithm, the arrangement of different combinations 
at the same level, to solve the position calculation. 
In this way, the four-color theorem is converted into a problem of the logarithmic 
equation, creating a new idea for complex polynomial calculations. 
4.1. Proof of the necessity of the four-color theorem 

Definition: Composite tiles (four colors are not combined repeatedly) become 
layers (or composite layers) and then continue to be combined with other adjacent 
colors to form a new composite layer. So on and so forth. 
Yes; four elements with center zero (line) {{(A,B,C,D)}-0}; Z=K(Z±S±N±0); 

coefficient C(S±N±0)= 1; 
{Three elements (line)} and one element {{(A,B,C)}-1}; Z=K(Z±S±N±3); coefficient 

C(S±N±1)=4; 
{Two elements (line)} and two elements {{(A,B)}-(C,D)}; Z=K(Z±S±N±2); 

coefficient C(S±N±2) =6; 
{One element (line)} and three elements {{(A)}-(B,C,D)}; Z=K(Z±S±N±1); 

coefficient C(S±N±3)= 4; 
{Border closure (line)} with four elements {{(0)}-(A,B,C,D)}; Z=K(Z±S±N±0); 

coefficient C(S±N±4) =1; 
The total coefficient of the hierarchy:  
CK(Z±S±N±P)={1+4+6+4+1}K(Z±S±N±P)={24}K(Z±S±N±P={42}K(Z±S±N±P;(N≥2) ,p=0,1,2,3,4 
In the formula {{{{A}…}…}…}Represents the composite hierarchy.  
The combination within the hierarchy can be a combination of full (P=4) and 
incomplete (P=4,3,2,1,0), and a power function describing Z=K(Z±S±N±P ); 
{0}K(Z±S±N±0) denotes the intersection point (line) of the boundary line or the last 
closure boundary line (level line), respectively. 
The basic block {{{1+4+6+4+1}...}...}={24-1}={42-1}={15} values. The number of 
tile colors that the graph satisfies (completely combined tiles); non-completely 
combined tiles {{{24-q}-q...}-q...}={24-q}={42-q}={N·15-q} . The number of tiles 
that the graph satisfies 
(A), the tiles in the basic tiles, called the basic level (±N=1), 

Inside a block, a set of four colors performs a complete non-repeating four-four 
combination, surrounded by a closed curve, and composed of polynomial quartic 
equations. 
(1),  Standard basic blocks:  （Z=0；S=0；±N=1；P=4,0）： 

{x}K(P)=AxK(0)
 +BxK(1)

 +CxK(2)
 +DxK(3)

 +{D} 

             = xK (P±0)
 +C (P±1) xK (P±1)

 +C (P±2) xK(P±2)
 +C (S±N±3) xK (P±3)

 +D0
 (P±4) 

      = (1-η(Z±H)
2)K(P){0,2}K(P){DH}K(P) ；                 (13) 

The homologous circle logarithm in polynomial coefficients:（P=4,0） 
 (1-ηP)

2)K(P)=(C (P±0)+C (P±1)+C (P±2)+C (P±3)+C(P±4))/{24}=1; 

The logarithm of the unit circle in the polynomial coefficient: (P=4,0) 

(1-ηHP)
2)K(P) = [{X}K(Z±S±1)-1]=[{2}K(Z±S±1) -1]= 15/(24-1)=1； 
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Hierarchical coefficients:C K(Z±S±N±P)={1+4+6+4+1}K(Z±S±N±P)={2} K(Z±S±N±P) ;(N≥2) 
(2), Non-standard basic block values:Z=0；S=0；±N=1；P=4,3,2,1；q=(1~15)=there 
is an Incomplete combination of values. 

{x}K(P)=AxK(±N±4)
 +BxK(±N±1)

 +CxK(±N±2)
 +DxK(±N±3)

 +{D} 

  = xK(±N±4)
 +C (P±1) xK(±N±1)

 +C (P±2)x(±N±2)
 +C (S±N±3) x(±N±2)

 +D0
(±N±0) 

 = (1-η(P)
2)K(P){0,2}K(P){D0}K(P) ； 

The homologous circle logarithm in polynomial coefficients:（P=4,3,2,1）q=(0~15); 
 (1-ηP)

2)K(P)=(C (P±0)+C (P±1)+C (P±2)+C (P±3)+C(P±4))/{24-q}=1; 

The number of unit circle pairs in polynomial coefficients：(P=4,3,2,1)  

 (1-ηHP)
2)K(P) = [{X}K(Z±S±1)-q]=[{2}K(Z±S±1) -q]= (0~15)/(24-q)=1； 

Hierarchical coefficients:  
C K(Z±S±N±P)=[{1+4+6+4+1}K(Z±S±N±P)-q]=[ {2} K(Z±S±N±P) -q]; (N≥2); 

(3) Comparison of non-standard basic block values (coefficients)/non-standard basic 
block values (coefficients): 

(1-ηHP
2)= {X}K(Z±S±P)/{X}K(Z±S±4)=[{2}K(Z±S±1)- q] / [{2}K(Z±S±P) -1]≤1； 

where：(1-ηHP
2)K(P)，(1-ηP

2)K(P) denote non-standard hierarchical cell blocks, standard 

hierarchical cell blocks, respectively  
(B) Complete combined set of composite blocks (four colors) (S≥1; ±N≥2; 
P=4); 
(1),  Standard composite tile features: Any basic tile level is a complete element 
combination, 

[{C (S±N±0)}+{C (S±N±1)}+{C (S±N±2)}+{C (S±N±4)}]K(Z±S±N±4)={1+4+6+4+1}K(Z±S±N±4) 

= {16}K(Z±S±N±4)={2}K(Z±S±N±4) 

The tile value in the composite standard basic tile (remove the boundary curve in the 
tile numerical calculation): 

{X}K(Z±S±N)=[{24} -1] K(Z±S±N) ={N·42 -1]} K(Z±S±N)； 
Level internal coefficient (number) comparison: (1-ηHP)

2)K(P) =1 (also known as 
probability) 
(2), Non-standard composite blocks (four colors) are called non-integrated 
combinations of levels (±N≥1, 2, 3... natural numbers; when P≤4 are also listed as 
one level); 

Non-standard composite tile features: Any tile hierarchy has a complete mix of 
incomplete elements.  

[{C (S±N±0)}+{C (S±N±1)}+{C (S±N±2)}+{C (S±N±4)}]K(Z±S±N±p)=[{2}K(Z±S±N)-q]≤
[{2}K(Z±S±N)-1]； 

Tile values in non-standard composite tiles：P=4,3,2,1,q =[0,1,2,…15] 
{X} K(Z±S±N±p)=[{2} K(Z±S±N±p) -q]≤{N(24-1)} K(Z±S±N±p)； 

Non-standard composite block / standard composite block numerical comparison: 
{(1-ηHP)

2) / (1-ηP)
2)}K(Z±S±N±p)= [{2} K(Z±S±N±p) -q] / [{2} K(Z±S±N±p) -1]≤1; 
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There is a stochastic probability logarithm and a regular network. 
In the formula, the power-dimensional sub-levels (±NA+(±NB)+...(with serial and 
parallel combinations) form the polynomial power-dimensional (±S); the graphs in the 
S-dimensional powers contain N levels of various standards and non- Standard (±N) 
number of combination tiles: 
4.2. Proof of the adequacy of the four-color theorem 

Suppose: different combinations of levels (K(Z±S±N), that is, do not follow the 
(1+4+6+4+1) combination rule, any combination of randomly selected groups forms 
one or more combinations to form a unit Levels, calculated by levels (K(Z±S±N), 

have:          {X±D)K(Z±S±N)=(1-η2)K(Z±S±N±p)·{[{x0}/{D0}] K(Z±S±N±0) 

+ [{x0}/{D0}] K(Z±S±N±1)+…+[{x0}/{D0}] K(Z±S±N±p)+…+[{x0}/{D0}]K(Z±S±N±q)} 

= (1-η2) K(Z±S±N±0)+(1-η2) K(Z±S±N±1)+…+(1-η2) K(Z±S±N±p)+… 

+(1-η2) K(Z±S±N±q)·{X0±D0)K(Z±S±N) 

= (1-η2) K(Z±S±N±P){X0±D0)K(Z±S±N)；                   （14.1） 

or：         = {(1-ηa
2) K(Z±S±N±0)+(1-ηb

2) K(Z±S±N±1)+…+(1-ηp
2) K(Z±S±N±p)+… 

+(1-ηq
2) K(Z±S±N±q)}·{X0±D0)K(Z±S±N);                  （14.2）                   

According to formulas (14.1) and (14.2), the polynomials combining complete 
and non-intact tiles are uniformly converted into the isomorphism and unity of the 
circle logarithm, and the hierarchical position calculation and the calculation of the 
graphic position of the internal combination of layers are unified. 
have:            (1-η2) K(Z±S±N±P) = (1-ηH

2) K(Z±S±N±P); 

get    (η) K(Z±S±N±P) = [ (ηa) + (ηb) +…+ (ηp) +…+ (ηq) ]K(Z±S±N±P);         （14.3） 

(η2) K(Z±S±N±P) = [ (ηa
2) + (ηb

2) +…+ (ηp
2) +…+ (ηq

2) ]K(Z±S±N±P);       （14.4） 

where: (η) K(Z±S±N±P) (η2) K(Z±S±N±P)is complete, it can be fully developed on planes 
and spheres. 
4.3. Proof of the uniqueness of the four-color theorem 

{x+D} K(Z±S±N)=AxK(Z±S±N±0)
 +BxK(Z±S±N±1)

 +…+CxK(Z±S±N±2)
 +…+DxK(Z±S±N±3)+D 

  =xK(Z±S±N±0)+C (S±N±1)xK (Z±S±N±1)+…+C (S±N±2)xK(Z±S±N±p)+… 

+C (S±N±3)xK (Z±S±N±q)+D；   

                     =(1-η2) K(Z±S±N±P){2}K(Z±S±N±P){X} K(Z±S±N) ;         （15.1） 
Coefficient (number of combinations):    

       ∑C 
K(Z±S±N)=[{2} K(Z±S±N)-q]Z≤{24}Z={42}Z={(N/4)2}Z={(S/4)2}Z；     （15.2） 

Comparison of relative block level relativity:   
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0≤{ (1-ηH
2)/(1-η2)}K(Z±S±N) = [{2} K(Z±S±NP)-q]/[{24} K(Z±S±N)-1 ]≤1;   （15.3）   

Number of arbitrary tiles: 

{DP}=(1-ηH
2) K(Z±S±N){D0

P} 

                  ={{{1+4+6+4+1}-q1}-q2}…}K(Z±S±N) 

={ N·24-q} K(Z±S±N)≤{ N·24} K(Z±S±N) 

≤{ N·42} K(Z±S±N)                                        （15.4） 
Formulas (15.1)~(15.4) describe that after choosing the average value between 

levels, there is isomorphism among them and the difficulty of calculating the 
incomplete combination within the hierarchy is eliminated. 

Intuitively, in the plane, on the sphere, in any space, the circle logarithms can be 
naturalized (mapped) as a combination of networks of S points. In the spherical space 
of the block {{{{A} -(B,C,D)}...}...}, there are at least three planes, three adjacent 
boundary curves, and a spatial pattern (triangles) of blocks that make up space. . Or 
the vertices (regions, tiles) of a trigonal (cone) body (tetrahedron) project (projection) 
a grid pattern of mutually adjoining edges, and there are four surface boundaries 
(block regions) associated with each other. Display: Triangular (cone) body Three 
colors are not enough, five colors are too many, four colors are enough.Therefore, the 
sum of coefficients (CK(Z±S±N±P)) in the expansion of an arbitral high-power (S) 
binomial coefficient is equal to{{{{24}K(NP)-q1]K(Z±S±N ±P)...-q2 }...-qp.}...-qq}K(Z±S±N).          
The mathematical combination and omnidirectional relative positions of arbitrary 
power (S±N) power polynomials are obtained, and the infinity map can be accurately 
calculated. The block gets filled with four colors. 

In summary, the collection of blocks in the four-color theorem can be a complete 
and incomplete multi-level composite block. There is a combination of serial groups 
and parallels to form any composite hierarchy K(Z±S±N±[P]). Tiles, graphics. 
Becomes an arbitrary high-power dimensional polynomial equation that satisfies four 
colors, and a sufficiently large plane or sphere area. Because it is a non-repeating 
combination, it is possible to realize the computation of an infinite combination of 
four colors in adjacent areas of an infinite area of the graph, which proves the 
adequacy, necessity, and uniqueness of the four-color theorem. 
4.4. Calculation of Grid Block Values in Four Color Theorem 

The combination of grid blocks has a non-random grid and a random color 
distribution, belonging to an incomplete hierarchy of rule combinations. 
Have: Z=( Infinite); S=1,2,3,4,... natural number; N=1,2,3,4,…natural number; 
P=4,3,2,1,0； q=0,1,2,3…24 

{X} K(Z±S±N)= (1-η2) K(Z±S±N±P){D0}K(Z±S±N±P)≤{2} K(Z±S±N±P) ；       (16.1) 

{D0}K(Z±S±N±P)≤[(24) –q] K(Z±S±N±P) =[(42) –q] K(Z±S±N±P) ;           (16.2) 

Special: When the map is mapped to points and grids of the grid, it belongs to a 
special regularity combination, random color fill, no closed boundary, Special: When 
the map is mapped to points and grids of the grid, it belongs to a special regularity 
combination, random color fill, no closed boundary, [(24) –q] K(Z±S±N±P)，（q=0）， 
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{D0}K(Z±S±N±P)=[(42)] K(Z±S±N±P);                            (16.3) 

Comparison of relative block level relativity:   

    0≤{ (1-ηH
2)/(1-η2)}K(Z±S±N) = [{2} K(Z±S±NP)-q] / [{2} K(Z±S±N±4)-1 ]≤1; （16.4） 

The combination of internal colors: 
       (1-ηH

2) = (1-ηh1
2) +(1-ηh2

2) +…+ (1-ηhp
2) +…+ (1-ηhq

2)≤1;      （16.5） 

5. Conclusion 
The highlight of this paper is to convert the color of the tile (limited to four 

colors) to the non-repeating combination set {X} and the last closed boundary curve 

{D} to form a polynomial equilibrium equation {X±D}, which is converted to no 

specific element. The logarithmic equation (1-η2) K(Z±S±N±P) and the hierarchical unity 
(called combination probability) (1-ηH

2) K(Z±S±N±P). Prove the logarithmic isomorphism 
(determination of the block, hierarchy, combination), unity (determination of the 
internal combination of the hierarchy), and the reciprocity and relative symmetry 
combination of the boundary curve and the combination of elements; making the 
four-color theorem Become a non-repeating four-four combination set graph, forming 
any finite hierarchy in infinite tiles 
A combination of (Z±S±N±P). The sum of the coefficients (CK(Z±S±N±P)) in the 
expansion of any high power (S) binomial coefficient 
 {{{{24}K(NP)-q1]K(Z±S±N±P)...-q2}K(Z±S±N±2P)...-qp}K(Z±S±N± pP).. -qq} K(Z±S±N±pq)} K(Z±S±N±P)               

           =[{24}K(NP)-q]K(Z±S±N±P) =[{42}K(NP)-q]K(Z±S±N±P),            (17) 
The mathematical combination of arbitrarily power (S±N) power polynomials and the 
omnidirectional relative position are obtained, and the infinite block can be accurately 
calculated to obtain four colors.{q} indicates the number of incomplete combinations 
of each level (q=0, 1, 2, 3, ... 15) 

[{24}K(NP)-q]K(Z±S±N±P)≤{X} K(Z±S±N±P)≤{24}K(NP)]K(Z±S±N±P)          (18) 
 

Finally, a sufficiently large high-power polynomial obtains each level by the 
isomorphic circular logarithm equation "limited to the infinite combination of four 
colors" (mathematical combination), passing the unit circle of the total coefficient 
CK(Z±S±N±P) The logarithmic hierarchy formula (1-ηH2) K(Z±S±N±P) and the 
isomorphic circular logarithm formula (1-η2) K(Z±S±N±P) are calculated. The value 
required for the four-color theorem "infinite tiles filled with four colors" was 

successfully replaced by a computer that used 1200 hours, a sufficiently large S ≥ 

100 billion power (dimension) calculation. (proof) 
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