

α^{e} -Closed Set, α^{e} -Continuity and α -e-Almost Compactness For Crisp Subsets of a Fuzzy Topological Space

Anjana Bhattacharyya

Department of Mathematics, Victoria Institution (College) 78 B, A.P.C. Road, Kolkata - 700009, India. E-mail: anjanabhattacharyya@hotmail.com

Abstract

This paper is a continuation of [3]. In this paper we introduce a new type of crisp set viz., α^{e} -closed set which inherits α -e-almost compactness [3] of a fuzzy topological space. In the last section we introduce α^{e} -continuous function between two fuzzy topological spaces under which α -e-almost compactness for crisp subsets remains invariant. **AMS Subject Classifications**: 54A40, 54C99, 54D20.

Keywords: α -*e*-almost compact space, α -*e*-almost compact set, α -*e*-Urysohn space, α^{e} closed set, α -*e*-continuity, fuzzy *e*-open function.

1. Introduction

After introducing fuzzy topology given by Chang [4], different types of closed sets are introduced in fuzzy set theory. But after introducing α -shading (where $0 < \alpha < 1$) by Gantner et al. [6] in 1978, new types of closed sets which are crisp subsets of a space X where the underlying structure is fuzzy topology are introduced and studied. Here we introduce a new type of crisp subset with the help of α -shading, viz., α^e -closed set. Using the idea of α -shading in [3] α -e-almost compactness for crisp set is introduced and studied.

2. Preliminaries

Throughout the paper by (X, τ) or simply by X, we mean a fuzzy topological space (fts, for short) in the sense of Chang [4]. A crisp set A in an fts X means an ordinary subset of the set X where the underlying structure of the set X being a fuzzy topology τ . A fuzzy set [8] A is a mapping from a nonempty set X into the closed interval I = [0, 1] of the real line, i.e., $A \in I^X$. For a fuzzy set A, the fuzzy closure [4] and fuzzy interior [4] of A in X are denoted by clA and int A respectively. The support [8] of a fuzzy set A in X will be denoted by suppA and is defined by $supp A = \{x \in X : A(x) \neq 0\}$. A fuzzy point [7] in X with the singleton support $\{x\} \subseteq X$ and the value α $(0 < \alpha \leq 1)$ at x will be denoted by x_{α} . For a fuzzy set A, the complement [8] of A in X will be denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for each $x \in X$. For any two fuzzy sets A and B in X, we write $A \leq B$ if $A(x) \leq B(x)$, for each $x \in X$ [8] while we write AqB if A is quasi-coincident (q-coincident, for short) with B [7], i.e., if there exists $x \in X$ such that A(x) + B(x) > 1; the negation of these statements are written as $A \not\leq B$ and $A \notA B$ respectively. A fuzzy set A is called fuzzy regular open [1] if A = int(clA). A fuzzy set B is called a quasi-neighbourhood (q-nbd, for short) [7] of a fuzzy point x_t if there is a fuzzy open set U in X such that $x_t q U \leq B$. If, in addition, B is fuzzy open (resp., fuzzy regular open), then B is called a fuzzy open [7] (resp., fuzzy regular open [1]) q-nbd of x_t . A fuzzy point x_{α} is said to be a fuzzy δ -cluster point of a fuzzy set A in an fts X if every fuzzy regular open q-nbd U of x_{α} is q-coincident with A [5]. The union of all fuzzy δ -cluster points of A is called the fuzzy δ -closure of A and is denoted by δclA [5]. A fuzzy set A is fuzzy δ -closed iff $A = \delta c l A$ [5]. The complement of a fuzzy δ -closed set in an fts X is called fuzzy δ -open [5]. A fuzzy set A is fuzzy δ -open iff $A = \delta int A$ [5].

3. Some Known Definitions and Results

Definition 3.1[2]. A fuzzy set A in an fts X is said to be fuzzy *e*-open if $A \leq cl(\delta intA) \lor int(\delta clA)$. The complement of a fuzzy *e*-open set is called fuzzy *e*-closed.

Definition 3.2[2]. The intersection of all fuzzy *e*-closed sets containing a fuzzy set A in an fts X is called fuzzy *e*-closure of A, to be denoted by *eclA*.

Result 3.3[2]. A fuzzy set A in an fts X is fuzzy e-closed iff A = eclA.

Definition 3.4[2]. The union of all fuzzy *e*-open sets contained in a fuzzy set A in X is called fuzzy *e*-interior of A, to be denoted by *eintA*.

Result 3.5[2]. A fuzzy set A is fuzzy *e*-open iff A = eintA.

Result 3.6[2]. (i) For any fuzzy set A in X, $x_t \in eclA \Leftrightarrow UqA$ for any fuzzy e-open set U in X with x_tqU .

(ii) for any two fuzzy sets U, V in X where V is fuzzy e-open set, $U \not A V \Rightarrow eclU \not A V$.

Definition 3.7. Let X be an fts and A, a crisp subset of X. A collection \mathcal{U} of fuzzy sets in X is called an α -shading (where $0 < \alpha < 1$) of A if for each $x \in A$, there is some $U_x \in \mathcal{U}$ such that $U_x(x) > \alpha$ [6]. If, in addition, the members of \mathcal{U} are fuzzy *e*-open sets, then \mathcal{U} is called a fuzzy *e*-open [3] α -shading of *A*.

Definition 3.8[3]. Let X be an fts and A, a crisp subset of X. A is said to be α -e-almost compact if each fuzzy e-open α -shading \mathcal{U} of A has a finite e-proximate α -subshading, i.e., there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\{eclU : U \in \mathcal{U}_0\}$ is again an α -shading of A. If, in particular A = X, we get the definition of α -e-almost compact space X.

4. α^{e} -Closed Set : Some Properties

Definition 4.1. Let (X, τ) be an fts and $A \subseteq X$. A point $x \in X$ is said to be an α^e -limit point of A if for every fuzzy e-open set U in X with $U(x) > \alpha$, there exists $y \in A \setminus \{x\}$ such that $(eclU)(y) > \alpha$. The set of all α^e -limit points of A will be denoted by $[A]_e^{\alpha}$.

The α^e -closure of A, to be denoted by α^e -clA, is defined by α^e -clA = $A \cup [A]_e^{\alpha}$.

Definition 4.2. A crisp subset A of an fts X is said to be α^{e} -closed if it contains all its α^{e} -limit points. Any subset B of X is called α^{e} -open if $X \setminus B$ is α^{e} -closed.

Remark 4.3. It is clear from Definition 4.1 that for any set $A \subseteq X$, $A \subseteq \alpha^e$ -clA and α^e -clA = A if and only if $[A]_e^{\alpha} \subseteq A$. Again it follows from Definition 4.1 that A is α^e -closed if and only if α^e -clA = A. It is also clear that $A \subseteq B \subseteq X \Rightarrow [A]_e^{\alpha} \subseteq [B]_e^{\alpha}$.

Theorem 4.4. An α^{e} -closed subset A of an α -e-almost compact space X is α -e-almost compact.

Proof. Let $A(\subseteq X)$ be α^{e} -closed in an α -e-almost compact space X. Then for any $x \notin A$, there is a fuzzy e-open set U_x in X such that $U_x(x) > \alpha$, and $(eclU_x)(y) \leq \alpha$, for every $y \in A$. Consider the collection $\mathcal{U} = \{U_x : x \notin A\}$. For proving A to be α -e-almost compact, consider a fuzzy e-open α -shading \mathcal{V} of A. Clearly $\mathcal{U} \cup \mathcal{V}$ is a fuzzy e-open α -shading of X. Since X is α -e-almost compact, there exists a finite subcollection $\{V_1, V_2, ..., V_n\}$ of $\mathcal{U} \cup \mathcal{V}$ such that for every $t \in X$, there exists $V_i(1 \leq i \leq n)$ such that $(eclV_i)(t) > \alpha$. For every member U_x of \mathcal{U} , $(eclU_x)(y) \leq \alpha$, for every $y \in A$. So if this subcollection contains any member of \mathcal{U} , we omit it and hence we get the result.

To achieve the converse of Theorem 4.4, we define the following.

Definition 4.5. An fts (X, τ) is said to be α -*e*-Urysohn if for any two distinct points x, y of X, there exist a fuzzy open set U and a fuzzy *e*-open set V in X with $U(x) > \alpha$, $V(y) > \alpha$ and $min((eclU)(z), (eclV(z)) \le \alpha$, for each $z \in X$.

Theorem 4.6. An α -*e*-almost compact set in an α -*e*-Urysohn space X is α^{e} -closed.

Proof. Let A be an α -e-almost compact set and $x \in X \setminus A$. Then for each $y \in A$, $x \neq y$.

As X is α -e-Urysohn, there exist a fuzzy open set U_y and a fuzzy e-open set V_y in X such that $U_y(x) > \alpha$, $V_y(y) > \alpha$ and $min((eclU_y)(z), (eclV_y)(z)) \le \alpha$, for all $z \in X$... (1).

Then $\mathcal{U} = \{V_y : y \in A\}$ is a fuzzy *e*-open α -shading of A and so by α -*e*-almost compactness of A, there exist finitely many points $y_1, y_2, ..., y_n$ of A such that $\mathcal{U}_0 = \{eclV_{y_1}, eclV_{y_2}, ..., eclV_{y_n}\}$ is again an α -shading of A. Now $U = U_{y_1} \cap ... \cap U_{y_n}$ being a fuzzy open set is a fuzzy *e*-open set in X such that $U(x) > \alpha$. In order to show that A to be α^e -closed, it now suffices to show that $(eclU)(y) \leq \alpha$, for each $y \in A$. In fact, if for some $z \in A$, we assume $(eclU)(z) > \alpha$, then as $z \in A$, we have $(eclV_{y_k})(z) > \alpha$, for some k $(1 \leq k \leq n)$. Also $(eclU_{y_k})(z) > \alpha$. Hence $min((eclU_{y_k})(z), (eclV_{y_k})(z)) > \alpha$, contradicting (1).

Corollary 4.7. In an α -*e*-almost compact, α -*e*-Urysohn space X, a subset A of X is α -*e*-almost compact if and only if it is α^{e} -closed.

Theorem 4.8. In an α -*e*-almost compact space X, every cover of X by α^{e} -open sets has a finite subcover.

Proof. Let $\mathcal{U} = \{U_i : i \in \Lambda\}$ be a cover of X by α^e -open sets. Then for each $x \in X$, there exists $U_x \in \mathcal{U}$ such that $x \in U_x$. Since $X \setminus U_x$ is α^e -closed, there exists a fuzzy *e*-open set V_x in X such that $V_x(x) > \alpha$ and $(eclV_x)(y) \leq \alpha$, for each $y \in X \setminus U_x$... (1).

Then $\{V_x : x \in X\}$ forms a fuzzy *e*-open α -shading of the α -*e*-almost compact space X. Thus there exists a finite subset $\{x_1, x_2, ..., x_n\}$ of X such that $\{eclV_{x_i} : i = 1, 2, ..., n\}$ is an α -shading of X ... (2).

We claim that $\{U_{x_1}, U_{x_2}, ..., U_{x_n}\}$ is a finite subcover of \mathcal{U} . If not, then there exists $y \in X \setminus \bigcup_{i=1}^{n} U_{x_i} = \bigcap_{i=1}^{n} (X \setminus U_{x_i})$. Then by (1), $(eclV_{x_i})(y) \leq \alpha$, for i = 1, 2, ..., n and so $(\bigcup_{i=1}^{n} eclV_{x_i})(y) \leq \alpha$, contradicting (2).

Theorem 4.9. Let (X, τ) be an fts. If X is α -e-almost compact, then every collection of α^{e} -closed sets in X with finite intersection property has non-empty intersection.

Proof. Let $\mathcal{F} = \{F_i : i \in \Lambda\}$ be a collection of α^e -closed sets in an α -*e*-almost compact space X having finite intersection property. If possible, let $\bigcap_{i \in \Lambda} F_i = \phi$. Then $X \setminus \bigcap_{i \in \Lambda} F_i = \bigcup_{i \in \Lambda} (X \setminus F_i) = X \Rightarrow \mathcal{U} = \{X \setminus F_i : i \in \Lambda\}$ is an α^e -open cover of X. Then by Theorem 4.8, there is a finite subset Λ_0 of Λ such that $\bigcup_{i \in \Lambda_0} (X \setminus F_i) = X \Rightarrow \bigcap_{i \in \Lambda_0} F_i = \phi$, a contradiction.

5. α^e -Continuity

Definition 5.1. Let X, Y be fts's. A function $f : X \to Y$ is said to be α^{e} -continuous if for each point $x \in X$ and each fuzzy *e*-open set V in Y with $V(f(x)) > \alpha$, there exists a fuzzy e-open set U in X with $U(x) > \alpha$ such that $eclU \leq f^{-1}(eclV)$.

Theorem 5.2. If $f: X \to Y$ is α^{e} -continuous (where X, Y are, as usual, fts's), then the following are true :

(a) $f([A]_e^{\alpha}) \subseteq [f(A)]_e^{\alpha}$, for every $A \subseteq X$.

(b) $[f^{-1}(A)]_e^{\alpha} \subseteq f^{-1}([A]_e^{\alpha})$, for every $A \subseteq Y$.

(c) For each α^{e} -closed set A in Y, $f^{-1}(A)$ is α^{e} -closed in X.

(d) For each α^{e} -open set A in Y, $f^{-1}(A)$ is α^{e} -open in X.

Proof (a). Let $x \in [A]_e^{\alpha}$ and U be any fuzzy *e*-open set in Y with $U(f(x)) > \alpha$. Then there is a fuzzy *e*-open set V in X with $V(x) > \alpha$ and $eclV \leq f^{-1}(eclU)$. Now $x \in [A]_e^{\alpha}$ and V is a fuzzy *e*-open set in X with $V(x) > \alpha \Rightarrow eclV(x_0) > \alpha$, for some $x_0 \in A \setminus \{x\} \Rightarrow \alpha <$ $eclV(x_0) \leq (f^{-1}(eclU))(x_0) = (eclU)(f(x_0))$ where $f(x_0) \in f(A) \setminus \{f(x)\} \Rightarrow f(x) \in [f(A)]_e^{\alpha}$. Thus (a) follows.

(b) By (a), $f([f^{-1}(A)]_e^{\alpha}) \subseteq [ff^{-1}(A)]_e^{\alpha} \subseteq [A]_e^{\alpha} \Rightarrow [f^{-1}(A)]_e^{\alpha} \subseteq f^{-1}([A]_e^{\alpha}).$ (c) We have $[A]_e^{\alpha} = A$. By (b), $[f^{-1}(A)]_e^{\alpha} \subseteq f^{-1}([A]_e^{\alpha}) = f^{-1}(A) \Rightarrow [f^{-1}(A)]_e^{\alpha} = f^{-1}(A) \Rightarrow f^{-1}(A)$ is α^e -closed set in X.

(d) Follows from (c).

Theorem 5.3. Let X, Y be fts's and $f : X \to Y$ be fuzzy α^{e} -continuous function. If $A(\subseteq X)$ is α -e-almost compact, then so is f(A) in Y.

Proof. Let $\mathcal{V} = \{V_i : i \in \Lambda\}$ be a fuzzy *e*-open α -shading of f(A), where A is α -*e*-almost compact set in X. For each $x \in A$, $f(x) \in f(A)$ and so there exists $V_x \in \mathcal{V}$ such that $V_x(f(x)) > \alpha$. As f is fuzzy α^e -continuous, there exists a fuzzy *e*-open set U_x in X such that $U_x(x) > \alpha$ and $f(eclU_x) \leq eclV_x$. Then $\{U_x : x \in A\}$ is a fuzzy *e*-open α -shading of A. By α -*e*-almost compactness of A, there are finitely many points $a_1, a_2, ..., a_n$ in A such that $\{eclU_{a_i} : i = 1, 2, ..., n\}$ is again an α -shading of A.

We claim that $\{eclV_{a_i} : i = 1, 2, ..., n\}$ is an α -shading of f(A). In fact, $y \in f(A) \Rightarrow$ there exists $x \in A$ such that y = f(x). Now there is an U_{a_j} (for some $j, 1 \leq j \leq n$) such that $(eclU_{a_j})(x) > \alpha$ and hence $(eclV_{a_j})(y) \geq f(eclU_{a_j})(y) \geq eclU_{a_j}(x) > \alpha$.

We now introduce a function under which α^{e} -closedness of a set remains invariant.

Definition 5.4. Let X, Y be fts's. A function $f : X \to Y$ is said to be fuzzy *e*-open if f(A) is fuzzy *e*-open in Y whenever A is fuzzy *e*-open in X.

Remark 5.5. For a fuzzy *e*-open function $f : X \to Y$, for every fuzzy *e*-closed set A in X, f(A) is fuzzy *e*-closed in Y.

Theorem 5.6. If $f:(X,\tau) \to (Y,\tau_1)$ is a bijective fuzzy *e*-open function, then the image

of a α^e -closed set in (X, τ) is α^e -closed in (Y, τ_1) .

Proof. Let A be an α^e -closed set in (X, τ) and let $y \in Y \setminus f(A)$. Then there exists a unique $z \in X$ such that f(z) = y. As $y \notin f(A)$, $z \notin A$. Now, A being α^e -closed in X, there exists a fuzzy e-open set V in X such that $V(z) > \alpha$ and $eclV(p) \leq \alpha$, for each $p \in A$... (1). As f is fuzzy e-open, f(V) is a fuzzy e-open set in Y, and also $(f(V))(y) = V(z) > \alpha$. Let $t \in f(A)$. Then there is a unique $t_0 \in A$ such that $f(t_0) = t$. As f is bijective and fuzzy e-open, by Remark 5.5, $eclf(V) \leq f(eclV)$. Then $(eclf(V))(t) \leq f(eclV)(t) = eclV(t_0) \leq \alpha$, by (1). Thus y is not an α^e -limit point of f(A). Hence the proof. From Theorem 5.2 (c) and Theorem 5.6, it follows that

Corollary 5.7. Let $f : X \to Y$ be a fuzzy α^e -continuous, bijective and fuzzy *e*-open function. Then A is α^e -closed in Y if and only if $f^{-1}(A)$ is α^e -closed in X.

References

- Azad, K.K.; On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- Bhattacharyya, Anjana; Several concepts of continuity in fuzzy setting, e-Proceedings, The 10th International Conference MSAST 5 (2016),282-293.
- [3] Bhattacharyya, Anjana; α-e-almost compact crisp subsets of a fuzzy topological space, Journal of Mathematics and Statistical Science (Accepted for publication).
- [4] Chang, C.L.; Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [5] Ganguly, S. and Saha, S.; A note on δ-continuity and δ-connected sets in fuzz set theory, Simon Stevin 62 (1988), 127-141.
- [6] Gantner, T.E., Steinlage, R.C. and Warren, R.H.; Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62(1978), 547-562.
- [7] Pu, Pao Ming and Liu, Ying Ming; *Fuzzy topology I*, Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math. Anal. Appl. 76 (1980), 571-599.
- [8] Zadeh, L.A.; Fuzzy Sets, Inform. Control 8 (1965), 338-353.

Published: Volume 2018, Issue 8 / August 25, 2018