
Abstract

This paper is a continuation of [3]. In this paper we introduce a new type of crisp set

viz., αe-closed set which inherits α-e-almost compactness [3] of a fuzzy topological space.

In the last section we introduce αe-continuous function between two fuzzy topological

spaces under which α-e-almost compactness for crisp subsets remains invariant.
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1. Introduction

After introducing fuzzy topology given by Chang [4], different types of closed sets are intro-

duced in fuzzy set theory. But after introducing α-shading (where 0 < α < 1) by Gantner 

et al. [6] in 1978, new types of closed sets which are crisp subsets of a space X where the 

underlying structure is fuzzy topology are introduced and studied. Here we introduce a new 

type of crisp subset with the help of α-shading, viz., αe-closed set. Using the idea of α-shading 

in [3] α-e-almost compactness for crisp set is introduced and studied.

2. Preliminaries

Throughout the paper by (X, τ) or simply by X, we mean a fuzzy topological space (fts, for 

short) in the sense of Chang [4]. A crisp set A in an fts X means an ordinary subset of the set 

X where the underlying structure of the set X being a fuzzy topology τ . A fuzzy set [8] A is a 

mapping from a nonempty set X into the closed interval I = [0, 1] of the real line, i.e., A ∈ IX . 

For a fuzzy set A, the fuzzy closure [4] and fuzzy interior [4] of A in X are denoted by clA
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and intA respectively. The support [8] of a fuzzy set A in X will be denoted by suppA and is 

defined by suppA = {x ∈ X : A(x) 6= 0}. A fuzzy point [7] in X with the singleton support 

{x} ⊆ X and the value α (0 < α ≤ 1) at x will be denoted by xα. For a fuzzy set A , the 

complement [8] of A in X will be denoted by 1X \ A and is defined by (1X \ A)(x) = 1 − A(x), 

for each x ∈ X. For any two fuzzy sets A and B in X, we write A ≤ B if A(x) ≤ B(x), for 

each x ∈ X [8] while we write AqB if A is quasi-coincident (q-coincident, for short) with B 

[7], i.e., if there exists x ∈ X such that A(x) + B(x) > 1; the negation of these statements 

are written as A 6≤ B and A 6 qB respectively. A fuzzy set A is called fuzzy regular open [1] if 

A = int(clA). A fuzzy set B is called a quasi-neighbourhood (q-nbd, for short) [7] of a fuzzy 

point xt if there is a fuzzy open set U in X such that xtqU ≤ B. If, in addition, B is fuzzy 

open (resp., fuzzy regular open), then B is called a fuzzy open [7] (resp., fuzzy regular open 

[1]) q-nbd of xt. A fuzzy point xα is said to be a fuzzy δ-cluster point of a fuzzy set A in an 

fts X if every fuzzy regular open q-nbd U of xα is q-coincident with A [5]. The union of all 

fuzzy δ-cluster points of A is called the fuzzy δ-closure of A and is denoted by δclA [5]. A 

fuzzy set A is fuzzy δ-closed iff A = δclA [5]. The complement of a fuzzy δ-closed set in an 

fts X is called fuzzy δ-open [5]. A fuzzy set A is fuzzy δ-open iff A = δintA [5].

3. Some Known Definitions and Results

Definition 3.1[2]. A fuzzy setA in an ftsX is said to be fuzzy e-open ifA ≤ cl(δintA)
∨
int(δclA).

The complement of a fuzzy e-open set is called fuzzy e-closed.

Definition 3.2[2]. The intersection of all fuzzy e-closed sets containing a fuzzy set A in

an fts X is called fuzzy e-closure of A, to be denoted by eclA.

Result 3.3[2]. A fuzzy set A in an fts X is fuzzy e-closed iff A = eclA.

Definition 3.4[2]. The union of all fuzzy e-open sets contained in a fuzzy set A in X is

called fuzzy e-interior of A, to be denoted by eintA.

Result 3.5[2]. A fuzzy set A is fuzzy e-open iff A = eintA.

Result 3.6[2]. (i) For any fuzzy set A in X, xt ∈ eclA⇔ UqA for any fuzzy e-open set U

in X with xtqU .

(ii) for any two fuzzy sets U, V in X where V is fuzzy e-open set, U 6 qV ⇒ eclU 6 qV .

Definition 3.7. Let X be an fts and A, a crisp subset of X. A collection U of fuzzy sets

in X is called an α-shading (where 0 < α < 1) of A if for each x ∈ A, there is some Ux ∈ U

such that Ux(x) > α [6]. If, in addition, the members of U are fuzzy e-open sets, then U is
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called a fuzzy e-open [3] α-shading of A.

Definition 3.8[3]. Let X be an fts and A, a crisp subset of X. A is said to be α-e-almost 

compact if each fuzzy e-open α-shading U of A has a finite e-proximate α-subshading, i.e., 

there exists a finite subcollection U0 of U such that {eclU : U ∈ U0} is again an α-shading of 

A. If, in particular A = X, we get the definition of α-e-almost compact space X.

Definition 4.1. Let (X, τ) be an fts and A ⊆ X. A point x ∈ X is said to be an αe-limit 

point of A if for every fuzzy e-open set U in X with U(x) > α, there exists y ∈ A \ {x} such

that (eclU)(y) > α. The set of all αe-limit points of A will be denoted by [A]e
α.

The αe-closure of A, to be denoted by αe-clA, is defined by αe-clA = A
⋃

[A]αe .

Definition 4.2. A crisp subset A of an fts X is said to be αe-closed if it contains all its

αe-limit points. Any subset B of X is called αe-open if X \B is αe-closed.

Remark 4.3. It is clear from Definition 4.1 that for any set A ⊆ X, A ⊆ αe-clA and

αe-clA = A if and only if [A]αe ⊆ A. Again it follows from Definition 4.1 that A is αe-closed if

and only if αe-clA = A. It is also clear that A ⊆ B ⊆ X ⇒ [A]αe ⊆ [B]αe .

Theorem 4.4. An αe-closed subset A of an α-e-almost compact space X is α-e-almost

compact.

Proof. Let A(⊆ X) be αe-closed in an α-e-almost compact space X. Then for any x /∈ A,

there is a fuzzy e-open set Ux in X such that Ux(x) > α, and (eclUx)(y) ≤ α, for every y ∈ A.

Consider the collection U = {Ux : x /∈ A}. For proving A to be α-e-almost compact, consider

a fuzzy e-open α-shading V of A. Clearly U ⋃V is a fuzzy e-open α-shading of X. Since X is

α-e-almost compact, there exists a finite subcollection {V1, V2, ..., Vn} of U ⋃V such that for

every t ∈ X, there exists Vi(1 ≤ i ≤ n) such that (eclVi)(t) > α. For every member Ux of U ,

(eclUx)(y) ≤ α, for every y ∈ A. So if this subcollection contains any member of U , we omit

it and hence we get the result.

To achieve the converse of Theorem 4.4, we define the following.

Definition 4.5. An fts (X, τ) is said to be α-e-Urysohn if for any two distinct points x, y

of X, there exist a fuzzy open set U and a fuzzy e-open set V in X with U(x) > α, V (y) > α

and min((eclU)(z), (eclV (z)) ≤ α, for each z ∈ X.

Theorem 4.6. An α-e-almost compact set in an α-e-Urysohn space X is αe-closed.

Proof. Let A be an α-e-almost compact set and x ∈ X \ A. Then for each y ∈ A, x 6= y.
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As X is α-e-Urysohn, there exist a fuzzy open set Uy and a fuzzy e-open set Vy in X such

that Uy(x) > α, Vy(y) > α and min((eclUy)(z), (eclVy)(z)) ≤ α, for all z ∈ X ... (1).

Then U = {Vy : y ∈ A} is a fuzzy e-open α-shading of A and so by α-e-almost compactness of

A, there exist finitely many points y1, y2, ..., yn of A such that U0 = {eclVy1 , eclVy2 , ..., eclVyn}

is again an α-shading of A. Now U = Uy1
⋂
...

⋂
Uyn being a fuzzy open set is a fuzzy e-open

set in X such that U(x) > α. In order to show that A to be αe-closed, it now suffices to show

that (eclU)(y) ≤ α, for each y ∈ A. In fact, if for some z ∈ A, we assume (eclU)(z) > α,

then as z ∈ A, we have (eclVyk)(z) > α, for some k (1 ≤ k ≤ n). Also (eclUyk)(z) > α. Hence

min((eclUyk)(z), (eclVyk)(z)) > α, contradicting (1).

Corollary 4.7. In an α-e-almost compact, α-e-Urysohn space X, a subset A of X is

α-e-almost compact if and only if it is αe-closed.

Theorem 4.8. In an α-e-almost compact space X, every cover of X by αe-open sets has

a finite subcover.

Proof. Let U = {Ui : i ∈ Λ} be a cover of X by αe-open sets. Then for each x ∈ X, there

exists Ux ∈ U such that x ∈ Ux. Since X \ Ux is αe-closed, there exists a fuzzy e-open set Vx

in X such that Vx(x) > α and (eclVx)(y) ≤ α, for each y ∈ X \ Ux ... (1).

Then {Vx : x ∈ X} forms a fuzzy e-open α-shading of the α-e-almost compact space X.

Thus there exists a finite subset {x1, x2, ..., xn} of X such that {eclVxi : i = 1, 2, ..., n} is an

α-shading of X ... (2).

We claim that {Ux1 , Ux2 , ..., Uxn} is a finite subcover of U . If not, then there exists y ∈ X \
n⋃
i=1

Uxi =
n⋂
i=1

(X \ Uxi). Then by (1), (eclVxi)(y) ≤ α, for i = 1, 2, ..., n and so (
n⋃
i=1

eclVxi)(y) ≤

α, contradicting (2).

Theorem 4.9. Let (X, τ) be an fts. If X is α-e-almost compact, then every collection of

αe-closed sets in X with finite intersection property has non-empty intersection.

Proof. Let F = {Fi : i ∈ Λ} be a collection of αe-closed sets in an α-e-almost compact

space X having finite intersection property. If possible, let
⋂
i∈Λ

Fi = φ. Then X \
⋂
i∈Λ

Fi =⋃
i∈Λ

(X \ Fi) = X ⇒ U = {X \ Fi : i ∈ Λ} is an αe-open cover of X. Then by Theorem 4.8,

there is a finite subset Λ0 of Λ such that
⋃
i∈Λ0

(X \ Fi) = X ⇒
⋂
i∈Λ0

Fi = φ, a contradiction.

Definition 5.1. Let X, Y be fts’s. A function f : X → Y is said to be αe-continuous if for 

each point x ∈ X and each fuzzy e-open set V in Y with V (f(x)) > α, there exists a fuzzy
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e-open set U in X with U(x) > α such that eclU ≤ f−1(eclV ).

Theorem 5.2. If f : X → Y is αe-continuous (where X, Y are, as usual, fts’s), then the

following are true :

(a) f([A]αe ) ⊆ [f(A)]αe , for every A ⊆ X.

(b) [f−1(A)]αe ⊆ f−1([A]αe ), for every A ⊆ Y .

(c) For each αe-closed set A in Y , f−1(A) is αe-closed in X.

(d) For each αe-open set A in Y , f−1(A) is αe-open in X.

Proof (a). Let x ∈ [A]αe and U be any fuzzy e-open set in Y with U(f(x)) > α. Then

there is a fuzzy e-open set V in X with V (x) > α and eclV ≤ f−1(eclU). Now x ∈ [A]αe and

V is a fuzzy e-open set in X with V (x) > α ⇒ eclV (x0) > α, for some x0 ∈ A \ {x} ⇒ α <

eclV (x0) ≤ (f−1(eclU))(x0) = (eclU)(f(x0)) where f(x0) ∈ f(A) \ {f(x)} ⇒ f(x) ∈ [f(A)]αe .

Thus (a) follows.

(b) By (a), f([f−1(A)]αe ) ⊆ [ff−1(A)]αe ⊆ [A]αe ⇒ [f−1(A)]αe ⊆ f−1([A]αe ).

(c) We have [A]αe = A. By (b), [f−1(A)]αe ⊆ f−1([A]αe ) = f−1(A) ⇒ [f−1(A)]αe = f−1(A) ⇒

f−1(A) is αe-closed set in X.

(d) Follows from (c).

Theorem 5.3. Let X, Y be fts’s and f : X → Y be fuzzy αe-continuous function. If

A(⊆ X) is α-e-almost compact, then so is f(A) in Y .

Proof. Let V = {Vi : i ∈ Λ} be a fuzzy e-open α-shading of f(A), where A is α-e-almost

compact set in X. For each x ∈ A, f(x) ∈ f(A) and so there exists Vx ∈ V such that

Vx(f(x)) > α. As f is fuzzy αe-continuous, there exists a fuzzy e-open set Ux in X such

that Ux(x) > α and f(eclUx) ≤ eclVx. Then {Ux : x ∈ A} is a fuzzy e-open α-shading of A.

By α-e-almost compactness of A, there are finitely many points a1, a2, ..., an in A such that

{eclUai : i = 1, 2, ..., n} is again an α-shading of A.

We claim that {eclVai : i = 1, 2, ..., n} is an α-shading of f(A). In fact, y ∈ f(A) ⇒ there

exists x ∈ A such that y = f(x). Now there is an Uaj (for some j, 1 ≤ j ≤ n) such that

(eclUaj)(x) > α and hence (eclVaj)(y) ≥ f(eclUaj)(y) ≥ eclUaj(x) > α.

We now introduce a function under which αe-closedness of a set remains invariant.

Definition 5.4. Let X, Y be fts’s. A function f : X → Y is said to be fuzzy e-open if

f(A) is fuzzy e-open in Y whenever A is fuzzy e-open in X.

Remark 5.5. For a fuzzy e-open function f : X → Y , for every fuzzy e-closed set A in

X, f(A) is fuzzy e-closed in Y .

Theorem 5.6. If f : (X, τ)→ (Y, τ1) is a bijective fuzzy e-open function, then the image
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of a αe-closed set in (X, τ) is αe-closed in (Y, τ1).

Proof. Let A be an αe-closed set in (X, τ) and let y ∈ Y \ f(A). Then there exists a 

unique z ∈ X such that f(z) = y. As y ∈/ f(A), z ∈/ A. Now, A being αe-closed in X, there 

exists a fuzzy e-open set V in X such that V (z) > α and eclV (p) ≤ α, for each p ∈ A ... (1). 

As f is fuzzy e-open, f(V ) is a fuzzy e-open set in Y , and also (f(V ))(y) = V (z) > α. Let 

t ∈ f(A). Then there is a unique t0 ∈ A such that f(t0) = t. As f is bijective and fuzzy 

e-open, by Remark 5.5, eclf(V ) ≤ f(eclV ). Then (eclf(V ))(t) ≤ f(eclV )(t) = eclV (t0) ≤ α, 

by (1). Thus y is not an αe-limit point of f(A). Hence the proof.

From Theorem 5.2 (c) and Theorem 5.6, it follows that

Corollary 5.7. Let f : X → Y be a fuzzy αe-continuous, bijective and fuzzy e-open 

function. Then A is αe-closed in Y if and only if f−1(A) is αe-closed in X.
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