Abstract

This paper is a continuation of [3]. In this paper we introduce a new type of crisp set viz., \(\alpha^e \)-closed set which inherits \(\alpha^e \)-almost compactness [3] of a fuzzy topological space. In the last section we introduce \(\alpha^e \)-continuous function between two fuzzy topological spaces under which \(\alpha^e \)-almost compactness for crisp subsets remains invariant.

AMS Subject Classifications: 54A40, 54C99, 54D20.

Keywords: \(\alpha^e \)-almost compact space, \(\alpha^e \)-almost compact set, \(\alpha^e \)-Urysohn space, \(\alpha^e \)-closed set, \(\alpha^e \)-continuity, fuzzy \(e \)-open function.

1. Introduction

After introducing fuzzy topology given by Chang [4], different types of closed sets are introduced in fuzzy set theory. But after introducing \(\alpha \)-shading (where \(0 < \alpha < 1 \)) by Gantner et al. [6] in 1978, new types of closed sets which are crisp subsets of a space \(X \) where the underlying structure is fuzzy topology are introduced and studied. Here we introduce a new type of crisp subset with the help of \(\alpha \)-shading, viz., \(\alpha^e \)-closed set. Using the idea of \(\alpha \)-shading in [3] \(\alpha^e \)-almost compactness for crisp set is introduced and studied.

2. Preliminaries

Throughout the paper by \((X, \tau)\) or simply by \(X\), we mean a fuzzy topological space (fts, for short) in the sense of Chang [4]. A crisp set \(A \) in an fts \(X \) means an ordinary subset of the set \(X \) where the underlying structure of the set \(X \) being a fuzzy topology \(\tau \). A fuzzy set [8] \(A \) is a mapping from a nonempty set \(X \) into the closed interval \(I = [0, 1] \) of the real line, i.e., \(A \in I^X \). For a fuzzy set \(A \), the fuzzy closure [4] and fuzzy interior [4] of \(A \) in \(X \) are denoted by \(cl A \)
and \(\text{int}A \) respectively. The support [8] of a fuzzy set \(A \) in \(X \) will be denoted by \(\text{supp}A \) and is defined by \(\text{supp}A = \{x \in X : A(x) \neq 0\} \). A fuzzy point [7] in \(X \) with the singleton support \(\{x\} \subseteq X \) and the value \(\alpha \) \((0 < \alpha \leq 1)\) at \(x \) will be denoted by \(x_\alpha \). For a fuzzy set \(A \), the complement [8] of \(A \) in \(X \) will be denoted by \(1_X \setminus A \) and is defined by \((1_X \setminus A)(x) = 1 - A(x)\), for each \(x \in X \). For any two fuzzy sets \(U, V \) in \(X \) we write \(A \leq B \) if \(A(x) \leq B(x) \), for each \(x \in X \) [8] while we write \(AqB \) if \(A \) is quasi-coincident \((q\text{-coincident}, \text{for short})\) with \(B \) [7], i.e., if there exists \(x \in X \) such that \(A(x) + B(x) > 1 \); the negation of these statements are written as \(A \nsucceq B \) and \(A \notqB \) respectively. A fuzzy set \(A \) is called fuzzy regular open [1] if \(A = \text{int}(\deltaclA) \). A fuzzy set \(B \) is called a quasi-neighbourhood \((q\text{-nbd}, \text{for short})\) [7] of a fuzzy point \(x_t \) if there is a fuzzy open set \(U \) in \(X \) such that \(x_tqU \subseteq B \). If, in addition, \(B \) is fuzzy open \((\text{resp.}, \text{fuzzy regular open})\), then \(B \) is called a fuzzy open [7] \((\text{resp.}, \text{fuzzy regular open})\) [1] \(q\text{-nbd} \) of \(x_t \). A fuzzy point \(x_\alpha \) is said to be a fuzzy \(\delta \)-cluster point of a fuzzy set \(A \) in an fts \(X \) if every fuzzy regular open \(q\text{-nbd} \) \(U \) of \(x_\alpha \) is \(q\text{-coincident} \) with \(A \) [5]. The union of all fuzzy \(\delta \)-cluster points of \(A \) is called the fuzzy \(\delta \)-closure of \(A \) and is denoted by \(\deltaclA \) [5]. A fuzzy set \(A \) is fuzzy \(\delta \)-closed iff \(A = \deltaclA \) [5]. The complement of a fuzzy \(\delta \)-closed set in an fts \(X \) is called fuzzy \(\delta \)-open [5]. A fuzzy set \(A \) is fuzzy \(\delta \)-open iff \(A = \delta\text{int}A \) [5].

3. Some Known Definitions and Results

Definition 3.1[2]. A fuzzy set \(A \) in an fts \(X \) is said to be fuzzy \(e \)-open if \(A \leq cl(\delta\text{int}A) \lor \text{int}(\deltaclA) \). The complement of a fuzzy \(e \)-open set is called fuzzy \(e \)-closed.

Definition 3.2[2]. The intersection of all fuzzy \(e \)-closed sets containing a fuzzy set \(A \) in an fts \(X \) is called fuzzy \(e \)-closure of \(A \), to be denoted by \(eclA \).

Result 3.3[2]. A fuzzy set \(A \) in an fts \(X \) is fuzzy \(e \)-closed iff \(A = eclA \).

Definition 3.4[2]. The union of all fuzzy \(e \)-open sets contained in a fuzzy set \(A \) in \(X \) is called fuzzy \(e \)-interior of \(A \), to be denoted by \(e\text{int}A \).

Result 3.5[2]. A fuzzy set \(A \) is fuzzy \(e \)-open iff \(A = e\text{int}A \).

Result 3.6[2]. (i) For any fuzzy set \(A \) in \(X \), \(x_t \in eclA \iff UqA \) for any fuzzy \(e \)-open set \(U \) in \(X \) with \(x_tqU \).

(ii) For any two fuzzy sets \(U, V \) in \(X \) where \(V \) is fuzzy \(e \)-open set, \(U \notqV \Rightarrow eclU \notqV \).

Definition 3.7. Let \(X \) be an fts and \(A \), a crisp subset of \(X \). A collection \(\mathcal{U} \) of fuzzy sets in \(X \) is called an \(\alpha \)-shading \((\text{where } 0 < \alpha < 1)\) of \(A \) if for each \(x \in A \), there is some \(U_x \in \mathcal{U} \) such that \(U_x(x) > \alpha \) [6]. If, in addition, the members of \(\mathcal{U} \) are fuzzy \(e \)-open sets, then \(\mathcal{U} \) is...
called a fuzzy e-open [3] α-shading of A.

Definition 3.8[3]. Let X be an fts and A, a crisp subset of X. A is said to be α-e-almost compact if each fuzzy e-open α-shading U of A has a finite e-proximate α-subshading, i.e., there exists a finite subcollection U_0 of U such that $\{eclU : U \in U_0\}$ is again an α-shading of A. If, in particular $A = X$, we get the definition of α-e-almost compact space X.

4. α^e-Closed Set: Some Properties

Definition 4.1. Let (X, τ) be an fts and $A \subseteq X$. A point $x \in X$ is said to be an α^e-limit point of A if for every fuzzy e-open set U in X with $U(x) > \alpha$, there exists $y \in A \setminus \{x\}$ such that $(eclU)(y) > \alpha$. The set of all α^e-limit points of A will be denoted by $[A]^\alpha_e$.

The α^e-closure of A, to be denoted by α^e-clA, is defined by $\alpha^e-clA = A \cup [A]^\alpha_e$.

Definition 4.2. A crisp subset A of an fts X is said to be α^e-closed if it contains all its α^e-limit points. Any subset B of X is called α^e-open if $X \setminus B$ is α^e-closed.

Remark 4.3. It is clear from Definition 4.1 that for any set $A \subseteq X$, $A \subseteq \alpha^e-clA$ and $\alpha^e-clA = A$ if and only if $[A]^\alpha_e \subseteq A$. Again it follows from Definition 4.1 that A is α^e-closed if and only if $\alpha^e-clA = A$. It is also clear that $A \subseteq B \subseteq X \Rightarrow [A]^\alpha_e \subseteq [B]^\alpha_e$.

Theorem 4.4. An α^e-closed subset A of an α-e-almost compact space X is α-e-almost compact.

Proof. Let $A(\subseteq X)$ be α^e-closed in an α-e-almost compact space X. Then for any $x \notin A$, there is a fuzzy e-open set U_x in X such that $U_x(x) > \alpha$, and $(eclU_x)(y) \leq \alpha$, for every $y \in A$. Consider the collection $U = \{U_x : x \notin A\}$. For proving A to be α-e-almost compact, consider a fuzzy e-open α-shading V of A. Clearly $U \cup V$ is a fuzzy e-open α-shading of X. Since X is α-e-almost compact, there exists a finite subcollection $\{V_1, V_2, ..., V_n\}$ of $U \cup V$ such that for every $t \in X$, there exists $V_i(1 \leq i \leq n)$ such that $(eclV_i)(t) > \alpha$. For every member U_x of U, $(eclU_x)(y) \leq \alpha$, for every $y \in A$. So if this subcollection contains any member of U, we omit it and hence we get the result.

To achieve the converse of Theorem 4.4, we define the following.

Definition 4.5. An fts (X, τ) is said to be α-e-Urysohn if for any two distinct points x, y of X, there exist a fuzzy open set U and a fuzzy e-open set V in X with $U(x) > \alpha$, $V(y) > \alpha$ and $min((eclU)(z), (eclV)(z)) \leq \alpha$, for each $z \in X$.

Theorem 4.6. An α-e-almost compact set in an α-e-Urysohn space X is α^e-closed.

Proof. Let A be an α-e-almost compact set and $x \in X \setminus A$. Then for each $y \in A$, $x \neq y$.

336
As X is α-e-Urysohn, there exist a fuzzy open set U_y and a fuzzy e-open set V_y in X such that $U_y(x) > \alpha, V_y(y) > \alpha$ and $\min((eclU_y)(z),(eclV_y)(z)) < \alpha$, for all $z \in X$... (1).

Then $\mathcal{U} = \{V_y : y \in A\}$ is a fuzzy e-open α-shading of A and so by α-e-almost compactness of A, there exist finitely many points $y_1, y_2, ..., y_n$ of A such that $\mathcal{U}_0 = \{eclV_{y_1}, eclV_{y_2}, ..., eclV_{y_n}\}$ is again an α-shading of A. Now $U = U_{y_1} \cap ... \cap U_{y_n}$ being a fuzzy open set is a fuzzy e-open set in X such that $U(x) > \alpha$. In order to show that A to be α-e-closed, it now suffices to show that $(eclU)(y) < \alpha$, for each $y \in A$. In fact, if for some $z \in A$, we assume $(eclU)(z) > \alpha$, then as $z \in A$, we have $(eclV_{y_k})(z) > \alpha$, for some $k (1 \leq k \leq n)$. Also $(eclU_{y_k})(z) > \alpha$. Hence $\min((eclU_{y_k})(z),(eclV_{y_k})(z)) > \alpha$, contradicting (1).

Corollary 4.7. In an α-e-almost compact, α-e-Urysohn space X, a subset A of X is α-e-almost compact if and only if it is αe-closed.

Theorem 4.8. In an α-e-almost compact space X, every cover of X by αe-open sets has a finite subcover.

Proof. Let $\mathcal{U} = \{U_i : i \in \Lambda\}$ be a cover of X by αe-open sets. Then for each $x \in X$, there exists $U_x \in \mathcal{U}$ such that $x \in U_x$. Since $X \setminus U_x$ is αe-closed, there exists a fuzzy e-open set V_x in X such that $V_x(x) > \alpha$ and $(eclV_x)(y) < \alpha$, for each $y \in X \setminus U_x$... (1).

Then $\{V_x : x \in X\}$ forms a fuzzy e-open α-shading of the α-e-almost compact space X.

Thus there exists a finite subset $\{x_1, x_2, ..., x_n\}$ of X such that $\{eclV_{x_i} : i = 1, 2, ..., n\}$ is an α-shading of X ... (2).

We claim that $\{U_{x_1}, U_{x_2}, ..., U_{x_n}\}$ is a finite subcover of \mathcal{U}. If not, then there exists $y \in X \setminus \bigcup_{i=1}^{n} U_{x_i} = \bigcap_{i=1}^{n} (X \setminus U_{x_i})$. Then by (1), $(eclV_{x_i})(y) < \alpha$, for $i = 1, 2, ..., n$ and so $(\bigcup_{i=1}^{n} eclV_{x_i})(y) < \alpha$, contradicting (2).

Theorem 4.9. Let (X, τ) be an fts. If X is α-e-almost compact, then every collection of αe-closed sets in X with finite intersection property has non-empty intersection.

Proof. Let $\mathcal{F} = \{F_i : i \in \Lambda\}$ be a collection of αe-closed sets in an α-e-almost compact space X having finite intersection property. If possible, let $\bigcap_{i \in \Lambda} F_i = \emptyset$. Then $X \setminus \bigcap_{i \in \Lambda} F_i = \bigcup_{i \in \Lambda} (X \setminus F_i) = X \Rightarrow \mathcal{U} = \{X \setminus F_i : i \in \Lambda\}$ is an αe-open cover of X. Then by Theorem 4.8, there is a finite subset Λ_0 of Λ such that $\bigcup_{i \in \Lambda_0} (X \setminus F_i) = X \Rightarrow \bigcap_{i \in \Lambda_0} F_i = \emptyset$, a contradiction.

5. αe-Continuity

Definition 5.1. Let X, Y be fts’s. A function $f : X \to Y$ is said to be αe-continuous if for each point $x \in X$ and each fuzzy e-open set V in Y with $V(f(x)) > \alpha$, there exists a fuzzy
We now introduce a function under which α exists that (α) follows.

Theorem 5.2. If $f : X \to Y$ is α-continuous (where X, Y are, as usual, fts’s), then the following are true:

(a) $f([A]_e^\alpha) \subseteq [f(A)]_e^\alpha$, for every $A \subseteq X$.

(b) $[f^{-1}(A)]_e^\alpha \subseteq f^{-1}([A]_e^\alpha)$, for every $A \subseteq Y$.

(c) For each α-closed set A in Y, $f^{-1}(A)$ is α-closed in X.

(d) For each α-open set A in Y, $f^{-1}(A)$ is α-open in X.

Proof (a). Let $x \in [A]_e^\alpha$ and U be any fuzzy e-open set in Y with $U(f(x)) > \alpha$. Then there is a fuzzy e-open set V in X with $V(x) > \alpha$ and $eclV \leq f^{-1}(eclU)$. Now $x \in [A]_e^\alpha$ and V is a fuzzy e-open set in X with $V(x) > \alpha \Rightarrow \ eclV(x_0) > \alpha$, for some $x_0 \in A \setminus \{x\} \Rightarrow \alpha < eclV(x_0) \leq (f^{-1}(eclU))(x_0) = (eclU)(f(x_0))$ where $f(x_0) \in f(A) \setminus \{f(x)\} \Rightarrow f(x) \in [f(A)]_e^\alpha$. Thus (a) follows.

(b) By (a), $f([f^{-1}(A)]_e^\alpha) \subseteq [ff^{-1}(A)]_e^\alpha \subseteq [A]_e^\alpha \Rightarrow [f^{-1}(A)]_e^\alpha \subseteq f^{-1}([A]_e^\alpha)$.

(c) We have $[A]_e^\alpha = A$. By (b), $[f^{-1}(A)]_e^\alpha \subseteq f^{-1}([A]_e^\alpha) = f^{-1}(A) \Rightarrow [f^{-1}(A)]_e^\alpha = f^{-1}(A) \Rightarrow f^{-1}(A)$ is α-closed in X.

(d) Follows from (c).

Theorem 5.3. Let X, Y be fts’s and $f : X \to Y$ be fuzzy α-continuous function. If $A(\subseteq X)$ is α-e-almost compact, then so is $f(A)$ in Y.

Proof. Let $\mathcal{V} = \{V_i : i \in \Lambda\}$ be a fuzzy e-open α-shading of $f(A)$, where A is α-e-almost compact set in X. For each $x \in A$, $f(x) \in f(A)$ and so there exists $V_x \in \mathcal{V}$ such that $V_x(f(x)) > \alpha$. As f is fuzzy α-continuous, there exists a fuzzy e-open set U_x in X such that $U_x(x) > \alpha$ and $f(eclU_x) \leq eclV_x$. Then $\{U_x : x \in A\}$ is a fuzzy e-open α-shading of A. By α-e-almost compactness of A, there are finitely many points a_1, a_2, \ldots, a_n in A such that $\{eclU_{a_i} : i = 1, 2, \ldots, n\}$ is again an α-shading of A.

We claim that $\{eclU_{a_i} : i = 1, 2, \ldots, n\}$ is an α-shading of $f(A)$. In fact, $y \in f(A) \Rightarrow$ there exists $x \in A$ such that $y = f(x)$. Now there is an U_{a_j} (for some $j, 1 \leq j \leq n$) such that $(eclU_{a_j})(x) > \alpha$ and hence $(eclU_{a_j})(y) \geq f(eclU_{a_j})(y) \geq eclU_{a_j}(x) > \alpha$.

We now introduce a function under which α-closedness of a set remains invariant.

Definition 5.4. Let X, Y be fts’s. A function $f : X \to Y$ is said to be fuzzy e-open if $f(A)$ is fuzzy e-open in Y whenever A is fuzzy e-open in X.

Remark 5.5. For a fuzzy e-open function $f : X \to Y$, for every fuzzy e-closed set A in X, $f(A)$ is fuzzy e-closed in Y.

Theorem 5.6. If $f : (X, \tau) \to (Y, \tau_1)$ is a bijective fuzzy e-open function, then the image
of a α^e-closed set in (X, τ) is α^e-closed in (Y, τ_1).

Proof. Let A be an α^e-closed set in (X, τ) and let $y \in Y \setminus f(A)$. Then there exists a unique $z \in X$ such that $f(z) = y$. As $y \notin f(A)$, $z \notin A$. Now, A being α^e-closed in X, there exists a fuzzy e-open set V in X such that $V(z) > \alpha$ and $eclV(p) \leq \alpha$, for each $p \in A$... (1).

As f is fuzzy e-open, $f(V)$ is a fuzzy e-open set in Y, and also $(f(V))(y) = V(z) > \alpha$. Let $t \in f(A)$. Then there is a unique $t_0 \in A$ such that $f(t_0) = t$. As f is bijective and fuzzy e-open, by Remark 5.5, $ecl f(V) \leq f(ecl V)$. Then $(ecl f(V))(t) \leq f(ecl V)(t) = ecl V(t_0) \leq \alpha$, by (1). Thus y is not an α^e-limit point of $f(A)$. Hence the proof.

From Theorem 5.2 (c) and Theorem 5.6, it follows that

Corollary 5.7. Let $f : X \to Y$ be a fuzzy α^e-continuous, bijective and fuzzy e-open function. Then A is α^e-closed in Y if and only if $f^{-1}(A)$ is α^e-closed in X.

References

[3] Bhattacharyya, Anjana; *α-e-almost compact crisp subsets of a fuzzy topological space*, Journal of Mathematics and Statistical Science (Accepted for publication).

