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Abstract 

In this paper, we employ Support Vector Machine to predict future directions of the Nikkei 225 futures by 
learning from the dynamics of Limit Order Book. In order to improve its accuracy, as our previous paper Kijima 
and Takada (2017) reported, we apply the method of conformal transform of the kernel function pioneered by 
Amari and Wu (1999). For comparison we also apply Fisher Criteria based data-dependent kernel optimization 
method proposed by Xiong, Samy and Ahmad (2005) to evaluate their performance. In this sense the paper is a 
companion to Kijima and Takada (2017) and we conclude, by comparing empirical results, that the conformal 
transform of Amari and Wu with ex-ante calibrated model parameters improved the precision more than 3.5% in 
average compared to the standard Gaussian kernel, while the method of Xiong, Samy and Ahmad improved only 
1.5% in average.  
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Introduction  

Recently, machine learning technics are often applied to the analysis of Limit Order Book (LOB - 
described below) to learn future direction of asset prices both for short term (seconds) and long term 
(daily). For example, Logistic regression analysis in Ban Zheng [1] and Support Vector Machine in 
Kercheval and Zhang [2] and Deng, Sakurai and Shioda [3] aspired to predict future price directions of 
some assets. The other machine learning techniques such as Artificial Neural Network, Random forest and 
Naive-Bayes classifier and Support Vector Regression are applied to predict daily return of stock price 
without using the information of the LOB as in Patel, Shah, Thakkar and Kotecha [4]. Although it is 
growing the significance of interests for high frequency data analysis, it seems that the number of 
published research paper is not so increased because of the confidentiality in industry.  

In this paper, we employ Support Vector Machine (SVM - described below) combined with 
conformally transformed Gaussian kernel to predict the mid-price dynamics in the LOB. For this purpose, 
as Fletcher and Shawe-Tayjor [5] studied, we first translate the financial language of the LOB into the 
language of SVM for mathematical formulation. More precisely, the shape of the LOB at each time is 
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translated to a training data and its outcome (direction of the mid-price movement), which is observable in 
the future is treated as a corresponding label. We focus on the first moving time of the mid-price rather 
than the price movement of fixed time interval. Therefore, we formulate our model as a two class (up or 
down) classifier rather than three class (up, stay and down). We expect that if we can train the SVM with 
many training data effectively, then the SVM can predict future direction of the mid-price successfully.  

In order to improve accuracy of the SVM, we applied kernel modification method pioneered by 
Amari and Wu [6] and Wu and Amari [7]. The detailed description of the application could be already 
found in our previous paper Kijima and Takada [8], however, we rephrase anew our methods for readers' 
convenience. Amari and Wu considered the feature space as a Riemannian manifold, which can be realized 
as a curved surface embedded in high dimensional Euclidian space, and express the distance of two 
distinct points in feature space via Riemannian metric. Since the Riemannian metric and the kernel 
function are related to each other as shown precisely later, we can consider modification of the kernel 
functions within this framework. The issue is how to modify the kernel function preserving computational 
tractability. In order to focus on the effect of kernel modification, we don't discuss about sequential 
updating for control parameters of SVM.  

The other stream of conformal transform methods is first proposed by Xiong, Samy and Ahmad [9] 
and developed to multi-class classifier by Lin, Jiang, Zhao, Pang and Ma [10]. These two studies adhere 
fundamentally to Amari and Wu [6] and Wu and Amari [7] but attempt to pre-optimize the control 
variables of conformal transform so as to fit (in the sense that the discriminant function can separate 
effectively) to given the training data set. The optimization, based on the Fisher Criteria for measuring the 
class linear separability, is achieved and then we can know the best control variables of conformal 
transform before the learning process of SVM. One important aspect would be summarized as follows; 
Amari and Wu method find the optimal control variable via ex-post tuning, while Xiong, Samy and 
Ahmad method find the optimal control variable ex-ante. Our previous work, Kijima and Takada [8], 
already pointed out the effectiveness of Amari and Wu method, the above aspect motivate us to compare 
which method would outperform.   

As some existing researches such as Wu and Amari [7], Williams, Li, Feng and Wu [11] report, in the 
realm of natural science, SVM with conformally transformed Gaussian kernel function exhibit more than 
3.5% higher performance than standard Gaussian kernel. Likewise, Xiong, Samy and Ahmad [9] and Lin, 
Jiang, Zhao, Pang and Ma [10] exhibit substantial improvement of the performance not only in the realm 
of natural science, but also in the image recognition. Main contribution of our study is to show the same 
aspect in the area of financial market possibly containing many kinds of noise in the sense that even 
perfectly same shape of the LOB may produce opposite outcome.  

 

Data 

Our empirical analyses are based on the high frequency historical data records of the LOB of Nikkei 
225 futures listed in Osaka exchange in Japan. This LOB data is comprised of agreed prices and event 
records such as volume of limit sell/buy orders for each price level with approximately 20 milliseconds 
time scale. Instead of these original data sets, we use adequately processed data such as second-scale 
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historical data obtained by extracting every second from the original data. Example of the LOB data are 
shown in Table 1 illustrating the best-bid price at time 𝑡 = 09:02:42.379 is 1012𝛿 = 10120 yen and the 
best-ask price at the same time is 1013 𝛿 = 10130 yen. From these records, we can read that the market 
sell order of size 233 was executed at 𝑡 = 09:02:47.913 and bid-ask spread of 20 yen continued to appear 
during the next 644 milliseconds. After that, no limit buy order at 1012 𝛿 arrived and limit sell order of 
size 422 at the price 1012 𝛿 newly reached hence the mid-price changed and bid-ask spread shrunk to 
normal size, i.e., 10 yen.  

 
Table 1: Example of the LOB data flow of Nikkei 225 futures as of Dec. 25, 2012. (𝛿 = 10 yen) 

 
 

Trading time of Nikkei 225 futures is divided into following four sessions; pre-opening session, 
regular session, pre-closing session and night session. During the pre-opening session starting from 8 AM 
and ending at 9 AM, and during the pre-closing session from 3:00 PM to 3:15 PM, limit orders are 
received but matching cannot be executed. During the night session from 4:30 PM to 3 AM, Japanese 
investors do not trade much and then very few transactions are made. Therefore, for our empirical studies, 
we use the data of regular session starting every weekday from 9 AM and ending 3:10 PM. Our empirical 
studies are concentrated to the period between April 2, 2012 and June 30, 2012.   

 

State of the Limit Order Book 
In order to apply SVM to LOB, we follow the standard formulation of LOB proposed in the previous 

study by Kijima and Takada [8] as follows. A single snapshot of the LOB can be handled as a high 
dimensional vector recorded with time-stamp. For more precise description of the LOB, we introduce 
coordinate system consist of time-axis, price-axis and volume-axis as shown in Figure 1. As trade progress, 
mid-price will change and then we need to prepare huge space to cover full range of the price dynamics in 
each day. In order to confine this region to more saving but essentially space, we slide the price-axis and 
take the mid-price as an origin of the price-axis for each time in this coordinate system. Of course, 
alternatively we can take best-ask price or a best-bid as an origin of the price-axis, but it is not essential. 
The reason why we pay attention to the distance between the limit orders between mid-price rather than 
exact price level of the limit order is, many agents often attach great importance to how deep their orders 
are. Then each coordinate has three components such as time, the distance between the limit order and 
mid-price, and the volume size of the limit order. It is assumed that limit orders and market orders can be 
placed on a fixed price grid {1,2,⋯ ,𝑁} representing multiples of a price tick denoted by 𝛿, so the state 

321 
 



 

of the LOB can be seen as a discrete function on a discrete line calibrated with unit length of 𝛿.  
The upper boundary 𝑁 is chosen large enough so that it is highly unlikely that orders at prices 

higher than 𝑁 will be placed within the time frame of our analysis1. State of the LOB at time 𝑡 is 
described by the discrete time 𝑁-dimensional stochastic process, where each element denotes the time 𝑡 
order size waiting for the future market order to be matched. Some of them, which are located near the 
mid-price, would be observable but the others, far from the mid-price, would be hidden. For example, in 
case of Nikkei 225 futures market, investors cannot necessarily observe all the limit orders although more 
exists. Because of the narrow window of records, only the information close to the best price (generally 10 
prices for both sell and buy orders) are available and limit orders placed far from the best prices are not 
shown for investors. 

 

 
Figure 1: Time evolution of the Limit Order Book 

 
Let the best-ask price at time 𝑡 is denoted by 𝑃𝑠𝑒𝑙𝑙(𝑡) > 0 and similarly the best-bid price is 

denoted by 𝑃𝑏𝑢𝑦(𝑡) > 0. We define the number of outstanding sell orders at a distance 𝑘 + 1 2⁄ , 
𝑘 = 0,1,2,⋯  (equivalently (𝑘 + 1 2⁄ ) ∙ 𝛿  in price 2 ) from the mid-price (𝑃𝑠𝑒𝑙𝑙(𝑡) + 𝑃𝑏𝑢𝑦(𝑡))/2  as 

𝑄𝑠𝑒𝑙𝑙
(𝑘+1 2⁄ )𝛿(𝑡) ∈ 𝑍+. Thus, the quantity 𝑄𝑠𝑒𝑙𝑙

(1 2⁄ )𝛿(𝑡) indicates the number of orders of best-ask at time 𝑡. 

Similarly, the number of outstanding buy orders at a distance 𝑘 + 1 2⁄ , 𝑘 = 0,1,2,⋯ from the best-ask 

price is defined as 𝑄𝑏𝑢𝑦
(𝑘+1 2⁄ )𝛿(𝑡) ∈ 𝑍+. As a general reference, the detailed quantitative descriptions for 

1 As described in Cont, Stoikov and Talreja [12] since the model is intended to be used on the time scale of days, this 
finite boundary assumption is reasonable. 
2 Here, 1 2⁄  corresponds to the distance between the mid-price and the best-ask price.  
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LOB could be found in the manuscript by Martin D. Gould, Mason A. Porter, Stacy Williams, Mark 
Macdonald, Daniel J. Fenn et al [13]. 

 

Application of the Support Vector Machine 
In this paper, we attempt to classify short-term (order of second) future price direction with SVM and 

focus on the improvement of its accuracy. We expect that the shape of the LOB is predictably effective for 
the direction of the next mid-price movements. As discussed above, the trajectory of the LOB can be seen 
as high dimensional discrete time stochastic process that records the sequence of volume size of limit 
orders and the distances from the mid-price, while absolute price levels are not contained. For simple 
explanation of our methodology, let us first consider the best-price only, and market order will arrive like a 
random walker as assumed in Gerry Tsoukalas, Jiang Wang, Kay Giesecke [14]. When the volume of the 
best-ask price is relatively larger than that of the best-bid price, it is reasonable to consider that the market 
has a high likelihood of downtrend because the best-bid orders may have eaten up by certain amount of 
the market sell orders in the next instant. This simple intuition would be applicable to the general 
circumstances considering all available limit orders. In fact, Fletcher and Shawe-Tayjor [5] considered not 
only the snapshot of the LOB, but also the time-derivatives (these are finite difference because of the 
discrete time setting) of the volume size at each price level, which contains past information. In our study, 
we focus on the effectiveness of modification of the kernel function thus the simple structure of training 
data is preferred.  

We consider discretized time grids 𝑇𝑖 , 0 ≤ 𝑖 ≤ 𝑀 to express full available historical data records of 
the LOB and the mid-price. Let the available shape of the LOB, i.e., the order book volume at time 𝑇𝑖 is 
identified with 2(𝑛 + 1)-dimensional vector 

𝒙𝒊 = �𝑄𝑏𝑢𝑦
(𝑛+1 2⁄ )𝛿(𝑇𝑖), … ,𝑄𝑏𝑢𝑦

(1 2⁄ )𝛿(𝑇𝑖),𝑄𝑠𝑒𝑙𝑙
(1 2⁄ )𝛿(𝑇𝑖), … ,𝑄𝑠𝑒𝑙𝑙

(𝑛+1 2⁄ )𝛿(𝑇𝑖)�. 

In case of Nikkei 225 futures, constantly available data is restricted to 0 ≤ 𝑛 ≤ 8, which may sound 
odd. In many cases, we can see limit sell/buy orders placed in the price corresponding to 𝑛 = 9, however, 
sometimes at the moment of mid-price change, the bid-ask spread that is strictly larger than 𝛿 appears in 
a very short time and then the limit order corresponding to 𝑛 = 9 is pushed out of the records. This is the 
reluctant reason why we have no other alternative but to handle the data with 0 ≤ 𝑛 ≤ 8.  

Let 𝜋(𝑇𝑖) ≔ (𝑃𝑠𝑒𝑙𝑙(𝑇𝑖) + 𝑃𝑏𝑢𝑦(𝑇𝑖))/2 denote the mid-price at time 𝑇𝑖 and define 
𝔗(𝑇𝑘) = min�𝑗�𝜋�𝑇𝑗+1� ≠ 𝜋�𝑇𝑗�, 𝑗 ≥ 𝑘� 

as an index of discretized time grid at which the mid-price moved for the first time after 𝑇𝑘. Training data 

for SVM is a set of sequences of prior trials �𝒙𝒊 ∈ 𝑅2(𝑛+1)�0≤𝑖≤𝑚 with 𝑚 ≤ 𝑀 that have already been 

classified into two classes. In our case, classification means that each 𝒙𝒊 has been assigned a label 
𝑦𝑖 ∈ {+1,−1} depending on the direction of the first mid-price movement as follows. 

𝑦𝑖 = �
+1     𝑖𝑓  𝜋�𝑇𝔗(𝑇𝑖)� >  𝜋�𝑇𝔗(𝑇𝑖)−1�
−1     𝑖𝑓  𝜋�𝑇𝔗(𝑇𝑖)� <  𝜋�𝑇𝔗(𝑇𝑖)−1�

� 

That is, if the first mid-price movement after 𝑇𝑖 was upward direction, then we set 𝑦𝑖 = +1 and in an 
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opposite case we set 𝑦𝑖 = −1.  
Nonlinear SVM maps the input data 𝒙 ∈ 𝐼 = 𝑅2(𝑛+1)  into a higher dimensional feature space 

𝐹 = 𝑅𝑁 , 2(𝑛 + 1) ≤ 𝑁 by a nonlinear mapping Φ. By choosing an adequate mapping Φ, the data 
points become mostly linearly separable in the feature space. Trained SVM finds maximum margin hyper 
plane in a feature space 𝐹 as a final decision boundary defined by  

𝑓(𝒙) = � 𝑦𝑖𝛼𝑖𝐾(𝒙,𝒙𝒊) + 𝑏
𝑖∈𝑆𝑉

 

where 𝐾 is called kernel function and summation runs over all the support vectors. Here, parameters 𝛼𝑖 
are derived by solving quadratic programing problem 

max
𝛼

     � 𝛼𝑖 −  
1
2
� 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗

𝑚

𝑖,𝑗

𝑚

𝑖=1
𝐾�𝒙𝒊,𝒙𝒋� 

s. t.      0 ≤ 𝛼𝑖 ≤ 𝐶, �𝛼𝑖𝑦𝑖

𝑚

𝑖=1

= 0 

with prespecified parameter 𝐶, which controls the trade-off between margin and misclassification error. It 
is well known that Φ(𝒙) ∈ 𝐹 is not necessarily known to derive separating boundary and we only need to 
know the inner product of vectors Φ(𝒙) in the feature space by virtue of 𝐾(𝒙,𝒙′) = Φ(𝒙) ∙ Φ(𝒙′). Thus, 
the trained SVM will return predicted direction 𝑦𝑚+1 = ℎ(𝒙𝑚+1) ≔ 𝑠𝑖𝑔𝑛(𝑓(𝒙𝑚+1)) ∈ {+1,−1} for 
new trial data 𝒙𝑚+1. 

 

Geometric reformulation of the Kernel 
In order to improve the performance of SVM classifiers, Amari and Wu [6] and Wu and Amari [7] 

proposed conformal transformation of kernel functions based on the understanding that a good kernel 
should enlarge the separation between the two classes. Furthermore, Williams, Li, Feng and Wu [11] 
studied more robust method in the sense that the additional free parameter is only one and then 
computational algorithm is kept simple. 

From geometrical point of view, the mapped data 𝒛 = Φ(𝒙)  generally lie on a 2(𝑛 + 1) 
dimensional surface 𝑆 in 𝐹. Hear we omitted the subscript 𝑖 in 𝒙𝑖 indicating the time recorded for 
simplicity. If we assume that Φ  has all continuous derivatives, 𝑆  can be seen as an embedded 
submanifold possessing Riemannian metric. The Riemannian metric enable one to measure the distance of 
two distinct points on 𝑆 via line integral along the shortest curve (geodesic) connecting these two points. 
Here, the line element, denoted by 𝑑𝑠, can be expressed as 

(𝑑𝑠)2 = � 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗
1≤𝑖,𝑗≤2(𝑛+1)

 

where 𝑔𝑖𝑗 is called Riemannian metric and superscript 𝑖 in 𝑥𝑖 denote the 𝑖-th element of vector 𝒙.  
Applying Φ, 2(𝑛 + 1)-dimensional vector 𝒅𝒙 =  (𝑑𝑥1,⋯ ,𝑑𝑥2(𝑛+1)) is mapped to  

𝒅𝒛 = Φ(𝒙 + 𝒅𝒙) −Φ(𝒙). 
Then the line element 𝑑𝑠 is expressed in feature space as 

(𝑑𝑠)2 = ‖𝑑𝑠‖2 = ‖Φ(𝒙 + 𝒅𝒙) −Φ(𝒙)‖2. 
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From Taylor's theorem for 2(𝑛 + 1)-variate function 𝑅2(𝑛+1) = 𝐼 ∋ 𝒙 ↦ Φ(𝒙) =  (Φ1(𝒙),⋯ ,Φ𝑁(𝒙)) ∈
𝐹, the line element 𝑑𝑠 is re-expressed with the kernel function 𝐾 as follows 

(𝑑𝑠)2 = �� �
𝜕Φ𝑘(𝒙)
𝜕𝑥𝑗

2(𝑛+1)

𝑗=1

�

2𝑁

𝑘=1

 

= � �
𝜕Φ𝑘(𝒙)
𝜕𝑥𝑖

𝜕Φ𝑘(𝒙)
𝜕𝑥𝑗

1≤𝑖,𝑗≤2(𝑛+1)

𝑁

𝑘=1

𝑑𝑥𝑖𝑑𝑥𝑗  

= � �
𝜕2𝐾(𝒙,𝒙′)
𝜕𝑥𝑖𝜕𝑥′𝑗

�
𝒙=𝒙′1≤𝑖,𝑗≤2(𝑛+1)

𝑑𝑥𝑖𝑑𝑥𝑗 . 

Therefore, the Riemannian metric induced on 𝑆 can be written as 

𝑔𝑖𝑗(𝒙) = �
𝜕2𝐾(𝒙,𝒙′)
𝜕𝑥𝑖𝜕𝑥′𝑗

�
𝒙=𝒙′

. 

It shows how a local area in 𝐼 is magnified (by the factor 𝑔𝑖𝑗(𝒙)) in 𝐹 under the mapping Φ(𝒙). 
 

Conformal transformation 
A conformal transformation preserves both angles and the shapes of infinitesimally small figures, but 

not necessarily their size. The original idea of Amari and Wu [6] and Wu and Amari [7] of conformal 
transformation of the kernel function is to enlarge the magnification factor 𝑔𝑖𝑗(𝒙) around the separating 
boundary but reduce it around other points far from the boundary by modifying the kernel 𝐾 as  

𝐾�(𝒙,𝒙′) = 𝐷(𝒙)𝐷(𝒙′)𝐾(𝒙,𝒙′) 
with a properly defined positive function 𝐷(𝒙). We have 

𝑔�𝑖𝑗(𝒙) = 𝐷(𝒙)2𝑔𝑖𝑗(𝒙) + 𝐷𝑖′(𝒙)𝐷𝑗′(𝒙)𝐾(𝒙,𝒙) + 2𝐷𝑖′(𝒙)𝐷(𝒙)𝐾𝑖′(𝒙,𝒙) 

where  𝐾𝑖′(𝒙,𝒙) = �𝜕𝐾�𝒙,𝒙′�
𝜕𝑥𝑖

�
𝒙=𝒙′

 and 𝐷𝑖′(𝒙) = 𝜕𝐷(𝒙)
𝜕𝑥𝑖

. In order to increase the soft margin around the 

separating boundary in 𝐹, the factor function 𝐷(𝒙) should be chosen in a way such that 𝑔�𝑖𝑗(𝒙) has 
greater values around the separating boundary.  

Typical factor functions are suggested by many authors. See for example, Amari and Wu [6], Wu and 
Amari [7], Wu and Chang [15] and Williams, Li, Feng and Wu [11]. In our study, we adopt Williams, Li, 
Feng and Wu [11], presenting the form of the factor function as 

𝐷(𝒙) = 𝑒−𝜅𝑓(𝒙)2                                   (12) 
with the combination of the primary kernel  

            𝐾(𝒙,𝒙′) = exp �− �𝒙−𝒙′�2

2𝜎2 �.                             (13) 

It should be noted that 𝑓(𝒙) is given by the decision boundary (2) and takes its maximum of the 
separating region where 𝑓(𝒙) = 0, and decays to 𝑒−𝜅 at the margins of the separating region where 
𝑓(𝒙) ± 1. One can refer the original idea Williams, Li, Feng and Wu [11] to see why this function form 
improve the accuracy. Remaining crucial problem is to optimize positive constant 𝜅  to improve 
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classification for the given training data set, but it would be accomplished by iterated calculations. In our 
empirical study, we will call this modification as “D-modified SVM” to distinguish from primary SVM. 
The detailed computational algorithm for D-modified SVM is discussed in Kijima and Takada [8].  

 

Empirical feature space 

We introduce here the empirical feature space according to Xiong, Swamy and Ahmad [9] and Lin, 
Jiang, Zhao, Pang and Ma [10]. Let {𝒙𝑘}𝑘=1,⋯,𝑚 be a 2(𝑛 + 1) dimensional training data set and 𝑿 
denote the 𝑚 × 2(𝑛 + 1) sample matrix whose 𝑘-th rows consists of 𝒙𝑘. By introducing a specific map 
from the input data space 𝐼 to an 𝑟-dimensional Euclidean space 𝑅𝑟 (𝑟 ≤ 𝑚), determined bellow, one 
can pre-optimize the conformal transform in terms of the training data without training SVM. Suppose that 
𝑚 × 𝑚 matrix 𝐾 = (𝑘𝑖𝑗)1≤𝑖,𝑗≤𝑚  with 𝑘𝑖𝑗 ≡ Φ(𝒙𝑖) ∙ Φ�𝒙𝑗� = 𝐾�𝒙𝑖 ,𝒙𝑗� has rank 𝑟 (𝑟 ≤ 𝑚). Since 𝐾 
is a symmetric positive semidefinite, it has orthogonal decomposition as 𝐾 = 𝑃Λ𝑃⊺ , where Λ is a 
diagonal matrix consisting of only 𝑟 positive eigenvalues of 𝐾 in decreasing order, and 𝑃 consists of 
the eigenvectors corresponding to the ordered positive eigenvalues of 𝐾. Define the map Φ𝑟

𝑒 from the 
input data space to an 𝑟-dimensional Euclidean space; Φ𝑟

𝑒: 𝐼 → 𝑅𝑟 as  

𝒙 ⟼ Λ−
1
2𝑃⊺�𝐾(𝒙,𝒙1),𝐾(𝒙,𝒙2),⋯𝐾(𝒙,𝒙𝑚)�⊺. 

We shall call the embedding space Φ𝑟
𝑒(𝐼) as the empirical feature space. As Xiong, Swamy and 

Ahmad [9] and Lin, Jiang, Zhao, Pang and Ma [10] pointed out, the empirical feature space preserves the 
geometrical structure, i.e., distances and angles, of {Φ(𝒙𝑖)} in the feature space. This can be understood 
by calculating dot product matrix of {Φ𝑟

𝑒(𝒙𝑖)}𝑖=1,⋯,𝑚 as 

�Φ𝑟
𝑒(𝒙𝑖) ∙ Φ𝑟

𝑒�𝒙𝑗��
1≤𝑖,𝑗≤𝑚

= ��Φ𝑟
𝑒(𝒙𝑖)�

⊺Φ𝑟
𝑒�𝒙𝑗��

1≤𝑖,𝑗≤𝑚
= 𝐾𝑃Λ−

1
2 �𝐾𝑃Λ−

1
2�
⊺
 

                                        = 𝐾𝑃Λ−1𝑃⊺𝐾 = 𝐾 = �Φ(𝒙𝑖) ∙ Φ�𝒙𝑗��
1≤𝑖,𝑗≤𝑚

. 

Therefore, the training data has the same class separability in both the empirical feature space and the 
feature space. Remembering the kernel trick, we see that one cannot control Φ(𝒙) alone to improve the 
classification performance, but instead can control Φ𝑟

𝑒(𝒙) because it has 𝐾(𝒙,𝒙𝑖) in its definition, 
which are accessible element, and doesn’t contain Φ(𝒙) anymore. By virtue of this adroit idea, effective 
pre-optimization of the data-dependent conformal transform in the empirical feature space can be achieved 
before solving quadratic programing problem of the SVM.  
 

Data-dependent Optimized kernel 
In this subsection, we introduce so-called data-dependently conformal transformed kernel 𝐾� 

according to Xiong, Swamy and Ahmad [9] and Lin, Jiang, Zhao, Pang and Ma [10]. They assumed for 
factor function as  

𝑄(𝒙) = 𝛼0 + �𝛼𝑖𝑘(𝒙,𝒂𝑖)
ℓ

𝑖=1
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where 𝑘(𝒙,𝒂𝑖) = 𝑒−𝛾‖𝒙−𝒂𝑖‖2 ,𝒂𝑖 ∈ 𝑅2(𝑛+1) , 𝛾  is a free parameter, and 𝛼𝑖 ’s are the combination 
coefficients. The set {𝒂𝑖; 𝑖 = 1,⋯ , ℓ} is called empirical cores which can be chosen from the training 
data or determined according to the distribution of the training data. And next introduce a measure for the 
class separability in the empirical feature space and survey an efficient algorithm for optimization of the 
combination coefficients. One sees that in matrix notation,  

 
𝐾� = �𝑄(𝒙𝑖)𝐾�𝒙𝑖 ,𝒙𝑗�𝑄(𝒙𝑗)� = 𝑄𝐾𝑄, 

 
where 𝑄 is a diagonal matrix, whose diagonal elements are {𝑄(𝒙1),𝑄(𝒙2),⋯ ,𝑄(𝒙𝑚)}. We use the 

notation for vectors 𝒒 = �𝑄(𝒙1),𝑄(𝒙2),⋯ ,𝑄(𝒙𝑚)�⊺ and 𝜶 = (𝛼0,𝛼1,⋯ ,𝛼ℓ)⊺. Then we have 

 

𝒒 = �

1 𝑘(𝒙1,𝒂1)
1 𝑘(𝒙2,𝒂1)

⋯ 𝑘(𝒙1,𝒂ℓ)
⋯ 𝑘(𝒙2,𝒂ℓ)

⋮ ⋮
1 𝑘(𝒙𝑚𝒂1)

⋱ ⋮
⋯ 𝑘(𝒙𝑚,𝒂ℓ)

��

𝛼0
𝛼1
⋮
𝛼ℓ

� 

 
As we see the training data has the same class separability in both the empirical feature space and the 

feature space, and we can control Φ𝑟
𝑒(𝒙) directly, it is better to measure the class separability in the 

empirical data space. We rely on the following quantity called Fisher scalar for measuring the class 
separability in the empirical feature space.  

𝐽 =
tr 𝑆𝑏
tr 𝑆𝑤

 

Here, 𝑆𝑏 is the between-class scatter matrix and 𝑆𝑤 is the within-class scatter matrix, defined as 
follows. Let the number of samples in the first class with label -1 be 𝑚1, and the number of samples in the 
second class with label +1 be 𝑚2 and set 𝑚 = 𝑚1 + 𝑚2. Let 𝒚𝑖 , 𝑖 = 1,⋯ ,𝑚 be the images of the 
training data in the empirical feature space, and 𝒚�, 𝒚�1 and 𝒚�2 denote the center of the entire training 
data, that of class with label -1, and that of class with label +1, respectively. Then two matrices 𝑆𝑏 and 
𝑆𝑤 are defined by 

𝑆𝑏 =
1
𝑚
�𝑚𝑖(𝒚�𝑖 − 𝒚�)(𝒚�𝑖 − 𝒚�)⊺
2

𝑖=1

, 

𝑆𝑤 =
1
𝑚
��(𝒚𝑖

𝑗 − 𝒚�𝑖)(𝒚𝑖
𝑗 − 𝒚�𝑖)⊺

𝑚𝑖

𝑗=1

2

𝑖=1

, 

where the vector 𝒚𝑖
𝑗 denotes the 𝑗th data in the 𝑖th class (𝑖 = 1,2). Without loss of generality, we can 

arrange the order of training data so as to decompose the kernel matrix into following block structure, 
indicating that the first 𝑚1 data are belonging to the first class (label: -1), and the remaining 𝑚2 data are 
belonging to the second class (label: +1).  
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𝐾� = �𝐾
�11 𝐾�12
𝐾�21 𝐾�22

� 

Block matrices 𝐾�11,𝐾�12,𝐾�21  and 𝐾�22  represents the submatrix of 𝐾�  of size 𝑚1 × 𝑚1, 𝑚1 × 𝑚2,
𝑚2 × 𝑚1  and 𝑚2 × 𝑚2  respectively. Then the “between-class” and “within-class” kernel scatter 
matrices 𝐵�  and 𝑊�  are determined respectively as follows.  

𝐵� = �
1
𝑚1
𝐾�11 0

0 1
𝑚2
𝐾�22

� − �
1
𝑚
𝐾�11

1
𝑚
𝐾�12

1
𝑚
𝐾�21

1
𝑚
𝐾�22

� , 𝑊� = �

𝑘11 0
0 𝑘22

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
  ⋯ 𝑘𝑚𝑚

� − �
1
𝑚1
𝐾�11 0

0 1
𝑚2
𝐾�22

� . 

Similarly, “between-class” and “within-class” kernel scatter matrices 𝐵 and 𝑊 corresponding to the 
kernel 𝐾 are determined respectively as  

𝐵 = �
1
𝑚1
𝐾11 0

0 1
𝑚2
𝐾22

� − �
1
𝑚
𝐾11

1
𝑚
𝐾12

1
𝑚
𝐾21

1
𝑚
𝐾22

� , 𝑊 = �

𝑘11 0
0 𝑘22

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
  ⋯ 𝑘𝑚𝑚

� − �
1
𝑚1
𝐾11 0

0 1
𝑚2
𝐾22

� . 

As Theorem 1 in Xiong, Swamy and Ahmad [9] asserts, class separability measure 𝐽 is given by 

𝐽 =
𝟏𝑚⊺ 𝐵�𝟏𝑚
𝟏𝑚⊺ 𝑊�𝟏𝑚

=
𝒒⊺𝐵𝒒
𝒒⊺𝑊𝒒

, 

where 𝟏𝑘 = (1,⋯ ,1)⊺ denotes the 𝑘 dimensional vector. These representations are useful for numerical 
calculation of the partial derivative of 𝐽  with respect to 𝜶 = (𝛼0,𝛼1,⋯ ,𝛼ℓ)⊺ . Let 𝐽1  and 𝐽2  be 
functions of combination coefficients 𝜶 respectively as 

𝐽1 = 𝐽1�𝑞(𝜶)� = 1𝑚⊺ 𝐵�1𝑚 = 𝑞⊺𝐵𝑞, 
𝐽2 = 𝐽2�𝑞(𝜶)� = 1𝑚⊺ 𝑊� 1𝑚 = 𝑞⊺𝑊𝑞. 

From Theorem 2 of Xiong, Swamy and Ahmad [9], we have  
𝜕𝐽1
𝜕𝛼𝑙

= 2𝐾1⊺𝐵𝐾1𝛼𝑙 ,
𝜕𝐽2
𝜕𝛼𝑙

= 2𝐾1⊺𝑊𝐾1𝛼𝑙 , (𝑙 = 0,1,⋯ , ℓ) 

where  

𝑲𝟏 = �

𝟏 𝒌(𝒙𝟏,𝒂𝟏)
𝟏 𝒌(𝒙𝟐,𝒂𝟏)

⋯ 𝒌(𝒙𝟏,𝒂𝓵)
⋯ 𝒌(𝒙𝟐,𝒂𝓵)

⋮ ⋮
𝟏 𝒌(𝒙𝒎𝒂𝟏)

⋱ ⋮
⋯ 𝒌(𝒙𝒎,𝒂𝓵)

� . 

 
Hence the partial derivative of 𝐽 with respect to 𝛼𝑙  (𝑙 = 0,1,⋯ , ℓ) is then given by 

𝜕𝐽
𝜕𝛼𝑙

 =  
2
𝐽22

(𝐽2𝐾1⊺𝐵𝐾1 − 𝐽1𝐾1⊺𝑊𝐾1)𝛼𝑙  =  2
𝐾1⊺𝐵𝐾1 − 𝐽𝐾1⊺𝑊𝐾1

𝐽2
𝛼𝑙 . 

 
Maximization of 𝐽 = 𝐽(𝛼) can be achieved numerically by recursive form as follows. 
 
Kernel Optimization Algorithm (Xiong, Swamy and Ahmad [9]) 
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  Step 1.  Group the data according to their class labels. Calculate 𝐾,𝐾1,𝐵, and 𝑊. 
  Step 2.  Set 𝜶(0) = (1,0,⋯ ,0)⊺ and 𝑛 = 0. 
  Step 3.  Calculate 𝒒 = 𝐾1𝜶(𝑛). 
  Step 4.  Calculate 𝐽2 = 𝒒⊺𝑊𝒒 and 𝐽 = 𝒒⊺𝐵𝒒 𝒒⊺𝑊𝒒⁄ .  
  Step 5.  Update  

𝜶(𝑛+1) = 𝜶(𝑛) + 𝜂(𝑛) �
𝐾1⊺𝐵𝐾1 − 𝐽𝐾1⊺𝑊𝐾1

𝐽2
�𝜶(𝑛) 

          and normalize 𝜶(𝑛+1) so that �𝜶(𝑛+1)� = 1. 
  Step 6.  If 𝑛 reaches a pre-specified number 𝑁, say 200, then stop and quit the loop.  
          Otherwise, set 𝑛 = 𝑛 + 1 and go to Step 3. 
 
Here, 𝜂(𝑛) = 𝜂0�1 − 𝑛

𝑁� is called the learning rate, which controls convergence speed of the above 
recursive algorithm. As Xiong, Swamy and Ahmad [9] selected, we set 𝜂0 = 0.01 in our empirical study.  
We will call this modification as “Q-modified SVM” to distinguish from D-modified SVM and primary 
SVM. At the stage of empirical analysis, we have some decision branch for choosing empirical cores 
{𝒂𝑖; 𝑖 = 1,⋯ , ℓ}. For example, Xiong, Swamy and Ahmad [9] suggested to select one third of the training 
data randomly as the empirical cores. We call this strategy as “Q-modified SVM (1/3)”. Alternative way is, 
along the basic idea of Gang Wu and Edward Chang [15], to use support vectors worked out by calibrating 
primary SVM. This strategy needs to solve optimization problem twice so time-consuming but recycle of 
the support vectors would be expected to be efficient. We call this strategy as “Q-modified SVM (sv)” 
later on.   

 

Numerical Studies 
In our empirical study, the training of SVM is refreshed every day (i.e., forget about the yesterday) 

and we chose the running interval [𝑇𝑚,𝑇𝑚+𝑘], (𝑚 = 0,1,2,⋯ ) with fixed constant 𝑘 = 60 × 60 for 
training data, where 𝑇0 = 09:00:00 (opening time) and 𝑇𝑘 =10:00:00 are fixed. Thus, the learning 
interval for each prediction is set to be a one hour and then we cannot start prediction immediately at the 
opening time. We note that we had processed the original data into second-scale data and then 𝑇𝑚+1 − 𝑇𝑚 
is 1 second.  

Here, we must note that the label 𝑦ℓ, which will be apparent at time 𝑡 > 𝑇ℓ, associated with training 
data 𝑥ℓ should be known by the time 𝑇𝑚 to take into account for training at 𝑇𝑚. Otherwise one knows 
the answer before it happens. Therefore, if we are in a time 𝑇𝑚, we can use the data during [𝑇𝑚−𝑘 ,𝑇ℓ], 
where ℓ = 𝑚𝑎𝑥�𝑖 ∈ {1,2,⋯ ,𝑀}|𝑇𝔗(𝑇𝑖) ≤ 𝑇𝑚� for learning at 𝑇𝑚. In what follows, we abbreviate the 
term training data [𝑇𝑚,𝑇𝑚+𝑘] so as to identify the training data and its corresponding time interval. So, if 
we say training data [𝑇𝑚,𝑇𝑚+𝑘] , it indicates the available training data during the time interval 
[𝑇𝑚,𝑇𝑚+𝑘]. Our simulation procedure with prespecified parameters is summarized as follows.  

 
Step 0. Do nothing during [𝑇0,𝑇𝑘] = [09: 00: 00, 10: 00: 00] and set the current time 𝑇𝑚 = 10: 00: 00. 
Step 1. Based on the training data [𝑇𝑚−𝑘 ,𝑇ℓ], where ℓ = 𝑚𝑎𝑥�𝑖 ∈ {1,2,⋯ ,𝑀}|𝑇𝔗(𝑇𝑖) ≤ 𝑇𝑚�, calibrate 
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the SVM (Primary SVM, D-Modified SVM, Q-Modified SVM(1/3) and Q-Modified SVM(sv)). 
Step 2. Predict 𝑦𝑚 and store it for each SVM.  
Step 3. If 𝑇𝑚 < 15: 10: 00, then set 𝑇𝑚 = 𝑇𝑚 + 1sec. and go to Step 1. Otherwise stop and quit the loop.  

 
We need to determine evaluation method in order to compare the newly proposed prediction models 

of the modified kernel SVM with the standard one that is treated as a benchmark. Let 𝑛1,1 be a number 
that count the event of actual upward direction of the mid-price movements that were correctly predicted 
as upward direction (true positive), while a number 𝑛−1,1 count the event of actual upward direction that 
were incorrectly predicted as down ward direction (false negative). Similarly, let 𝑛−1,−1 be a number that 
count the event of actual down ward direction of the mid-price movements that were correctly predicted as 
down ward direction (true negative), while a number 𝑛1,−1 count the event of actual down ward direction 
that were incorrectly predicted as upward direction (false positive). These numbers constitute the 
confusion matrix, which is often employed in the field of machine learning and specifically the problem of 
statistical classification. We adopt the precisions both for +1 and -1 defined bellow respectively, as the 
evaluation measure of performance. 

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧(+𝟏) =
𝑛1,1

𝑛1,1 + 𝑛1,−1
,   𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧(−𝟏) =

𝑛−1,−1

𝑛−1,1 + 𝑛−1,−1
 

As we simply focus on the effect of the conformal transformation, we do not involve with the detail 
of tuning methodology for 𝐶 and 𝜎. Therefore, we calculate the case with 𝐶 ∈ {1, 10, 100} and 𝜎 = 1, 
and then take average of these three cases in terms of precision. 

 

Results and Discussion 
The most intrigued results of the empirical analysis would be the following; how much the modified 

kernel SVM outperforms the primary SVM?  The average value of precisions simulated for each 
methodology are summarized in Table 2. We can see that “Q-Modified SVM (1/3)” and “Q-Modified 
SVM (sv)” outperform “Primary SVM” slightly both for 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧(+𝟏) and 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧(−𝟏) in average 
between April 2, 2012 and June 30, 2012. We can also see that “Q-Modified (sv)” slightly outperforms 
“Q-Modified SVM (1/3)”. For the empirical cores, the “Q-Modified (sv)” uses the support vectors, which 
are located in neighborhood of the decision boundary, so that the modification function 𝑄(𝒙) would be 
efficiently calibrated to given training data rather than “Q-Modified SVM (1/3)”. In particular, when the 
number of the label +1 and -1 at training stage are imbalance, random sampling may have thrown away 
some sparse data. The most remarkable results are that “D-Modified SVM” with cautiously chosen 
parameter 𝜅 outperforms “Primary SVM” more than 3.5% in average. Here, as the next Figures 2 and 3 
show, we choose 𝜅 = 1.6 both for 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧(+𝟏) and 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧(−𝟏) to achieve best performance. Of 
course, if we select the model parameter 𝜅 separately for upward direction (+1) and downward direction 
(-1), then the performance would slightly improve.  
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Table 2: 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧(+𝟏) and 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧(−𝟏) in average between April 2, 2012 and June 30, 2012 
 Primary 

SVM 
Q-Modified SVM 

(1/3) 
Q-Modified 

SVM (sv) 
D-Modified 

SVM 
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧(+𝟏) 54.340% 54.886% 55.241% 57.803% 
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧(−𝟏) 54.566% 55.471% 56.578% 58.180% 

 
Figures 2 and 3 show how the 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧(+𝟏) and 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧(−𝟏) vary with respect to 𝜅 for each 

month. As is clear from (13), 𝜅 = 0 corresponds to the standard SVM and then by viewing these figures 
we can see how much the precisions improved when we change the value of 𝜅. Although we cannot know 
the optimal value of 𝜅 in advance, from practical point of view, it would be possible to decide appropriate 
vale of 𝜅 empirically. In this sense, we can optimize the conformal transform of the Gaussian kernel. 

 

 
Figure 2:  𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧(+𝟏) for each month. Horizontal axis denotes the value of 𝜅.  

 
To proceed our algorithm in a real market, total computational time of for one prediction should be 
sufficiency smaller than one tick, i.e., 1 second. In our Matlab computational environment of iMac with 
4GHz Intel Core i7, 32GB 1867MHz DDR3, computational time of “D-Modified SVM” for one 
prediction is 0.176 second in average, while that of “Q-Modified SVM” takes more than 1.48 second. The 
calculation time depends on the number of empirical cores and this algorithm will not work on the real 
market without any improvements. As a benchmark, primary SVM takes 0.095 seconds in average for one 
prediction.  
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Figure 3:  𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧(−𝟏) for each month. Horizontal axis denotes the value of 𝜅. 

 
 

Conclusions 
As our companion paper Kijima and Takada [8] and others reported, SVM would be a one of the best 

machine learning technique for predicting mid-price direction by using LOB. In this paper, we found 
effectiveness of the SVM equipped with conformally transformed Gaussian kernel to improve precision 
and studied the sensitivity with respect to the parameter 𝜅, which control the degree of the conformal 
transform. The data-dependent kernel optimization methods are also experimented empirically, however, 
they failed to outperform Amari and Wu’s method I case of the financial high frequency data. For 
numerical computation, although Amari and Wu’s method needs twice as much as the standard Gaussian 
kernel (for detailed description of computational algorithms, see Kijima and Takada [8]), conformal 
transform method would be widely applied to high frequency data analysis in finance both from accuracy 
and computational time. 
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