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1. Introduction

There has been an increased focus on spatio-temporal models with multidimensional indices 

over the past decades. Applications of these models span many areas of scientific research: 

In signal processing and spatio temporal modelling: Rao et al. (1994); McClellan (1982), 

in texture modeling: Francos et al. (1993), Yuan and Rao (1992), Zhang and Mandrekar 

(2001), in acoustics: Irizary (2011), in electronics: Sánchez et al. (2011); Zavala and Messina 

(2014), in bioinformatics: Yang and Su (2010), in statistics: Kundu (1993), Dunson and 

Taylor (2005) (variable selections), Brown (1990) (asymptotic distributions of parameters). 

Most of these models are single-index and nonlinear, and an extensive literature on these 

type of models can be found for example in Wu (1981); Jennrich (1969), Gallant (1987). In 

this paper, we focus on multidimensional nonlinear models given classically by the equation

yt = f(xt,θ) + εt, t ≤ n, (1.1)

where t = (t1, t2, . . . , tK) and n = (n1, n2, . . . , nK) ∈ NK which is the space of K di-

mensional non-negative integer values; ≤ denotes the partial ordering on NK , that is, for 

m = (m1, m2, . . . , mK) ∈ NK and n = (n1, n2, . . . , nK) ∈ Nk, m ≤ n if mk ≤ nk for 

k = 1, 2, . . . , K. The set {εt, t ∈ NK} is a ϕ-mixing (a weakly dependent) field of random 

variables with mean 0, θ ∈ Θ ⊂ Rp is a parameter vector, {xt, t ∈ NK} a set of known field 

of constant vectors, and f is a known nonlinear link function. We will assume in this paper 

that the link function f(·, ·) is real-valued. We note however that there are areas such signal 

processing (see Rao et al. (1994)) where f(·, ·) is considered complex-valued. Our goal in this 

paper is to find Bayesian estimators for θ. Indeed, strongly consistent and asymptotically 

normal (as |n| = Πi
k
=1ni → ∞) signed-rank estimators for θ were proposed by Nguelifack et 

al. (2015) with sufficient conditions on the nonlinear link function given. The present paper
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is a continuation of that endeavor but into a Bayesian setting. It is already well-established 

in the literature that nonparametric methods, in some situations, can be more efficient than 

traditional parametric methods in particular when the true distribution of the data is heavy-

tailed or skewed (see Hettmansperger and Mckean (2011)). With the advent of computers 

powerful enough to handle long and complicated programs the Bayesian approach has been 

intensively used in theoretical as well as practical applications. This approach is built on the 

assumption that there is a state θ, observed data xt, a prior function p(θ), and the likelihood 

function p(xt|θ) over possible observations. One of the goals is to find the posterior function 

p(θ|xt) as a function proportional to p(xt|θ)p(θ) using Bayes’ theorem. It is often the case 

that p(θ|xt) can be difficult to compute in a closed form, so we will rely, as it is often the 

case in practice, on approximations and simulations.

The Bayesian nonparametric inference based on ranks has been studied by Zhan and 

Hettmansperger in Zhan and Hettmansperger (2005), Zhan and Hettmansperger (2007), 

Zhan and Hettmansperger (2009). The framework they proposed is these series of papers 

works well for linear link functions and single-index parameter spaces. In this paper, we 

propose a Bayesian estimation method for nonlinear link functions f(xt, θ) and for multi-

indices spaces. These two distinctions allow for more flexibility and a broader ranges of 

possible applications. The remainder of the paper is organized as follows: in section 2.1 

and section 2.2, we review Generalized Signed-Rank estimators (GSR) and their asymptotic 

normality, laying work the ground for a frequentist approach. In section 3, we derive an 

asymptotic posterior distribution for the unknown parameter θ. In section 3.3, we propose 

simulations results using the asymptotic distribution derived earlier as well as a Markov 

Chain Monte Carlo method. In Section 4, we provide a discussion about the relevance of 

this line of research.

297



2. Frequentist approach

In the following two subsections, we discussed the relevant details about a frequentist ap-

proach to the generalized signed-rank estimation for models with multidimensional indices.

2.1 Generalized Signed-Rank Estimation

Consider model (1.1). We shall assume that θ is in the parameter space Θ, θ0 is the true 

value of θ which is an interior point of Θ, and x ∈ Rp. We define the GSR estimator of θ0 

to be any vector θ̂S minimizing

Dn(θ) =
1

|n|
∑
t≤n

an(t)ρ(|z(θ)|(|t|)) (2.1)

where zt(θ) = yt− f(xt,θ) and |z(θ)|(|t|) is the tth ordered value among |z1(θ)|, . . . , |zn(θ)|.

The function ρ : R+ → R+ is continuous, convex and strictly increasing. The numbers

an(t) are scores generated as an(t) = ϕ(|t|/(|n|+ 1)), for some bounded nondecreasing score

function ϕ : (0, 1)→ R+ that has at most a finite number of discontinuities. Since Dn(θ) is

continuous in θ, Lemma 2 in Jennrich (1969) implies the existence of a minimizer of Dn(θ).

It is clear that the the least squares (LS) and the least absolute deviation (LAD) esti-

mators are particular cases of GSR estimators. In fact the LS is obtained by taking ϕ+ ≡ 1

and ρ(t) = t2, t ≥ 0 while the LAD is obtained by taking ϕ+ ≡ 1 and ρ(t) = t. The case

of the LS has been discussed by N. Bansal et al. Bansal et al. (1999) and S. Nandi Nandi

(2012) among others.

We will however use an equivalent form

Dn(θ) =
1

|n|
∑
t≤n

an(t)(ρ ◦ G̃−1
θ )(ξ(|t|)), (2.2)

where ξ(|t|) are order statistics from the uniform U(0, 1) distribution.
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Put Γθ(s) = ρ[G̃−1
θ (s)] for s ∈ [0, 1] and λt = an(R(ξ|t|)), where R(ξ|t|) is the rank of ξ|t|

among ξ1, . . . , ξn. Then (2.1) can be rewritten as

Dn(θ) =
1

|n|
∑
t≤n

an(t)(ρ ◦ G̃−1
θ )(ξ|t|) =

1

|n|
∑
t≤n

λtΓθ(ξ|t|).

Since ϕ+ is bounded, we have ‖λt‖ < ∞. Set Sn(θ) = DβθDn(θ) and Φθ(s) = DβθΓθ(s)

for |β| = 1, where Dβθ is the differential operator defined by Dβθ = ∂|β|

∂θ
β1
1 ...∂θ

βp
p

with β =

(β1, . . . , βp) ∈ Nn
0 ,N0 = N ∪ {0} the multi-index and |β| =

∑p
i=1 βi. Let the |n| × p matrix

X∗ be the matrix of Φθ evaluated at all |n| residuals z(θ) and hntt be the |t|th diagonal

element of the hat-matrix X∗(X∗TX∗)−1X∗T . It follows that θ̂S is a zero of

Sn(θ) =
1

|n|
∑
t≤n

λtΦθ(ξ|t|). (2.3)

We will let Wm,p(U) be the usual Sobolev space on an open neighborhood U of R|n|

defined as

Wm,p(U) =
{

Γ ∈ Lp(U) : DβθΓ ∈ Lp(U) with |β| ≤ m
}
,

where Lp(U) is the spaces of functions g such that gp is Lebesgue integrable on U.

2.2 Consistency and Asymptotic normality

In this section, we recall without proof two important results from Nguelifack et al. (2015)

on the consistency and asymptotic normality of the GSR estimate θ̂S. This two results are

established under the following assumptions:

A1 : The parameter space Θ is compact and the function f(·, ·) is continuous with contin-

uous derivatives.

A2 : G has Lebesgue density g that is symmetric about 0 and strictly decreasing on R+.
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A3 : P (f(x,θ) = f(x,θ0)) < 1 for any θ 6= θ0.

A4 : For 1 < q < ∞, there is an integrable function h not depending on θ such that

|ρ(G̃−1
θ (v))| ≤ h(v), for all θ ∈ Θ with E[hq(Y )] <∞.

A5 : Let {Mn,n ∈ Nk} be a field of k × k non-singular matrices such that

1

|n|
Mn

∑
t≤n

{∇θf(xt,θ)}T{∇θf(xt,θ)}MT
n

converges to a positive definite matrix Σθ0 uniformly as |n| → ∞ and ‖θ − θ0‖ → 0.

A6 : lim
|n|→∞

max
1≤t≤n

hntt = 0.

A7 : θ → Γθ(t) is a map in W 3,p(B), where B is a neighborhood of θ0 for every fixed t.

A8 : Aθ0 = E[ϕ(ξ)[DβθΦθ(ξ)]θ=θ0 ], where ξ ∼ U(0, 1), is a symmetric positive definite

matrix for |β| = 1.

A9 : There exist functions ψβ ∈ W 2,p(R) independent of θ such that |DβθΦθ(s)| ≤ ψβ(s) for

every θ ∈ B and |β| ≤ 2.

Remark 1. The above assumptions are the same as in Nguelifack et al. (2015). Assump-

tion A3 is needed for θ0 to be identified. In our proof all we need is that the space defined

by

Ωϕ+

θ,θ0
= {s ∈ (0, 1) : G̃θ(s) 6= G̃θ0(s) and ϕ+(s) > 0},

G̃

has positive measure for θ 6= θ0. Assumption A2 admits a wide variety of error distribution 

examples of which are the normal, the logistic, and the Cauchy distributions with location 

parameter equal to 0. Under assumptions A1–A3, we can use a similar strategy as in Hossjer 

(1994) to show that for any s > 0, for θ 6= θ0 and for all t ≤ n,

θ(s) = P (|εt − {f(xt, θ) − f(xt, θ0)}| ≤ s) < EX{Pεt (|εt| ≤ s)} = G̃θ0 (s).
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The following theorems will be essential for the Bayesian approach and for sake of brevity,

will be given without proof. The proof can be found in Nguelifack et al. (2015).

Theorem 2.1. Under A1–A4, we have

θ̂S → θ0 a.s. as |n| → ∞.

Theorem 2.2. Under assumptions A1–A9, we have the following

√
|n|M−1

n Sn(θ0) →
D

Np (0,Σθ0)√
|n|M−1

n A−1
θ0
Sn(θ0) =

√
|n|M−1

n (θ̂n − θ0) + op(1)

where Σθ0 = E[ϕ+(ξ)Φθ0(ξ)(Φθ0(ξ))
T ].

3. Bayesian approach

3.1 Derivation of the asymptotic posterior distribution

We will proceed as and Zhan and Hettmansperger (2009). The distribution of Sn(θ) will be 

considered as a pseudo-likelihood. Therefore, choosing θ that maximizes p(θ|Sn(θ)) is the 

same as solving Sn(θ) = 0 for θ. We will summarize the information about the data in the 

asymptotic distribution of Sn(θ), given by Theorem 2.2. The prior of θ for a given θ0, is

then

π(θ) = (2π)−p/2|Σθ0 |−1/2 exp

[
−1

2
(θ − θ0)TΣ−1

θ0
(θ − θ0)

]
.

We let Ωθ = 1
|n|MnA

−1
θ ΣθA

−1
θ MT

n . We have the following theorem:

Theorem 3.1. Let θ0 ∈ Θ be given. Under assumptions A1-A14, the asymptotic posterior
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distribution p(θ|Sn(θ)) of θ (with prior π(θ)) given Sn(θ) is proportional to the quantity

exp

[
−1

2

(
θ − θ̂

)T
Σ̂
−1
(
θ − θ̂

)]
,

where

Σ̂ = (Ω−1
θ + Σ−1

θ0
)−1 and θ̂ = Σ̂(Ω−1

θ θ̂S + Σ−1
θ0
θ0). (3.1)

Proof. It follows from Theorem 2.2 that, given θ0, we have (θ̂S − θ) ∼ Nk(0,Ωθ). Let the

pseudo-likelihood function be defined as

p(Sn(θ)|θ) = exp

[
−1

2

([√
|n|M−1

n Sn(θ)
]T

Σ−1
θ

[√
|n|M−1

n Sn(θ)
])]

.

Then the asymptotic posterior of θ given Sn(θ) is

p(θ|Sn(θ)) ∝ exp

[
−1

2

([√
|n|M−1

n Sn(θ)
]T

Σ−1
θ

[√
|n|M−1

n Sn(θ)
])]

· exp

[
−1

2
(θ − θ0)T Σ−1

θ0
(θ − θ0)

]
.

(3.2)

where the constant of proportionality is given by C =

∫
Ω

p(Sn(θ)|θ)π(θ)dθ. We note from

Theorem 2.2 that,
√
|n|M−1

n (θ̂S−θ) =
√
|n|M−1

n A−1
θ Sn(θ)+op(1). Since

√
|n|M−1

n Sn(θ) ∼

Np(0,Σθ), then (θ̂S − θ) ∼ Nk(0,Ωθ). It follows that the first expression in the right-hand

side of equation (3.2) yields

exp

[
−1

2

(
θ̂S − θ)TΩ−1

θ

[
(θ̂S − θ)

])]
.

The posterior asymptotic distribution of θ given Sn(θ)) is therefore proportional to

exp

[
−1

2

(
θ̂S − θ)TΩ−1

θ (θ̂S − θ) + (θ − θ0)T Σ−1
θ0

(θ − θ0)
)]

. (3.3)
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Equation (3.3) is equivalent to

exp

[
−1

2

(
θ − θ̂

)T
Σ̂
−1
(
θ − θ̂

)]
,

after completion of the quadratic form with Σ̂ = (Ω−1
θ + Σ−1

θ0
)−1, and θ̂ = Σ̂(Ω−1

θ θ̂S +

Σ−1
θ0
θ0).

Remark 2. There is a similarity between the expression asymptotic prior of the GSR estimate

in the linear case and its counterpart in the nonlinear case, in the sense that in both cases,

the posterior mean θ̂ is a weighted average of the GSR estimate θ̂S and prior mean θ0, with

weights concentrated in data matrix Ωθ and the prior precision matrix Σθ0 . This is possible

because the nonlinear expression of the dispersion function Dn given by either equation (2.1)

or (2.2) is similar to that of the linear dispersion function obtained when f(·, ·) is linear.

Remark 3. The results of Theorem 3.1 generalize the ones obtain by Zhan and Hettmansperger

(2009). Indeed, it is not difficult to see that when f(x, ·) is linear, and k = 1 (single-index

case), then the matrix Ω−1
θ is reduced to nτ−2

ϕ Σθ, where Σθ = limn→∞ n
−1XTX. To see

why, take ϕ ≡ 1, ρ(s) = s, and n = n.

It was shown on page 25 in McKean and Hettemansperger (2011) that Aθ = 2G′(θ) = τϕ

where G′ represents the derivative of the distribution function G of the errors satisfying

assumption A2. Assumption A5 becomes Σθ = limn→∞ n
−1XTX. Therefore with the

choice of Mn = τ−2
ϕ Σθ, we have Ω−1

θ = nMT
n AθΣ

−1
θ AθMn = nτ−2

ϕ Σθ

3.2 Examples and Simulations

Example 1: We consider the following model

yt = α cos(λ1xt1 + λ2xt2) + εt, (3.4)
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where α is a real unknown parameter and λi, i = 1, 2 are unknown parameters with t =

(t1, t1). This model is a nonlinear sinusoidal used in textures modeling Rao et al. (1994),

Zhang and Mandrekar (2001). Assumptions A1-A6 were checked in Nguelifack et al. (2015).

We start with a true value θ = (α, λ1, λ2) ≡ (4, 1.886, 1.1). For our simulations, we

will choose n1 = n2 = n = 40, 50, 80, 100, and we assume εt ∼ N(0, 1), εt ∼ t(3), εt ∼

Cauchy(0, 1). A frequentist method for the generalized signed-rank estimation was pro-

posed in Nguelifack et al. (2015) and it yields an average estimate of θ̂S = (α̂S, λ̂1,S, λ̂2,S) ≡

(3.902, 1.885, 1.113) after 1000 runs. If we choose a starting parameter θ0 = (0.05, 0.05, 0.01)

and Mn = diag
(
1, 1

n
, 1
n

)
, then from Nguelifack et al. (2015)

Σθ0 =


1
2

0 0

0 1
6

1
8

0 1
8

1
6

 and Σθ =


1
2

0 0

0 α2

6
α2

8

0 α2

8
α2

6

 .

From the same reference, we have Aθ = diag(a, b, c) ≡ diag(2g(α), 2g(λ1), 2g(λ2)), where

g = G′ is the density function of respectively the standard normal distribution, the Student-

t distribution with 3 degrees of freedom, and the the Cauchy distribution with parameters

0 and 1. We obtain after calculations the matrix

Ωθ =


1

2n2a2
0 0

0 α2

6n4b2
α2

8n4bc

0 α2

8n4bc
α2

6n4c2

 =⇒ Ω−1
θ =


2n2a2 0 0

0 97n4b2

7α2 −72n4bc
7α2

0 −72n4bc
7α2

96n4c2

7α2

 .

Hence

Σ̂−1 = Ω−1
θ + Σ−1

θ0
=


2(n2a2 + 1) 0 0

0 96
7

(
n4b2

α2 + 1
)
−72

7

(
n4bc
α2 + 1

)
0 −72

7

(
n4bc
α2 + 1

)
97
7

(
n4c2

α2 + 1
)
 .
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Finally, we obtain

Σ̂ =


1

2(n2a2+1)
0 0

0 7
6
α2(n4c2+α2)

D
7
8
α2(n4bc+α2)

D

0 7
8
α2(n4bc+α2)

D
7
6
α2(n4b2+α2)

D

 ,

where D = 7n8b2c2 + 16n4b2α2 + 16α2n4c2 + 7α2 − 18n4bcα2.

Let θ̂ = (α̂, λ̂1, λ̂2) be the asymptotic posterior mean. It follows from equation (3.1) that

α̂ =
n2a2α̂S + 1

n2a2 + 1
,

λ̂1 =
n4(n4c2 + α2)(96b2λ̂1,S − 72bcλ̂2,S)

6D
+
n4(n4bc+ α2)(−72bcλ̂1,S + 96c2λ̂2,S)

8D
,

λ̂2 =
n4(n4bc+ α2)(96b2λ̂1,S − 72bcλ̂2,S)

8D
+
n4(n4b2 + α2)(−72bcλ̂1,S + 96c2λ̂2,S)

6D
.

(3.5)

The table 1 below summarizes the estimates obtained for the bayesian posterior mean for

different sample sizes n and different errors distributions. This table shows that as the sample

sizes increases, then the bayesian estimates get closer to the GSR estimates, as discussed in

remark 4.
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Distribution of εt Sample size α̂ λ̂1 λ̂2

N(0, 1)

n = 40 3.8917 1.7300 1.1108

n = 60 3.8974 1.8501 1.1125

n = 100 3.9003 1.8803 1.1129

t(3)

n = 40 3.8879 1.8783 1.1124

n = 60 3.8957 1.8836 1.1128

n = 100 3.8997 1.8848 1.1129

Cauchy(0, 1)

n = 40 3.8783 1.8816 1.1125

n = 60 3.8914 1.8843 1.1129

n = 100 3.8982 1.8849 1.1129

Table 1: Simulation Results

Remark 4. The example above highlights the fact that θ̂ is essentially a weighted average

between the prior mean and the GSR estimate.

It also highlights a very important point about the bayesian mean: from Equation (3.5),

it follows clearly that as n→∞,

1. α̂→ α̂S,

2. λ̂1 ∼ n4(n4c2)(96b2λ̂1−72bcλ̂2)
42n8b2c2

+ n4(n4bc)(−72bcλ̂1+96c2λ̂2)
56n8b2c2

→ λ̂1,S,

3. λ̂2 ∼ n4(n4bc)(96b2λ̂1−72bcλ̂2)
56n8b2c2

+ n4(n4b2)(−72bcλ̂1+96c2λ̂2)
42n8b2c2

→ λ̂2,S.

Therefore, for large values of n, the GSR estimate θ̂S is the dominant factor in the

bayesian mean θ̂, and consequentially, the information matrix Ω−1
θ quickly dominates the

prior matrix Σθ0 in the expression of Σ̂. This phenomenon is general and not limited to 

this example, and was also observed in the linear case by Zhan and Hettmansperger (2009). 
Therefore, in practice, it is often recommended to estimate the posterior mode θ̃ instead of 

the posterior mean θ̂ if there is a reason to believe that the target distribution is skewed. We
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note also that the constant of proportionality can be estimated using Laplace method as in 

Kass and Raftery (1995) and the references therein. There is also a new algorithm that seem 

to be efficient in calculating the constant of proportionality, see Lindgren and Rue (2015).

3.3 Markov Chain Monte Carlo Simulations

Due to the complex expression we obtained for the asymptotic posterior distribution of θ, 

numerical methods such as the Markov Chain Monte Carlo (MCMC) can be useful in general 

to obtain better approximations posterior parameters. We start with a brief overview of how 

MCMC works. The idea of MCMC was first introduced by Metropolis et al. (1953) as a 

method for the efficient simulation of the energy levels of atoms in a crystalline structure 

and was adapted in statistics by Hastings (1970). Say we need to know the important 

features of π∗(θ), θ ∈ Θ, the true distribution of θ. Since we know that π∗ has a complex 

expression so that we cannot sample directly from it, MCMC is an indirect method that 

consists of constructing an aperiodic and irreducible Markov chain with state space Θ whose 

stationary (or invariant) distribution is π∗. Consequently, if the chain is run sufficiently long, 

then simulated values of the chain can be considered as a dependent sample from π∗ and 

can be used to summarize key features about it. There is a rich literature on the subject 

of MCMC and its implementation (see for a head-start Metropolis et al. (1953); Hastings 

(1970); Geman and Geman (1984); Brooks (1988); Meyn and Tweedie (1993); Gelman et 

al. (1995)). The main theorem underpinning the MCMC method is that any chain which is 

irreducible and aperiodic has a unique stationary distribution, and that the t-step transition 

kernel will “converge” to that stationary distribution as t → ∞. (See Meyn and Tweedie 

(1993)). Thus, to generate a chain with stationary distribution π∗, we need only to find 

transition kernels T that satisfy these conditions and for which π∗T = π∗, that is, T is 

such that given an observation θ1 ∼ π∗(θ1), T (θ1, θ2), then θ2 ∼ π∗(θ2). There are many 

choices for the transition kernels in practice, but the most popular is the Metropolis-Hastings
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updating schemes (Hastings (1970)) with many variants among which the Gibbs Sampler

kernel (introduced by Geman and Geman (1984)). We will now propose an algorithm based

on an adaptation of Metropolis-Hastings updating schemes.

1. Consider K indices. Fix k ∈ {1, 2, · · ·K},

2. Take J ≥ 2 samples {X1,j
k , X2,j

k , · · · }Jj=2 from a given distribution D (referred to in

practice as the proposal distribution). We note that for the j-th sample, X i,j
k is the

i-th p-dimensional vector from D, where i = 1, 2, · · · .

3. For a fixed j, select a starting point θ0,j
k from X1,j

k , X2,j
k , · · · .

4. Let θ∗,jk ∼ D. For i = 1, 2, · · · ,

(i) Calculate rk =
p(θ∗,jk |Snk (θ∗,jk ))

p(θi−1,j
k |Snk (θi−1,j

k ))
.

(ii) Let

θi,jk =

 θ∗,jk with probability min(rk, 1)

θi−1,j
k with probability 1−min(rk, 1)

.

5. Let Lk be the length of each sequence after discarding a certain percentage, referred

to in the literature as Burn-In percentage (Geman and Geman (1984)). We note that

θi,jk = (θi,jk,l)l=1,2,··· ,p is a p-dimensional vector. We define the between and within

sequence averages in index k as the quantities

θ·,jk,l =
1

Lk

Lk∑
i=1

θi,jk,l and θ·,·k,l =
1

J

J∑
j=1

θ·,jk,l.

We also define the between and within sequence variances in index k as the quantities

Bk =
Lk
J − 1

J∑
j=1

(
θ·,jk,l − θ

·,·
k,l

)2

and Wk =
1

J

1

Lk − 1

J∑
j=1

Lk∑
i=1

(
θi,jk,l − θ

·,j
k,l

)2

.

308



Finally, letting θk,l represent the l-th component of θ in the k-th index, V ar(θk,l|Snk(θ))

can be approximated as weighted average between Bk and Wk as

V̂ ar(θk,l|Snk(θ)) =
1

J
Bk +

Lk − 1

Lk
Wk.

We then define the scale reduction coefficient in the k-th index as

R2
k :=

V̂ ar(θlk|Snk(θ))

Wk

=

(
1

J

Bk

Wk

+
Lk − 1

Lk

)
. (3.6)

6. We repeat the steps above until the quantity Rk defined in equation (3.6) approaches

1 for each parameter and for each index k.

Remark 5. We observe that the proposal distribution D can be chosen to have any form and

the Markov chain will converge eventually to the stationary distribution, see Gilk et al.

(1997), page 7. This choice is crucial when one is concerned with mixing, that is, how quickly

the chain moves around the support of the stationary distribution, and the convergence rate.

For our applications, we will be concerned only with obtaining reliable estimates.

Example 2: We consider again the model 3.4 in Example 1. In this case, K = 1, p = 3. Now,

we assume that θ = (α, λ1, λ2) ∼ N3((4, 1.886, 1.1),Σ), where Σ =


1 0 0

0 0.1 0.01

0 0.01 0.1

 . Let

θ+ = (1, 3, 1) and Σ+ =


1 0 0

0 1 0

0 0 1

 . We take J = 100 samples of length L = 10000 from

proposal distributions D = N3(θ+, Σ+) or D = Unif(A), where A is the cube [−4, 4]3. We 

apply steps (1)-(6) above until Rk ≈ 1 for each component of the estimated parameter vector. 

The table 2 below represents a comparison between asymptotic posterior mean calculated
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for n = 100 and εt ∼ N(0, 1) and MCMC estimate of the mean. The values are averaged

over the J samples. The Bias of the Bayesian estimator of a parameter is calculated as

the estimator minus the true value, whereas the bias and MSE of the MCMC estimator is

calculated from the equations below

Bias(θ̂) =
1

J

J∑
j=1

(
θ̂j − θ

)
, MSE(θ̂) =

1

J

J∑
j=1

(
θ̂j − θ

)2

.

Method Estimate, Bias, MSE α λ1 λ2

Asymptotic posterior
Estimate 3.9003 1.8803 1.1108

Bias 0.1083 0.0057 -0.0129

MSE 0.0117 3.25× 10−6 1.66× 10−4

MCMC
Estimate 4.0012 1.8839 1.1034

Bias 0.0012 -0.0020 -0.0065

MSE 0.0321 0.0020 0.0030

Table 2: Comparison between asymptotic posterior and MCMC estimates

We note that the Bias of the asymptotic posterior mean estimate is quite large compared 

to that of MCMC estimate. We know by remark 4 that for large values of n, the bayesian 

mean approaches the rank estimate which also approaches the true value, and therefore 

reducing the bias. In Figure 1 below, we show the effect of the proposal distributions on the 

paths and speed of convergence.
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Figure 1: MCMC paths for the estimation of λ1 and λ2, for respective sequence lengths 
L = 100, 1000, 10000. The blue lines represent the paths with proposal distributions 
D = Unif([−4, 4]2) and the red lines represent the paths with proposal distributions 
D = N2((1.886, 1.11), Σ+|(λ1,λ2)). The yellow dot is the starting point (1, 3) and the green 
dot is the true value (1.886, 1.11) of (λ1, λ2). The black and blue stars represents the end 
points of each path.

4. Discussion

In this paper, we have derived a Bayesian method to the generalized signed-rank estimates for 

nonlinear models with multidimensional indices. The method relies upon obtaining good 

estimates from the frequentist GSR method and it uses asymptotic normality results to con-

verge to the true value of the unknown the parameter. The most difficult part in applications 

is to check assumptions, particularly assumption A2. But when this task is accomplished, 

implementation is not very difficult. In fact, in this paper, we show that asymptotic posterior

means are as accurate as MCMC estimates. The main drawback of the MCMC method is 

that it is not computationally efficient. It is our belief that for real life applications, both 

estimation approaches can be used, that is, the MCMC can be used to verify the accuracy 

of the asymptotic posterior estimate. The overall goal of proposing a Bayesian extension to

nonlinear models with multidimensional indices is achieved, even if implementation can be
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Figure 2: The left panels show trace plots of each variables on Example 2. It is clear based
on the random pattern that there is good mixing in the chains. The right panels show an
estimate density for the distribution of each variable. A bell-shaped pattern shows that the
estimates are consistent with the hypotheses
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Figure 3: This plot was obtained for proposal distribution D ∼ Unif([−4, 4]3). It shows that
the correlation among the draws decreases as the number of draws increases which implies
a good mixing among the chains. If chains are run sufficiently long, the correlation will
decrease even more
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difficult. This model could be used in the context of generalized linear models, but it will be

restricted to symmetric errors, which can be a limiting factors in some applications. Possible

extensions of this method in actuarial science are feasible where severity and frequency of

claims are often estimated using generalized linear models. Since the link between claim

severity and policy characteristic is by nature nonlinear and depending on whether there

was an increase or decrease in claims, it our belief that by modeling the frequency with a

distribution of choice and the severity through segmentation of policies by drivers, age, gen-

der, credit scores etc, there is a possibility of using this model in that context by considering

severity categories as different dimensions. Such an endeavor is still under investigation
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