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Abstract

Fuzzy e-open set is introduced and studied in [8]. Using this concept as a basic tool,

in this paper we introduce α-e-almost compactness for crisp subsets of a topological

space by using the concept of α-shading initiated by Gantner et.al [12], a generalized

version of fuzzy covering. α-almost compactness is introduced in [13]. Here it is shown

that α-e-almost compactness implies α-almost compactness [13], but not conversely. To

achieve the converse here we introduce α-e-regular space. We characterize α-e-almost

compactness via ordinary net and power set filterbases.

AMS Subject Classifications: 54A40, 54D20.

Keywords: Fuzzy e-open set, α-e-almost compact set (space), α-e-regularity, αe-adherent 

point of net and filterbase, α-e-interiorly finite intersection property.

1. Introduction

After i ntroducing f uzzy cover and f uzzy compactness by Chang [ 10], many mathemati-cians 

have engaged themselves to introduce different types of compactness by using different types 

of fuzzy open-like sets. In 1978, Gantner et. al [12] introduced generalized version of fuzzy 

cover and named it α-shading where 0 < α < 1. Using this concept as a basic tool, they also 

introduced α-compactness of a crisp subset of a space X where the underlying structure on X is 

a fuzzy topology. Afterwards, α-almost compactness [13], α-S-closedness [3], α-s-closedness 

[5], α-δp-almost compactness [4], α-p-almost compactness [6], α-β-almost compactness [7], λ-α-

almost compactness [9] are introduced and studied.
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2. Preliminaries

In what follows, by (X, τ) or simply by X, we mean an fts in the sense of Chang [10]. A crisp

set A in an fts X means an ordinary subset of the set X where the underlying structure of the

set X being a fuzzy topology τ . A fuzzy set [15] A is a mapping from a nonempty set X into the

closed interval I = [0, 1] of the real line, i.e., A ∈ IX . For a fuzzy set A, the fuzzy closure [10] 

and fuzzy interior [10] of A in X are denoted by clA and intA respectively. The support [15] of

a fuzzy set A in X will be denoted by suppA and is defined by suppA = {x ∈ X : A(x) 6= 0}. A

fuzzy point [15] in X with the singleton support {x} ⊆ X and the value α (0 < α ≤ 1) at x will

be denoted by xα. For a fuzzy set A , the complement [15] of A in X will be denoted by 1X \A

and is defined by (1X \A)(x) = 1−A(x), for each x ∈ X. For any two fuzzy sets A and B in X,

we write A ≤ B if A(x) ≤ B(x), for each x ∈ X [15] while we write AqB if A is quasi-coincident

(q-coincident, for short) with B [14], i.e., if there exists x ∈ X such that A(x) + B(x) > 1; the

negation of these statements are written as A 6≤ B and A 6 qB respectively. A fuzzy set A is

called fuzzy regular open [1] if A = int(clA). A fuzzy set B is called a quasi-neighbourhood (q-

nbd, for short) [14] of a fuzzy point xt if there is a fuzzy open set U in X such that xtqU ≤ B. If,

in addition, B is fuzzy open (resp., fuzzy regular open), then B is called a fuzzy open [14]

(resp., fuzzy regular open [1]) q-nbd of xt. A fuzzy point xα is said to be a fuzzy δ-cluster point

of a fuzzy set A in an fts X if every fuzzy regular open q-nbd U of xα is q-coincident with A [11].

The union of all fuzzy δ-cluster points of A is called the fuzzy δ-closure of A and is denoted by

δclA [11]. A fuzzy set A in an fts X is fuzzy δ-closed iff A = δclA [11]. The complement of a

fuzzy δ-closed set is called fuzzy δ-open [11]. The union of all fuzzy δ-open sets contained in a

fuzzy set A in an fts X is called fuzzy δ-interior [11] of A, denoted by δintA. A fuzzy set A is

fuzzy δ-open iff A = δintA [11].

3. Fuzzy e-open set : Some Results

In this section we recall first the definition of fuzzy e-open set and some of its results from [8].

Definition 3.1[8]. A fuzzy set A in an fts X is said to be fuzzy e-open if A ≤

cl(δintA)
∨
int(δclA).

The complement of a fuzzy e-open set is called fuzzy e-closed.
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Definition 3.2[8]. The intersection of all fuzzy e-closed sets containing a fuzzy set A in

X is called fuzzy e-closure of A, to be denoted by eclA.

Result 3.3[8]. A fuzzy set A in X is fuzzy e-closed iff A = eclA.

Definition 3.4[8]. The union of all fuzzy e-open sets contained in a fuzzy set A in X is

called fuzzy e-interior of A, to be denoted by eintA.

Result 3.5[8]. A fuzzy set A is fuzzy e-open iff A = eintA.

Result 3.6[8]. (i) For any fuzzy set A in X, xt ∈ eclA⇔ UqA for any fuzzy e-open set

U in X with xtqU .

(ii) for any two fuzzy sets U, V in X where V is fuzzy e-open set, U 6 qV ⇒ eclU 6 qV .

Result 3.7. For a fuzzy set A in an fts (X, τ), ecl(eclA) = eclA.

Proof. It is clear that eclA ≤ ecl(eclA).

Conversely, let xα ∈ ecl(eclA). Then for every fuzzy e-open set U of X with xαqU , UqeclA.

We have to show that UqA. If possible, let U 6 qA. Then A ≤ 1X \ U ⇒ eclA ≤

ecl(1X \ U) = 1X \ U ⇒ U 6 qeclA, a contradiction. Consequently, ecl(eclA) ≤ eclA and

hence ecl(eclA) = eclA, for any fuzzy set A in X.

Result 3.8. For a fuzzy e-open set U in X, ecl(eint(eclU)) = eclU .

Proof. Let U be fuzzy e-open in X. Then clearly U ≤ ecl(eint(eclU)) ⇒ eclU ≤

ecl(ecl(eint(eclU))) = ecl(eint(eclU)) (by Result 3.7).

Again, ecl(eint(eclU)) ≤ ecl(eclU) = eclU (by Result 3.7). Hence ecl(eint(eclU)) = eclU ,

for any fuzzy e-open set U in X.

Result 3.9. For any two fuzzy sets A, B in an fts X, ecl(A
∨
B) = eclA

∨
eclB.

Proof. It is clear that eclA
∨
eclB ≤ ecl(A

∨
B).

Conversely, let xα ∈ ecl(A
∨
B). Then for any fuzzy e-open set U in X with xαqU ,

Uq(A
∨
B)⇒ there exists y ∈ X such that U(y)+(A

∨
B)(y) > 1⇒ U(y)+max{A(y), B(y)} >

1 ⇒ either UqA or UqB ⇒ either xα ∈ eclA or xα ∈ eclB ⇒ xα ∈ eclA
∨
eclB. Hence the

proof.

Remark 3.10. The union (intersection) of any collection of fuzzy e-open (resp., fuzzy

e-closed) sets in an fts X is fuzzy e-open (resp., fuzzy e-closed) in X.

Remark 3.11. It is clear from Remark 3.10 that ecl(
n∨
i=1

Ai) =
n∨
i=1

eclAi for fuzzy e-open

sets A1, A2, ..., An in X.
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4. α-e-Almost Compactness : Some Characterizations

The concept of α-shading given by Gantner et al. [12] when applied to arbitrary crisp subsets 

of X we get the following definition.

Definition 4.1. Let X be an fts and A, a crisp subset of X. A collection U of fuzzy 

sets in X is called an α-shading (where 0 < α < 1) of A if for each x ∈ A, there is some 

Ux ∈ U such that Ux(x) > α [12]. If, in addition, the members of U are fuzzy open (resp., 

fuzzy e-open) sets, then U is called a fuzzy open [12] (resp., fuzzy e-open) α-shading of A.

Definition 4.2. Let X be an fts and A, a crisp subset of X. A is said to be α-compact 

[12] (resp. α-almost compact [13]) if each fuzzy open α-shading (0 < α < 1) U of A, there is 

a finite (resp. finite proximate) α-subshading of A, i.e., there is a finite subcollection U0 of 

U such that {U : U ∈ U0} (resp., {clU : U ∈ U0}) is again an α-shading of A. If A = X in 

addition, then X is called an α-compact [12] (resp., α-almost compact [13]) space.

Now we set the following definition.

Definition 4.3. Let X be an fts and A, a crisp subset of X. A is said to be α-e-almost 

compact if each fuzzy e-open α-shading U of A has a finite e-proximate α-subshading, i.e., 

there exists a finite subcollection U0 of U such that {eclU : U ∈ U0} is again an α-shading 

of A. If, in particular A = X, we get the definition of α-e-almost compact space X.

It then follows that

Theorem 4.4. (a) Every finite subset of an fts X is α-e-almost compact.

(b) If A1 and A2 are α-e-almost compact subsets of an fts X, then so is A1
∨
A2.

(c) X is α-e-almost compact if X can be written as the union of finite number of α-e-almost

compact sets in X.

Again as eclA ≤ clA, for any fuzzy set A in an fts X, it is clear from literature that α-

e-almost compactness implies α-almost compactness, but not conversely. To achieve the

converse we need to define some sort of regularity condition in our setting. The following

definition serves our purpose.

Definition 4.5. An fts X is said to be α-e-regular, if for each point x ∈ X and each fuzzy

e-open set Ux in X with Ux(x) > α, there exists a fuzzy open set Vx in X with Vx(x) > α

such that clVx ≤ Ux.

Two other equivalent ways of defining α-e-regularity are given by the following theorem.

Theorem 4.6. For an fts X, the following are equivalent :

(a) X is α-e-regular.
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(b) For each point x ∈ X and each fuzzy e-closed set F with F (x) < 1− α, there is a fuzzy

open set U such that (clU)(x) < 1− α and F ≤ U .

(c) For each crisp point x ∈ X and each fuzzy e-closed set F with F (x) < 1− α, there exist

fuzzy open sets U and V in X such that V (x) > α, F ≤ U and U 6 qV .

Proof. (a) ⇒ (b) : Let x ∈ X and F be a fuzzy e-closed set with F (x) < 1 − α. Put

V = 1X \F . Then V (x) > α where V is fuzzy e-open in X. By (a), there exists a fuzzy open

set W in X with W (x) > α and clW ≤ V = 1X \F . Then F ≤ 1X \ clW = int(1X \W ) = U

(say). Then U is fuzzy open in X. Also, clU = cl(int(1X \ W )) = cl(1X \ clW ) =

1X \ int(clW ) ≤ 1X \W . Thus (clU)(x) ≤ (1X \W )(x) < 1− α.

(b)⇒(a) : Let x ∈ X and U be fuzzy e-open set in X with U(x) > α. Let F = 1X \ U .

Then F is fuzzy e-closed set in X with F (x) < 1 − α. By (b), there is a fuzzy open set

V in X such that (clV )(x) < 1 − α and F ≤ V . So (1X \ clV )(x) > α, i.e., W (x) > α

where W = 1X \ clV = int(1X \ V ) is a fuzzy open set in X. Now clW = cl(1X \ clV ) =

1X \ int(clV ) ≤ 1X \ V ≤ 1X \ F = U . Hence (a) follows.

(b)⇒(c) : Let x ∈ X and F , a fuzzy e-closed set in X with F (x) < 1 − α. By (b),

there exists a fuzzy open set U in X such that (clU)(x) < 1 − α and F ≤ U . Then

x1−α 6∈ clU . Consequently, there is a fuzzy open set V in X such that x1−αqV and V 6 qU ,

i.e., V (x) + 1− α > 1⇒ V (x) > α.

(c)⇒(b) : Let x ∈ X, and F , a fuzzy e-closed set in X with F (x) < 1 − α. By (c),

there exist fuzzy open sets U and V in X such that V (x) > α,F ≤ U and U 6 qV . Now

V (x) > α⇒ x1−αqV . Then as U 6 qV , clU 6 qV ⇒ (clU)(x) ≤ 1− V (x) < 1− α.

Theorem 4.7. In an α-e-regular fts X, the α-almost compactness of a crisp subset A of

X implies its α-e-almost compactness.

Proof. Let U be a fuzzy e-open α-shading of an α-almost compact set A in an α-e-regular

fts X. Then for each a ∈ A, there exists Ua ∈ U such that Ua(a) > α. By hypothesis, there

is a fuzzy open set Va in X with Va(a) > α such that clVa ≤ Ua ... (1).

Let V = {Va : a ∈ A}. Then V is a fuzzy open α-shading of A. By α-almost compactness

of A, there is a finite subset A0 of A such that V0 = {clVa : a ∈ A0} is an α-shading of A.

Using (1), U0 = {Ua : a ∈ A0} and hence {clUa : a ∈ A0} is then a finite α-subshading of U .

Hence A is α-e-almost compact space.

Theorem 4.8. A crisp subset A of an fts X is α-e-almost compact if and only if every

family of fuzzy e-open sets, the e-interiors of whose e-closures form an α-shading of A, con-

tains a finite subfamily, the e-closures of whose members form an α-shading of A.
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Proof. It is sufficient to prove that for a fuzzy e-open set U , U ≤ eint(eclU) ≤

ecl(eint(eclU))=eclU (By Result 3.8).

Theorem 4.9. A crisp subset A of an fts X is α-e-almost compact if and only if for

every collection {Fi : i ∈ Λ} of fuzzy e-open sets with the property that for each finite subset

Λ0 of Λ, there is x ∈ A such that inf
i∈Λ0

Fi(x) ≥ 1−α, one has inf
i∈Λ

(eclFi)(y) ≥ 1−α, for some

y ∈ A.

Proof. Let A be α-e-almost compact. If possible, let for a collection {Fi : i ∈ Λ} of fuzzy

e-open sets in X with the property that for each finite subset Λ0 of Λ, there is x ∈ A such

that inf
i∈Λ0

Fi(x) ≥ 1−α, but inf
i∈Λ

(eclFi)(x) < 1−α, for all x ∈ A. Then α < (1X \
⋂
i∈Λ

eclFi)(x)

= [
⋃
i∈Λ

(1X \ eclFi)](x), for each x ∈ A which shows that {1X \ eclFi : i ∈ Λ} is a fuzzy e-open

α-shading of A. By assumption, there is a finite subset Λ0 of Λ such that {ecl(1X \eclFi) : i ∈

Λ0} = {1X \ eint(eclFi) : i ∈ Λ0} is an α-shading of A. Hence α < [
⋃
i∈Λ0

(1X \ eint(eclFi))](x)

= [1X\(
⋂
i∈Λ0

eint(eclFi))](x), for each x ∈ A. Then (
⋂
i∈Λ0

Fi)(x) ≤ [
⋂
i∈Λ0

eint(eclFi)](x) < 1−α,

for each x ∈ A, which contradicts our assumption.

Conversely, let under the given hypothesis, A be not α-e-almost compact. Then there exists

a fuzzy e-open α-shading U = {Ui : i ∈ Λ} of A having no finite e-proximate α-subshading,

i.e., for every finite subset Λ0 of Λ, {eclUi : i ∈ Λ0} is not an α-shading of A, i.e., there exists

x ∈ A such that sup
i∈Λ0

(eclUi)(x) ≤ α, i.e., 1X \ sup
i∈Λ0

(eclUi)(x) = inf
i∈Λ0

(1X \ eclUi)(x) ≥ 1 − α.

Hence {1X \ eclUi : i ∈ Λ} is a family of fuzzy e-open sets with the stated property. Con-

sequently, there is some y ∈ A such that inf
i∈Λ

[ecl(1X \ eclUi)](y) ≥ 1 − α. Then sup
i∈Λ

Ui(y) ≤

sup
i∈Λ

(eint(eclUi))(y) = 1 − inf
i∈Λ

(1X \ eint(eclUi))(y) = 1 − inf
i∈Λ

[ecl(1X \ eclUi)]((y) ≤ α. This

shows that {Ui : i ∈ Λ} fails to be an α-shading of A, a contradiction.

Definition 4.10. A family {Fi : i ∈ Λ} of fuzzy sets in an fts X is said to have α-e-

interiorly finite intersection property (α-e-IFIP, for short) in a subset A of X, if for each

finite subset Λ0 of Λ, there exists x ∈ A such that [
⋂
i∈Λ0

eintFi](x) ≥ 1− α.

Theorem 4.11. A crisp subset A of an fts X is α-e-almost compact if and only if for

every family F = {Fi : i ∈ Λ} of fuzzy e-closed sets in X with α-e-IFIP in A, there exists

x ∈ A such that inf
i∈Λ

Fi(x) ≥ 1− α.

Proof. Let F = {Fi : i ∈ Λ} be a family of fuzzy e-closed sets in X with α-e-IFIP in A

where A is α-e-almost compact subset of X. If possible, let for each x ∈ A, inf
i∈Λ
Fi(x) < 1−α,

i.e., (
⋂
i∈Λ

Fi)(x) < 1− α and hence [
⋃
i∈Λ

(1X \ Fi)](x) > α. Therefore U = {1X \ Fi : i ∈ Λ} is

a fuzzy e-open α-shading of A. By hypothesis, there exists a finite subfamily Λ0 of Λ such
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that [
⋃
i∈Λ0

ecl(1X \ Fi)](x) > α, i.e., 1− (
⋂
i∈Λ0

eintFi)(x) > α, i.e., (
⋂
i∈Λ0

eintFi)(x) < 1− α, for

each x ∈ A, which shows that F does not have α-e-IFIP in A, a contradiction.

Conversely, let U = {Ui : i ∈ Λ} be a fuzzy e-open α-shading of A. Then F = {1X \ Ui : i ∈

Λ} is a family of fuzzy e-closed sets in X with inf
i∈Λ

(1X \ Ui)(x) < 1 − α, for each x ∈ A, so

that F does not have α-e-IFIP in A. Then there exists some finite subset Λ0 of Λ such that

for each x ∈ A, [
⋂
i∈Λ0

eint(1X \ Ui)](x) < 1− α ⇒ 1− (
⋃
i∈Λ0

eclUi)(x) < 1− α, for each x ∈ A

⇒ (
⋃
i∈Λ0

eclUi)(x) > α, for each x ∈ A ⇒ A is α-e-almost compact space.

5. More Characterizations of α-e-Almost Compactness

Via Ordinary Nets and Filterbases

In this section we characterize α-e-almost compactness of a crisp subset A of an fts X via

αe-adherent points of ordinary nets and power-set filterbases.

Let us now introduce the following definition :

Definition 5.1. Let {Sn : n ∈ (D,≥)} (where (D,≥) is a directed set) be an ordinary

net in A and F be a power-set filterbase on A, and x ∈ X be any crisp point in X. Then x

is called an αe-adherent point of

(a) the net {Sn} if for each fuzzy e-open set U in X with U(x) > α and for each m ∈ D,

there exists k ∈ D such that k ≥ m in D and (eclU)(Sk) > α,

(b) the filterbase F if for each fuzzy e-open set U with U(x) > α and for each F ∈ F , there

exists a crisp point xF in F such that (eclU)(xF ) > α.

Theorem 5.2. A crisp subset A of an fts X is α-e-almost compact if and only if every

net in A has an αe-adherent point in A.

Proof. Let a crisp subset A of an fts X be α-e-almost compact. If possible, let there be

a net {Sn : n ∈ (D,≥)} in A ((D,≥) being a directed set, as usual) having no αe-adherent

point in A. Then for each x ∈ A, there is a fuzzy e-open set Ux in X with Ux(x) > α and an

mx ∈ D such that (eclUx)(Sn) ≤ α, for all n ≥ mx (n ∈ D). Now, U ={1X \ eclUx : x ∈ A}

is a collection of fuzzy e-open sets in X such that for any finite subcollection {1X \ eclUxi :

i = 1, 2, ..., k} (say) of U , there exists m ∈ D with m ≥ mxi , i = 1, 2, ..., k in D such

that (
k⋃
i=1

eclUxi)(Sn) ≤ α, for all n ≥ m (n ∈ D), i.e., inf
1≤i≤k

(1X \ eclUxi)(Sn) ≥ 1 − α,

for all n ≥ m. Hence by Theorem 4.9, there exists some y ∈ A such that inf
x∈A

[ecl(1X \

eclUx)(y)] ≥ 1 − α, i.e.,(
⋃
x∈A

Ux)(y) ≤ [
⋃
x∈A

eint(eclUx)](y) = 1 − [1 − (
⋃
x∈A

eint(eclUx))(y)] =
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1− inf
x∈A

[ecl(1− eclUx)](y) ≤ 1− 1 +α = α. We have, in particular, Uy(y) ≤ α, contradicting

the definition of Uy. Hence the result is proved.

Conversely, suppose that every net in A has an αe-adherent point in A. Let {Fi : i ∈ Λ} be

an arbitrary collection of fuzzy e-open sets in X. Let Λf denote the collection of all finite

subsets of Λ, then (Λf ,≥) is a directed set, where for µ, λ ∈ Λf , µ ≥ λ iff µ ⊇ λ. For each

µ ∈ Λf , put Fµ =
⋂{Fi : i ∈ µ}. Let for each µ ∈ Λf , there be a point xµ ∈ A such that

inf
i∈µ
Fi(xµ) ≥ 1− α....(1) .

Then by Theorem 4.9 it is enough to show that inf
i∈Λ

(eclFi)(z) ≥ 1 − α for some z ∈ A. If

possible, let inf
i∈Λ

(eclFi)(z) < 1− α, for each z ∈ A ....(2).

Now, S= {xµ : µ ∈ (Λf ,≥)} is clearly a net of points in A. By hypothesis, there is an

αe-adherent point z in A of this net. By (2), inf
i∈Λ

(eclFi)(z) < 1 − α ⇒ there exists i0 ∈ Λ

such that (eclFi0)(z) < 1 − α, i.e., 1 − eclFi0(z) > α. Since z is an αe-adherent point

of S, for the index {i0} ∈ Λf , there is µ0 ∈ Λf with µ0 ≥ {i0} (i.e., i0 ∈ µ0) such that

ecl(1X \ eclFi0)(xµ0) > α, i.e., (eint(eclFi0))(xµ0) < 1 − α. Since i0 ∈ µ0, inf
i∈µ0

Fi(xµ0) ≤

Fi0(xµ0) ≤ (eint(eclFi0))(xµ0) < 1− α, which contradicts (1). This completes the proof.

Theorem 5.3. A crisp subset A of an fts X is α-e-almost compact if and only if every

filterbase F on A has an αe-adherent point in A.

Proof. Let A be α-e-almost compact and if possible, let there be a filterbase F on A

having no αe-adherent point in A. Then for each x ∈ A, there exist a fuzzy e-open set

Ux with Ux(x) > α, and an Fx ∈ F such that (eclUx)(y) ≤ α, for each y ∈ Fx. Then U

= {Ux : x ∈ A} is a fuzzy e-open α-shading of A. Thus there exist finitely many points

x1,x2,..., xn in A such that U0 = {eclUxi : i = 1, 2, ..., n} is also an α-shading of A. Now let

F ∈ F be such that F ≤
n⋂
i=1

Fxi . Then (eclUxi)(y) ≤ α, for all y ∈ F and for i = 1, 2, ..., n.

Thus U0 fails to be an α-shading of A, a contradiction.

Conversely, let the condition hold and suppose, if possible, {yn : n ∈ (D,≥)} be a net in

A having no αe-adherent point in A. Then for each x ∈ A, there are a fuzzy e-open set Ux

with Ux(x) > α and an mx ∈ D such that (eclUx)(yn) ≤ α, for all n ≥ mx (n ∈ D). Thus

B = {Fx : x ∈ A}, where Fx = {yn : n ≥ mx} is a subbase for a filterbase F on A, where

F consists of all finite intersections of members of B. By hypothesis, F has an αe-adherent

point z (say) in A. But there are a fuzzy e-open set Uz with Uz(z) > α and an mz ∈ D such

that (eclUz)(yn) ≤ α, for all n ≥ mz, i.e., for all p ∈ Fz ∈ B (⊆ F), (eclUz)(p) ≤ α which

implies that z cannot be an αe-adherent point of the filterbase F , a contradiction. Hence by

Theorem 5.2, A is α-e-almost compact.
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Putting A = X in the characterization theorems so far, of α-e-almost compact crisp

subset A, we obtain as follows :

Theorem 5.4. For an fts (X, τ), the following are equivalent :

(a) X is α-e-almost compact.

(b) For every family U = {Ui : i ∈ Λ} of fuzzy e-open sets inX such that {eint(eclUi) : i ∈ Λ}

is an α-shading of X, there exists a finite subset Λ0 of Λ such that {eclUi : i ∈ Λ0} is an

α-shading of X.

(c) For every collection {Fi : i ∈ Λ} of fuzzy e-open sets in X with the property that for each

finite subset Λ0 of Λ, there is x ∈ X such that inf
i∈Λ0

Fi(x) ≥ 1−α, one has inf
i∈Λ

(eclFi)(y) ≥ 1−α,

for some y ∈ X.

(d) For every family {Fi : i ∈ Λ} of fuzzy e-closed sets in X with α-e-IFIP in X, there exists

x ∈ X such that inf
i∈Λ
Fi(x) ≥ 1− α.

(e) Every net in X has an αe-adherent point in X.

(f) Every filterbase on X has an αe-adherent point in X.
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