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Abstract

In this paper a new type of fuzzy multifunction is introduced between a set having 

minimal structure and a fuzzy topological space by introducing m-γ-open set in m-space. 

Several characterizations and properties of this fuzzy multifunction are studied here. 

Also the mutual relationships of this newly defined fuzzy multifunction with the fuzzy 

multifunctions defined in [8] are established here.

AMS Subject Classifications: 54A40, 54C99.

Keywords: m-γ-open set, m-γ-compact space, m-γ-frontier of a set, fuzzy compact 
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1. Introduction

Fuzzy multifunction, a function between a topological space and a fuzzy topological space, is 

introduced by Papageorgiou [18]. He also defined fuzzy upper and lower inverses in [18] 

though fuzzy lower inverse was redefined by Mukherjee and Malakar [14] suitably. Through-

out this paper the definition of fuzzy upper inverse given by Papageorgiou and the defi-

nition of fuzzy lower inverse given by Mukherjee and Malakar are used. Noiri and Popa 

[17] introduced minimal structure (m-structure, for short) on a non-empty set X whereas
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fuzzy minimal structure was introduced by Alimohammady and Roohi [1] . In [8], Bhat-

tacharyya introduced fuzzy upper (lower) M -continuous multifunctions between a set having 

m-structure and a set having fuzzy minimal structure. In this paper we introduce a fuzzy 

multifunction between a set having m-structure and a fuzzy topological space.

2 Preliminaries

Let Y be a non-empty set and I = [0, 1]. Then a fuzzy set [23] A in Y is a mapping from 

Y into I. The set of all fuzzy sets in Y is denoted by IY . For a fuzzy set A in Y , the 

support of A, denoted by suppA [23] and is defined by suppA = {y ∈ Y : A(y) 6= 0}. A 

fuzzy point [21] with the singleton support y ∈ Y and the value t (0 < t ≤ 1) at y will be 

denoted by yt. 0Y and 1Y are the constant fuzzy sets taking respectively the constant values 

0 and 1 on Y . The complement of a fuzzy set A in Y will be denoted by 1Y \ A [23] and is 

defined by (1Y \ A)(y) = 1 − A(y), for all y ∈ Y . For two fuzzy sets A and B in Y , we write 

A ≤ B iff A(y) ≤ B(y), for each y ∈ Y , while we write AqB to mean A is quasi-coincident 

(q-coincident, for short) with B [21] if there exists y ∈ Y such that A(y) + B(y) > 1; the 

negation of AqB is written as A 6 qB. clA and intA of a set A in X (respectively, a fuzzy 

set A [23] in Y ) respectively stand for the closure and interior of A in X (respectively, fuzzy 

closure and fuzzy interior of A in Y ). A fuzzy set A in Y is called fuzzy regular open [3]

(resp., fuzzy semiopen [3], fuzzy β-open [4], fuzzy α-open [10], fuzzy preopen [16], fuzzy 

γ-open [9]) if intclA = A (resp., A ≤ clintA, A ≤ clintclA, A ≤ intclintA, A ≤ intclA,

A ≤ (cl(intA))
∨

(int(clA))). The complement of a fuzzy semiopen (resp., fuzzy β-open,

fuzzy α-open, fuzzy preopen, fuzzy γ-open) set is called fuzzy semiclosed [3] (resp., fuzzy

β-closed [4], fuzzy α-closed [10], fuzzy preclosed [16], fuzzy γ-closed [9]). The intersection of

all fuzzy semiclosed (resp., fuzzy β-closed, fuzzy α-closed, fuzzy preclosed, fuzzy γ-closed)

sets containing a fuzzy set A in Y is called fuzzy semiclosure [3] (resp., fuzzy β-closure [4],

fuzzy α-closure [10], fuzzy preclosure [16], fuzzy γ-closure [9]) of A and is denoted by sclA

(resp., βclA, αclA, pclA, γclA). A fuzzy set A in Y is called a fuzzy neighbourhood (nbd, for

short) [21] of a fuzzy set B in Y if there is a fuzzy open set U in Y such that B ≤ U ≤ A. A

fuzzy set B is called a quasi neighbourhood (q-nbd, for short) [21] of a fuzzy set A if there is a

fuzzy open set U in Y such that AqU ≤ B. If, in addition, B is fuzzy regular open, then B is

called a fuzzy regular open q-nbd of A. A fuzzy point xα is said to be a fuzzy δ-cluster point

of a fuzzy set A in an fts Y if every fuzzy regular open q-nbd U of xα is q-coincident with
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A [12]. The union of all fuzzy δ-cluster points of a fuzzy set A is called the fuzzy δ-closure

of A and is denoted by δclA [12]. A fuzzy set A in an fts Y is called fuzzy δ-preopen [5] if

A ≤ int(δclA). The complement of a fuzzy δ-preopen set is called fuzzy δ-preclosed [5]. The

intersection of all fuzzy δ-preclosed sets containing a fuzzy set A in an fts Y is called fuzzy

δ-preclosure of A and is denoted by δpclA [5]. A subset A of an ordinary topological space

X is called γ-open [9] (formerly known as b-open [2]) if A ⊆ (cl(intA))
⋃

(int(clA)).

3. Some Well Known Definitions, Lemmas and Theorems
In this section, we first recall some definitions, lemmas and theorems for ready references.

Definition 3.1 [19, 20]. A subfamily m of the power set P(X) of a non empty set X is 

called a minimal structure (m-structure, for short) on X if ∅ ∈ m and X ∈ m. (X, m) is called 

an m-space. The members of m are called m-open and the complement of an m-open set is 

called m-closed.

Definition 3.2 [13]. Let (X, m) be an m-space. For a subset A of X, the m-closure and m-

interior of A are defined as follows :

mClA =
⋂
{F : F ⊇ A,X \ F ∈ m}

mIntA =
⋃
{U : U ⊆ A,U ∈ m}

. Remark 3.3. From Definition 3.1 and Definition 3.2, it is to be noted that mIntA (resp.,

mClA) may not be m-open (resp., m-closed) in an m-space (X,m). But if we assume that

m is closed under arbitrary union (this condition is known as Maki condition [13]), then

immediately, we have that mIntA is an element of m and hence A ⊆ X is m-open if and

only if mIntA = A and m-closed if and only if mClA = A.

Lemma 3.4 [13]. Let (X,m) be an m-space. For two subsets A,B of X, the following

properties hold :

(i) mCl(X \ A) = X \mIntA, mInt(X \ A) = X \mClA,

(ii) If X \ A ∈ m, then mClA = A and if A ∈ m, then mIntA = A,
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(iii) mCl(∅) = ∅, mInt(∅) = ∅, mCl(X) = X, mInt(X) = X,

(iv) If A ⊂ B, then mCl(A) ⊂ mCl(B) and mInt(A) ⊂ mInt(B),

(v) A ⊂ mCl(A) and mInt(A) ⊂ A

(vi) mCl(mClA) = mClA and mInt(mIntA) = mIntA.

Lemma 3.5 [19]. Let (X,m) be an m-space and A, a subset of X. Then x ∈ mClA if

and only if U
⋂
A 6= ∅ for every U ∈ m containing x.

Definition 3.6 [22]. Let (X,m) be an m-space. A subset A of X is said to be

(i) m-regular if A = mInt(mClA),

(ii) m-semiopen if A ⊆ mCl(mIntA),

(iii) m-α-open if A ⊆ mInt(mCl(mIntA)),

(iv) m-preopen if A ⊆ mInt(mClA).

The complement of the above mentioned sets are called their respective closed sets.

Definition 3.7 [22]. Let (X,m) be an m-space and A ⊆ X. The m-δ-closure and the

m-δ-interior of the set A, are defined, respectively as :

mδclA = {x ∈ X : A
⋂
mInt(mClU) 6= φ, for all U ∈ m,x ∈ U}

mδintA =
⋃
{W : W ⊆ A,W is m− regular open set in X}

.

Definition 3.8 [22]. A subset A of an m-space (X,m) is called

(i) m-δ-open if A = mδintA,

(ii) m-δ-preopen if A ⊆ mInt(mδclA).

The complement of the above mentioned sets are called their respective closed sets.

Definition 3.9 [22]. An m-space (X,m) is said to be m-extremally disconnected if the

m-closure of all m-open sets of X is m-open.

Definition 3.10 [11]. Let A be a fuzzy set in an fts Y . A collection U of fuzzy sets in

Y is called a fuzzy cover of A if sup{U(x) : U ∈ U} = 1 for each x ∈ suppA. If, in addition,

the members of U are fuzzy open, then U is called a fuzzy open cover of A. In particular, if
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A = 1Y , we get the definition of fuzzy cover (resp., fuzzy open cover) of the fts Y .

Definition 3.11 [11]. A fuzzy cover U of a fuzzy set A in an fts Y is said to have a finite

subcover U0 if U0 is a finite subcollection of U such that
⋃U0 ≥ A. Clearly, if A = 1Y , in

particular, then the requirements on U0 is
⋃U0 = 1Y .

Definition 3.12 [11]. An fts Y is said to be fuzzy compact if every fuzzy open cover of

Y has a finite subcover.

Definition 3.13 [18]. Let (X, τ) and (Y, τY ) be respectively an ordinary topological

space and an fts. We say that F : X → Y is a fuzzy multifunction if corresponding to each

x ∈ X, F (x) is a unique fuzzy set in Y .

Henceforth by F : X → Y we shall mean a fuzzy multifunction in the above sense.

Definition 3.14 [18, 14]. For a fuzzy multifunction F : X → Y , the upper inverse F+

and lower inverse F− are defined as follows :

For any fuzzy set A in Y , F+(A) = {x ∈ X : F (x) ≤ A} and F−(A) = {x ∈ X : F (x)qA}.

There is a following relationship between the upper and the lower inverses of a fuzzy

multifunction.

Theorem 3.15 [14]. For a fuzzy multifunction F : X → Y , we have F−(1Y \ A) =

X \ F+(A), for any fuzzy set A in Y .

Definition 3.16 [9]. A fuzzy multifunction F : X → Y is called fuzzy

(i) upper γ-continuous at a point x ∈ X if for each fuzzy open set V in Y with F (x) ≤ V ,

there exists a γ-open set U in X containing x such that F (U) ≤ V ,

(ii) lower γ-continuous at a point x ∈ X if for each fuzzy open set V in Y with F (x)qV ,

there exists a γ-open set U in X containing x such that F (u)qV , for all u ∈ U ,

(iii) upper (lower) γ-continuous if F has this property at each point of X.

Definition 3.17 [8]. A fuzzy multifunction F : (X,m)→ (Y, τY ) is said to be fuzzy

(i) upper m-continuous (resp., upper m-quasi continuous, upper m-precontinuous, upper
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m-δ-precontinuous, upper m-α-continuous) if for each x ∈ X and each fuzzy open set V of

Y with F (x) ≤ V , there exists an m-open (resp., m-semiopen, m-preopen, m-δ-preopen,

m-α-open) set U of X containing x such that F (U) ≤ V ,

(ii) lower m-continuous (resp., lower m-quasi continuous, lower m-precontinuous, lower m-δ-

precontinuous, lower m-α-continuous) if for each x ∈ X and each fuzzy open set V of Y with

F (x)qV , there exists an m-open (resp., m-semiopen, m-preopen, m-δ-preopen, m-α-open)

set U of X containing x such that F (u)qV , for all u ∈ U .

Definition 3.18 [8]. A fuzzy multifunction F : (X,m)→ (Y, τY ) is said to be fuzzy

(i) upper m-irresolute (resp., upper m-preirresolute, upper m-δ-preirresolute, upper m-α-

irresolute) if for each x ∈ X and each fuzzy semiopen (resp., fuzzy preopen, fuzzy δ-preopen,

fuzzy α-open) set V of Y with F (x) ≤ V , there exists an m-semiopen (resp., m-preopen,

m-δ-preopen, m-α-open) set U of X containing x such that F (U) ≤ V ,

(ii) lower m-irresolute (resp., lower m-preirresolute, lower m-δ-preirresolute, lower m-α-

irresolute) if for each x ∈ X and each fuzzy semiopen (resp., fuzzy preopen, fuzzy δ-preopen,

fuzzy α-open) set V of Y with F (x)qV , there exists an m-semiopen (resp., m-preopen, m-δ-

preopen, m-α-open) set U of X containing x such that F (u)qV , for all u ∈ U .

Theorem 3.19 [8]. A fuzzy multifunction F : (X,m)→ (Y, τY ) is said to be fuzzy

(i) upper m-continuous (resp., upper m-quasi continuous, upper m-precontinuous, upper

m-δ-precontinuous, upper m-α-continuous) iff F+(G) is m-open (resp., m-semiopen, m-

preopen, m-δ-preopen, m-α-open) set in X for every fuzzy open set G of Y .

Theorem 3.20 [8]. A fuzzy multifunction F : (X,m)→ (Y, τY ) is said to be fuzzy

(i) lower m-continuous (resp., lower m-quasi continuous, lower m-precontinuous, lower m-δ-

precontinuous, lower m-α-continuous) iff F−(G) is m-open (resp., m-semiopen, m-preopen,

m-δ-preopen, m-α-open) set in X for every fuzzy open set G of Y .

Theorem 3.21 [8]. A fuzzy multifunction F : (X,m)→ (Y, τY ) is said to be fuzzy

(i) upper m-irresolute (resp., upper m-preirresolute, upper m-δ-preirresolute, upper m-α-

irresolute) iff F+(G) is m-semiopen (resp., m-preopen, m-δ-preopen, m-α-open) set in X for

every fuzzy semiopen (resp., fuzzy preopen, fuzzy δ-preopen, fuzzy α-open) set G of Y .
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Theorem 3.22 [8]. A fuzzy multifunction F : (X, m) → (Y, τY ) is said to be fuzzy

(i) lower m-irresolute (resp., lower m-preirresolute, lower m-δ-preirresolute, lower m-α-

irresolute) iff F −(G) is m-semiopen (resp., m-preopen, m-δ-preopen, m-α-open) set in X 

for every fuzzy semiopen (resp., fuzzy preopen, fuzzy δ-preopen, fuzzy α-open) set G of Y .

4. Fuzzy Upper (Lower) m-γ-Continuous Multifunction:

Characterizations

In this section we first define m-γ-open set in an m-space. Afterwards, fuzzy upper and

fuzzy lower m-γ-continuous multifunctions are introduced and studied.

Definition 4.1. A subset A in an m-space (X,m) is said to be m-γ-open if A ⊆

(mCl(mIntA))
⋃

(mInt(mClA)).

The complement of an m-γ-open set in an m-space is called m-γ-closed. The union (in-

tersection) of all m-γ-open (resp., m-γ-closed) sets contained in (resp., containing) a subset

A in an m-space (X,m) is called m-γ-interior (m-γ-closure) of A, denoted by mγintA (resp.,

mγclA). mγintA (resp., mγclA) is not m-γ-open (resp., m-γ-closed), in general, but if m

satisfies Maki condition, then mγintA = A (resp., mγclA = A) if A is m-γ-open (resp.,

m-γ-closed).

The collection of all m-γ-open (resp., m-γ-closed) sets in an m-space (X,m) is denoted

by mγO(X) (resp., mγC(X)).

If we put m = τ , we get the definition of γ-open set [9].

Definition 4.2. A subset A of an m-space (X,m) is called an m-γ-nbd of a point x ∈ X

if there exists an m-γ-open set U in X such that x ∈ U ⊆ A.

Result 4.3. Let (X,m) be an m-space and A ⊆ X. Then x ∈ mγclA iff U
⋂
A 6= φ for

every m-γ-open set U containing x.

Proof. Let x ∈ mγclA and U be any m-γ-open set of X containing x. If possible, let

U
⋂
A = φ. Then A ⊆ X \ U where X \ U is m-γ-closed set of X and x 6∈ X \ U and so by

definition, x 6∈ mγclA, a contradiction.

Conversely, let U
⋂
A 6= φ, for every m-γ-open set U containing x. Let V be an m-γ-
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closed set of X containing A. We have to show that x ∈ V . If possible, let x /∈ V . Then

x ∈ X \ V which is m-γ-open set of X. By assumption, (X \ V )
⋂
A 6= φ ⇒ A 6⊆ V , a

contradiction.

Remark 4.4. It is clear from definition that m-open, m-semiopen, m-preopen, m-α-open

sets are m-γ-open, but not conversely follow from next examples. Also m-γ-open set and

m-δ-preopen set are independent concepts follow from next examples.

Example 4.5. m-γ-open set 6⇒ m-open, m-semiopen, m-α-open set

Let X = {a, b, c}, m = {φ,X}. Then (X,m) is an m-space. Now {a} is clearly m-γ-open

in X, but {a} /∈ m ⇒ {a} is not m-open in X. Again, mCl(mInt({a})) = φ ⇒ {a} is not

m-semiopen. Also, mInt(mCl(mInt({a}))) = φ⇒ {a} is not m-α-open in X.

Example 4.6. m-γ-open set 6⇒ m-preopen, m-δ-preopen

Let X = {a, b, c}, m = {φ,X, {a}, {b}}. Then (X,m) is an m-space. Then {b, c} is

m-γ-open as mCl(mInt({b, c})) = mCl({b}) = {b, c}. But {b, c} is not m-preopen as

{b, c} 6⊆ mInt(mCl({b, c})) = mInt({b, c}) = {b}.

Again {b, c} 6⊆ mInt(mδcl({b, c})) = mInt({b, c}) = {b} ⇒ {b, c} is not m-δ-preopen in X.

Example 4.7. m-δ-preopen set 6⇒ m-γ-open set

Let X = {a, b, c}, m = {φ,X, {b}}. Then (X,m) is an m-space. Consider the set {a, c}. Now

mCl(mInt({a, c})) = φ andmInt(mCl({a, c})) = φ⇒ (mCl(mInt({a, c})))⋃(mInt(mCl({a, c})))

= φ ⇒ {a, c} is not m-γ-open in X. But {a, c} ⊂ X = mIntX = mInt(mδcl({a, c})) ⇒

{a, c} is m-δ-preopen in X.

Note 4.8. Let (X,m) be an m-space where m satisfies Maki condition. If X is m-

extremally disconnected, then m-γ-open set is m-preopen and m-δ-preopen.

Definition 4.9. A fuzzy multifunction F : (X,m)→ (Y, τY ) is called fuzzy

(i) upper m-γ-continuous at a point x ∈ X if for each fuzzy open set V in Y with F (x) ≤ V ,

there exists an m-γ-open set U in X containing x such that F (U) ≤ V ,

(ii) lower m-γ-continuous at a point x ∈ X if for each fuzzy open set V in Y with F (x)qV ,

there exists a m-γ-open set U in X containing x such that F (u)qV , for all u ∈ U ,
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(iii) upper (lower) m-γ-continuous if F has this property at each point of X.

Theorem 4.10. For a fuzzy multifunction F : (X,m)→ (Y, τY ) where m satisfies Maki

condition, the following statements are equivalent :

(a) F is fuzzy upper m-γ-continuous,

(b) F+(V ) ∈ mγO(X), for any fuzzy open set V of Y ,

(c) F−(V ) ∈ mγC(X), for any fuzzy closed set V of Y ,

(d) mγcl(F−(B)) ⊆ F−(clB), for any B ∈ IY ,

(e) for each point x ∈ X and each fuzzy nbd V of F (x), F+(V ) is an m-γ−nbd of x,

(f) for each point x ∈ X and each fuzzy nbd V of F (x), there exists an m-γ-nbd U of x such

that F (U) ≤ V ,

(g) mCl(mInt(F−(B)))
⋂
mInt(mCl(F−(B))) ⊆ F−(clB), for any B ∈ IY ,

(h) F+(intB) ⊆ mInt(mCl(F+(B)))
⋃
mCl(mInt(F+(B))), for any B ∈ IY .

Proof. (a) ⇒ (b) Let V be a fuzzy open set of Y and x ∈ F+(V ). Then F (x) ≤ V . By(a),

there exists an m-γ-open set U containing x such that F (U) ≤ V . Therefore, we obtain, x ∈

U ⊆ (mCl(mIntU))
⋃

(mInt(mClU)) ⊆ (mCl(mInt(F+(V ))))
⋃

(mInt(mCl(F+(V )))) and

so we have F+(V ) ⊆ (mCl(mInt(F+(V ))))
⋃

(mInt(mCl(F+(V ))))⇒ F+(V ) ∈ mγO(X).

(b)⇔ (c) Follows from Theorem 3.14.

(c)⇒ (d) Let B ∈ IY . Then clB is fuzzy closed set in Y and so by (c), F−(clB) ∈ mγC(X)

and so mγcl(F−(clB)) ⊆ F−(clB)⇒ mγcl(F−(B)) ⊆ mγcl(F−(clB)) ⊆ F−(clB).

(d) ⇒ (c) Let V be a fuzzy closed set of Y . Then clV = V and so by (d), mγcl(F−(V )) ⊆

F−(clV ) = F−(V )⇒ F−(V ) ∈ mγC(X).

(b) ⇒ (e) Let x ∈ X and V be a fuzzy nbd of F (x). Then there exists a fuzzy open set G

of Y such that F (x) ≤ G ≤ V ⇒ x ∈ F+(G) ⊆ F+(V ). Since by (b), F+(G) is m-γ-open in

X, F+(V ) is an m-γ-nbd of x.

(e)⇒ (f) Let x ∈ X and V be a fuzzy nbd of F (x). Put U = F+(V ). By (e), U is an

m-γ-nbd of x and F (U) ≤ V .

(f) ⇒ (a) Let x ∈ X and V be a fuzzy open set of Y with F (x) ≤ V . Then V is a fuzzy

nbd of F (x). By (f), there exists an m-γ-nbd U of x such that F (U) ≤ V . Therefore, there

exists W ∈ mγO(X) such that x ∈ W ⊆ U and so F (W ) ≤ F (U) ≤ V ⇒ F (W ) ≤ V .

(c) ⇒ (g) Let B ∈ IY . Then clB is fuzzy closed in Y and so by (c), F−(clB) ∈ mγC(X)⇒

(mInt(mCl(F−(B))))
⋂

(mCl(mInt(F−(B)))) ⊆ (mInt(mCl(F−(clB))))
⋂

(mCl(mInt(F−(clB)))) ⊆

F−(clB).
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(g)⇒ (h) LetB ∈ IY . Then 1Y \B ∈ IY . By (g), (mCl(mInt(F−(1Y \B))))
⋂

(mInt(mCl(F−(1Y \

B)))) ⊆ F−(cl(1Y \B))⇒ (mCl(mInt(X \F+(B))))
⋂

(mInt(mCl(X \F+(B)))) ⊆ F−(1Y \

intB)⇒ X\((mInt(mCl(F+(B))))
⋃

(mCl(mInt(F+(B))))) = (X\(mInt(mCl(F+(B)))))
⋂

(X\

(mCl(mInt(F+(B))))) ⊆ X\F+(intB)⇒ F+(intB) ⊆ (mInt(mCl(F+(B))))
⋃

(mCl(mInt(F+(B)))).

(h)⇒ (b) Let V be a fuzzy open set of Y . By (h), F+(intV ) = F+(V ) ⊆ (mInt(mCl(F+(V ))))⋃
(mCl(mInt(F+(V )))) ⇒ F+(V ) ∈ mγO(X).

Theorem 4.11. For a fuzzy multifunction F : (X,m)→ (Y, τY ) where m satisfies Maki

condition, the following statements are equivalent :

(a) F is fuzzy lower m-γ-continuous,

(b) F−(V ) ∈ mγO(X), for any fuzzy open set V of Y ,

(c) F+(V ) ∈ mγC(X), for any fuzzy closed set V of Y ,

(d) mγcl(F+(B)) ⊆ F+(clB), for any B ∈ IY ,

(e) F (mγclA) ≤ cl(F (A)), for any subset A of X,

(f) mCl(mInt(F+(B)))
⋂
mInt(mCl(F+(B))) ⊆ F+(clB), for any B ∈ IY ,

(g) F−(intB) ⊆ mInt(mCl(F−(B)))
⋃
mCl(mInt(F−(B))), for any B ∈ IY ,

(h) for each point x ∈ X and each fuzzy q-nbd V of F (x), F−(V ) is an m-γ−nbd of x,

(i) for each point x ∈ X and each fuzzy q-nbd V of F (x), there exists an m-γ-nbd U of x

such that F (u)qV , for all u ∈ U .

Proof (a) ⇒ (b) Let x ∈ X and V be a fuzzy open set of Y such that x ∈ F−(V ).

Then F (x)qV . By (a), there exists U ∈ mγO(X) containing x such that F (u)qV , for

all u ∈ U ⇒ U ⊆ F−(V ). Thus we have x ∈ U ⊆ (mCl(mIntU))
⋃

(mInt(mClU)) ⊆

(mCl(mInt(F−(V ))))
⋃

(mInt(mCl(F−(V )))) ⇒ F−(V ) ⊆ (mCl(mInt(F−(V ))))⋃
(mInt(mCl(F−(V )))) ⇒ F−(V ) ∈ mγO(X).

(b) ⇔ (c) Follows from Theorem 3.14.

(c) ⇒ (d) Let B ∈ IY . Then clB is fuzzy closed set of Y . By (c), F+(clB) ∈ mγC(X) ⇒

mγcl(F+(B)) ⊆ mγcl(F+(clB)) ⊆ F+(clB).

(d) ⇒ (c) Let V be a fuzzy closed set of Y . Then clV = V . By (d) , mγcl(F+(V )) =

mγcl(F+(clV )) ⊆ F+(clV ) = F+(V )⇒ F+(V ) ∈ mγC(X).

(c) ⇒ (e) Let A be a subset of X. Then cl(F (A)) is fuzzy closed set of Y . By (c),

F+(cl(F (A))) ∈ mγC(X)⇒ mγcl(F+(cl(F (A)))) ⊆ F+(cl(F (A)))⇒ F (mγcl(F+(cl(F (A))))) ≤

F (F+(cl(F (A)))) ≤ cl(F (A))⇒ cl(F (A)) ≥ F (mγcl(F+(F (A)))) ≥ F (mγclA).

(e) ⇒ (d) Let B ∈ IY . Then F+(B) ⊆ X. By (e), F (mγcl(F+(B))) ≤ cl(F (F+(B))) ≤
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clB ⇒ mγcl(F+(B)) ⊆ F+(clB).

(c) ⇒ (f) Let B ∈ IY . Then clB is fuzzy closed set of Y . By (c), F+(clB) ∈ mγC(X) ⇒

F+(clB) ⊇ (mInt(mCl(F+(clB))))
⋂

(mCl(mInt(F+(clB)))) ⊇ (mInt(mCl(F+(B))))
⋂

(mCl(mInt(F+(B)))).

(f) ⇒ (g) Let B ∈ IY . Then 1Y \ B ∈ IY . By (f), F+(cl(1Y \ B)) ⊇ (mCl(mInt(F+(1Y \

B))))
⋂

(mInt(mCl(F+(1Y \B))))⇒ F+(1Y \intB) ⊇ (mCl(mInt(X\F−(B))))
⋂

(mInt(mCl(X\

F−(B)))) ⇒ X \ F−(intB) ⊇ (X \ (mInt(mCl(F−(B)))))
⋂

(X \ (mCl(mInt(F−(B))))) =

X\((mInt(mCl(F−(B))))
⋃

(mCl(mInt(F−(B)))))⇒ F−(intB) ⊆ (mInt(mCl(F−(B))))
⋃

(mCl(mInt(F−(B)))).

(g)⇒ (b) Let V be a fuzzy open set of Y . Then F−(V ) = F−(intV ) ⊆ mInt(mCl(F−(V )))
⋃

mCl(mInt(F−(V ))) (by (g)) ⇒ F−(V ) ∈ mγO(X).

(b) ⇒ (h) Let x ∈ X and V be a fuzzy q-nbd of F (x). Then there exists a fuzzy open set

G of Y such that F (x)qG ≤ V . Then x ∈ F−(G) ⊆ F−(V ). By (b), F−(G) ∈ mγO(X) and

so F−(V ) is an m-γ-nbd of x.

(h) ⇒ (i) Let x ∈ X and V be a fuzzy q-nbd of F (x). Put U = F−(V ). By (h), U is an

m-γ-nbd of x and F (u)qV , for all u ∈ U .

(i) ⇒ (a) Let x ∈ X and V be a fuzzy open set of Y such that F (x)qV . Then V is a

fuzzy q-nbd of F (x). By (i), there exists an m-γ-nbd U of x such that F (u)qV , for all

u ∈ U ⇒ U ⊆ F−(V ). Therefore, there exists W ∈ mγO(X) containing x such that

x ∈ W ⊆ U and so W ⊆ F−(V )⇒ F (w)qV , for all w ∈ W .

If we take m = τ , we get fuzzy upper (lower) γ-continuous multifunction.

Definition 4.12. For a fuzzy multifunction F : X → Y , fuzzy multifunction γclF :

X → Y [9], αclF : X → Y [9], βclF : X → Y [9], clF : X → Y [6], sclF : X →

Y [6], pclF : X → Y [9], δpclF : X → Y [7] are defined by (γclF )(x) = γclF (x),

(αclF )(x) = αclF (x), (βclF )(x) = βclF (x), (clF )(x) = clF (x), (sclF )(x) = sclF (x),

(pclF )(x) = pclF (x), (δpclF )(x) = δpclF (x), for all x ∈ X.

Lemma 4.13 [9]. Let F : X → Y be a fuzzy multifunction. Then we have (γclF )−(G) =

F−(G), (αclF )−(G) = F−(G), (βclF )−(G) = F−(G), (clF )−(G) = F−(G), (sclF )−(G) =

F−(G), (pclF )−(G) = F−(G), (δpclF )−(G) = F−(G), for each fuzzy open set G of Y .

Using Lemma 4.13, we can easily state the following theorem
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Theorem 4.14. For a fuzzy multifunction F : (X,m) → (Y, τY ), the following state-

ments are equivalent :

(i) F is fuzzy lower m-γ-continuous,

(ii) γclF is fuzzy lower m-γ-continuous,

(iii) αclF is fuzzy lower m-γ-continuous,

(iv) βclF is fuzzy lower m-γ-continuous,

(v) sclF is fuzzy lower m-γ-continuous,

(vi) clF is fuzzy lower m-γ-continuous,

(vii) pclF is fuzzy lower m-γ-continuous,

(viii) δpclF is fuzzy lower m-γ-continuous.

5. Mutual Relationship

In this section, the mutual relationship between fuzzy upper (lower) m-γ-continuous multi-

function and fuzzy multifunctions in Section 3 are established.

Remark 5.1. Using Remark 4.4, we have from Theorem 3.19 and Theorem 3.20 that

fuzzy upper (lower) m-continuous, fuzzy upper (lower) m-quasi continuous, fuzzy upper

(lower) m-precontinuous, fuzzy upper (lower) m-α-continuous multifunctions are fuzzy up-

per (lower) m-γ-continuous multifunction. But the converses are not true, in general, as

shown from the following examples.

Example 5.2. Fuzzy upper m-γ-continuity 6⇒ fuzzy upper m-continuity

Let X = {a, b, c}, m = {φ,X}, Y = [0, 1], τY = {0Y , 1Y , A,B} where A(y) = 0.35, B(y) =

0.4, for all y ∈ Y . Then (X,m) and (Y, τY ) are m-space and an fts respectively. Let F :

(X,m)→ (Y, τY ) be a fuzzy multifunction defined by F (a) = A,F (b) = B,F (c) = C where

C(y) = 0.6 for all y ∈ Y . Now F+(A) = {x ∈ X : F (x) ≤ A} = {a} /∈ m and so F is not

fuzzy upper m-continuous multifunction. But F+(A) = {a} ⇒ int(cl({a}) = X ⇒ F+(A)

is m-γ-open in X. Again F+(B) = {a, b} ⇒ int(cl({a, b}) = X ⇒ F+(B) is m-γ-open in

X ⇒ F is fuzzy upper m-γ-continuous multifunction.

Example 5.3. Fuzzy lower m-γ-continuity 6⇒ fuzzy lower m-continuity

Let X = {a, b, c}, m = {φ,X}, Y = [0, 1], τY = {0Y , 1Y , A,B} where A(y) = 0.35, B(y) =
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0.5, for all y ∈ Y . Then (X,m) and (Y, τY ) are m-space and an fts respectively. Let F :

(X,m)→ (Y, τY ) be a fuzzy multifunction defined by F (a) = A,F (b) = B,F (c) = C where

C(y) = 0.6 for all y ∈ Y . Now F−(A) = {x ∈ X : F (x)qA} = φ ∈ m⇒ F−(A) ∈ mγO(X),

F−(B) = {x ∈ X : F (x)qB} = {c}. Now int(cl({c})) = X ⇒ F−(B) is m-γ-open in

X ⇒ F is fuzzy lower m-γ-continuous multifunction. But F−(B) /∈ m ⇒ F is not fuzzy

lower m-continuous multifunction.

Example 5.4. Fuzzy upper m-γ-continuity 6⇒ fuzzy upper m-quasi continuity

Consider Example 5.2. Here F+(A) = {a} 6⊆ mCl(mInt({a})) = φ ⇒ F is not fuzzy up-

per m-quasi continuous multifunction though it is fuzzy upper m-γ-continuous multifunction.

Example 5.5. Fuzzy lower m-γ-continuity 6⇒ fuzzy lower m-quasi continuity

Consider Example 5.3. Here F−(B) = {c} 6⊆ mCl(mInt({c})) = φ ⇒ F−(B) is not m-

semiopen in X ⇒ F is not fuzzy lower m-quasi continuous multifunction though it is fuzzy

lower m-γ-continuous multifunction.

Example 5.6. Fuzzy upper m-γ-continuity 6⇒ fuzzy upper m-α-continuity

Consider Example 5.2. Here F+(A) = {a} 6⊆ mInt(mCl(mInt({a}))) = φ ⇒ F+(A) is not

m-α-open in X ⇒ F is not fuzzy upper m-α-continuous multifunction though it is fuzzy

upper m-γ-continuous multifunction.

Example 5.7. Fuzzy lower m-γ-continuity 6⇒ fuzzy lower m-α-continuity

Consider Example 5.3. Here F−(B) = {c} 6⊆ mInt(mCl(mInt({c}))) = φ ⇒ F−(B) is not

m-α-open X ⇒ F is not fuzzy lower m-α-continuous multifunction though it is fuzzy lower

m-γ-continuous multifunction.

Example 5.8. Fuzzy upper m-γ-continuity 6⇒ fuzzy upper m-precontinuity

Let X = {a, b, c}, m = {φ,X, {b}, {c}}, Y = [0, 1], τY = {0Y , 1Y , A,B} where A(y) =

0.35, B(y) = 0.4, for all y ∈ Y . Then (X,m) and (Y, τY ) are m-space and an fts respectively.

Let F : (X,m) → (Y, τY ) be a fuzzy multifunction defined by F (a) = F (c) = A,F (b) = B.

Now F+(A) = {a, c}. Now mInt(mCl({a, c})) = mInt({a, c}) = {c} 6⊇ {a, c} ⇒ F+(A)

is not m-preopen in X ⇒ F is not fuzzy upper m-precontinuous multifunction though it is

fuzzy upper m-γ-continuous multifunction.
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Example 5.9. Fuzzy lower m-γ-continuity 6⇒ fuzzy lower m-precontinuity

Let X = {a, b, c}, m = {φ,X, {a}, {c}}, Y = [0, 1], τY = {0Y , 1Y , A} where A(y) = 0.7,

for all y ∈ Y . Then (X,m) and (Y, τY ) are m-space and an fts respectively. Let F :

(X,m)→ (Y, τY ) be a fuzzy multifunction defined by F (a) = A,F (b) = B,F (c) = C where

B(y) = 0.4, C(y) = 0.01 for all y ∈ Y . Now F−(A) = {a, b}. Then mCl(mInt({a, b})) =

mCl({a}) = {a, b} ⇒ F−(A) ∈ mγO(X) ⇒ F is lower m-γ-continuous multifunction. But

mInt(mCl({a, b})) = mInt({a, b}) = {a} 6⊇ {a, b} ⇒ F−(A) is not m-preopen in X ⇒ F is

not fuzzy lower m-precontinuous multifunction.

Remark 5.10. Fuzzy upper (lower)m-γ-continuity and fuzzy upper (lower)m-δ-precontinuity

are independent concepts follow from next examples.

Example 5.11. Fuzzy upper m-γ-continuity 6⇒ fuzzy upper m-δ-precontinuity

Consider Example 5.2. Here F+(A) = {a}. Nowmδcl({a}) = {x ∈ X : {a}⋂mInt(mClU) 6=

φ, U ∈ m,x ∈ U} = {a}, mInt(mδcl({a})) = φ 6⊇ {a} ⇒ {a} is not m-δ-preopen in X ⇒ F

is not fuzzy upper m-δ-precontinuous multifunction though it is fuzzy upper m-γ-continuous

multifunction.

Example 5.12. Fuzzy lower m-γ-continuity 6⇒ fuzzy lower m-δ-precontinuity

Consider Example 5.3. Here F−(B) = {c}. Now mδcl({c}) = {c} ⇒ mInt(mδcl({c})) =

φ 6⊇ {c} ⇒ F is not fuzzy lower m-δ-precontinuous multifunction though it is fuzzy lower

m-γ-continuous multifunction.

Example 5.13. Fuzzy upper m-δ-precontinuity 6⇒ fuzzy upper m-γ-continuity

Let X = {a, b, c}, m = {φ,X, {b}}, Y = [0, 1], τY = {0Y , 1Y , A} where A(y) = 0.5 for all

y ∈ Y . Then (X,m) and (Y, τY ) are m-space and an fts respectively. Let F : (X,m) →

(Y, τY ) be defined by F (a) = F (c) = A,F (b) = B, where B(y) = 0.6 for all y ∈ Y . Now

F+(A) = {a, c}. Then mInt(mδcl({a, c})) = X ⊃ {a, c} ⇒ {a, c} is m-δ-preopen in X ⇒ F

is fuzzy upper m-δ-precontinuous multifunction. But mInt(mCl({a, c})) = mInt({a, c}) =

φ 6⊇ {a, c} ⇒ F+(A) is not m-γ-open in X ⇒ F is not fuzzy upper m-γ-continuous multi-

function.
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Example 5.14. Fuzzy lower m-δ-precontinuity 6⇒ fuzzy lower m-γ-continuity

Let X = {a, b, c}, m = {φ,X, {b}}, Y = [0, 1], τY = {0Y , 1Y , A} where A(y) = 0.6 for all

y ∈ Y . Then (X,m) and (Y, τY ) are m-space and an fts respectively. Let F : (X,m) →

(Y, τY ) be defined by F (a) = F (c) = A,F (b) = B, where B(y) = 0.3 for all y ∈ Y . Now

F−(A) = {a, c}. Then mInt(mδcl({a, c})) = X ⊃ {a, c} ⇒ {a, c} is m-δ-preopen in X ⇒ F

is fuzzy lower m-δ-precontinuous multifunction. Now mInt(mCl({a, c})) = mInt({a, c}) =

φ, mCl(mInt({a, c})) = φ ⇒ mInt(mCl({a, c}))⋃mCl(mInt({a, c})) = φ ⇒ {a, c} is not

m-γ-open in X ⇒ F is not fuzzy lower m-γ-continuous multifunction.

Remark 5.15. It is clear from Theorem 3.21 and Theorem 3.22 that fuzzy upper (lower)

m-irresolute, fuzzy upper (lower) m-preirresolute, fuzzy upper (lower) m-α-irresolute multi-

functions are fuzzy upper (lower) m-γ-continuous multifunction. But the converses are not

true, in general, follow from next examples. Also fuzzy upper (lower) m-γ-continuous multi-

function and fuzzy upper (lower) m-δ-preirresolute multifunction are independent concepts

follow from next examples.

Example 5.16. Fuzzy upper m-γ-continuous multifunction 6⇒ fuzzy upper m-irresolute

multifunction

Consider Example 5.2. Here the fuzzy set A being fuzzy open in Y is fuzzy semiopen in Y .

Now F+(A) = {a} 6⊆ mCl(mInt({a})) = φ ⇒ F+(A) is not m-semiopen in X ⇒ F is not

fuzzy upper m-irresolute multifunction though it is fuzzy upper m-γ-continuous multifunc-

tion.

Example 5.17. Fuzzy lower m-γ-continuous multifunction 6⇒ fuzzy lower m-irresolute

multifunction

Consider Example 5.3. Here the fuzzy set B is fuzzy semiopen in Y . Now F−(B) = {c} 6⊆

mCl(mInt({c})) = φ⇒ F−(B) is not m-semiopen in X ⇒ F is not fuzzy lower m-irresolute

multifunction though it is fuzzy lower m-γ-continuous multifunction.

Example 5.18. Fuzzy upperm-γ-continuous multifunction 6⇒ fuzzy upperm-preirresolute

multifunction

Let X = {a, b, c}, m = {φ,X, {b}, {c}}, Y = [0, 1], τY = {0Y , 1Y , A,B} where A(y) =

0.35, B(y) = 0.4, for all y ∈ Y . Then (X,m) and (Y, τY ) are m-space and an fts respectively.
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Let F : (X,m) → (Y, τY ) be defined by F (a) = F (c) = A,F (b) = B. Now F+(A) =

{a, c}. Then mCl(mInt({a, c})) = mCl({c}) = {a, c} ⇒ F+(A) ⊆ (mCl(mInt({a, c})))⋃
(mInt(mCl({a, c})))⇒ F+(A) ∈ mγO(X), F+(B) = {b} ∈ m and so F+(B) ∈ mγO(X)⇒

F is fuzzy upper m-γ-continuous multifunction. Consider the fuzzy set D defined by

D(y) = 0.37 for all y ∈ Y . Then D is fuzzy preopen in Y . Now F+(D) = {a, c}. Now

mInt(mCl({a, c})) = mInt({a, c}) = {c} 6⊇ {a, c} ⇒ F+(D) is not m-preopen in X ⇒ F is

not fuzzy upper m-preirresolute.

Example 5.19. Fuzzy lowerm-γ-continuous multifunction 6⇒ fuzzy lowerm-preirresolute

multifunction

Let X = {a, b, c}, m = {φ,X, {c}}, Y = [0, 1], τY = {0Y , 1Y , A,B} where A(y) = 0.4, B(y) =

0.44 for all y ∈ Y . Then (X,m) and (Y, τY ) are m-space and an fts respectively. Let

F : (X,m)→ (Y, τY ) be defined by F (a) = A,F (b) = B,F (c) = C where C(y) = 0.39 for all

y ∈ Y . Here F−(A) = F−(B) = φ ∈ m ⇒ F is fuzzy lower m-γ-continuous multifunction.

Consider the fuzzy set D defined by D(y) = 0.61 for all y ∈ Y . Then int(clD) = 1Y > D ⇒

D is fuzzy prepen in Y . Now F−(D) = {a, b}. Then mInt(mCl({a, b})) = mInt({a, b}) =

φ 6⊇ {a, b} ⇒ F−(D) is not m-preopen in X ⇒ F is not fuzzy lower m-preirresolute multi-

function.

Example 5.20. Fuzzy upperm-γ-continuous multifunction 6⇒ fuzzy upperm-α-irresolute

multifunction

Consider Example 5.18. Here D is fuzzy α-open in Y . Now F+(D) = {a, c}. Then

mInt(mCl(mInt({a, c})) = mInt(mCl({c})) = mInt({a, c}) = {c} 6⊇ {a, c} ⇒ F+(D)

is not m-α-open in X ⇒ F is not fuzzy upper m-α-irresolute multifunction though it is

fuzzy upper m-γ-continuous multifunction.

Example 5.21. Fuzzy lower m-γ-continuous multifunction 6⇒ fuzzy lower m-α-irresolute

multifunction

Let X = {a, b, c}, m = {φ,X, {a}, {c}}, Y = [0, 1], τY = {0Y , 1Y , A} where A(y) = 0.7 for

all y ∈ Y . Then (X,m) and (Y, τY ) are m-space and an fts respectively. Let F : (X,m) →

(Y, τY ) be defined by F (a) = A,F (b) = B,F (c) = C where B(y) = 0.2, C(y) = 0.01 for

all y ∈ Y . Now F−(A) = {a} ∈ m ⇒ F−(A) ∈ mγO(X) ⇒ F is fuzzy lower m-γ-

continuous multifunction. Consider the fuzzy set D defined by D(y) = 0.81, for all y ∈ Y .
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Then D is fuzzy α-open in Y . Now F−(D) = {a, b}. Then mInt(mCl(mInt({a, b}))) =

mInt(mCl({a})) = mInt({a, b}) = {a} 6⊇ {a, b} ⇒ F−(D) is not m-α-open in X ⇒ F is

not fuzzy lower m-α-irresolute multifunction.

Example 5.22. Fuzzy upperm-γ-continuous multifunction 6⇒ fuzzy upperm-δ-preirresolute

multifunction

Consider Example 5.18. Here D is fuzzy δ-preopen in Y . Now F+(D) = {a, c}. Then

mInt(mδcl({a, c})) = mInt({a, c}) = {c} 6⊇ {a, c} ⇒ F+(D) is not m-δ-preopen in X ⇒ F

is not fuzzy upper m-δ-preirresolute multifunction though it is fuzzy upper m-γ-continuous

multifunction.

Example 5.23. Fuzzy lowerm-γ-continuous multifunction 6⇒ fuzzy lowerm-δ-preirresolute

multifunction

Let X = {a, b, c}, m = {φ,X, {b}, {c}}, Y = [0, 1], τY = {0Y , 1Y , A,B} where A(y) =

0.4, B(y) = 0.44, for all y ∈ Y . Then (X,m) and (Y, τY ) are m-space and an fts respectively.

Let F : (X,m) → (Y, τY ) be defined by F (a) = A,F (b) = B,F (c) = C where C(y) = 0.29

for all y ∈ Y . Then F−(A) = F−(B) = φ ∈ m ⇒ F is fuzzy lower m-γ-continuous mul-

tifunction. Now consider the fuzzy set D defined by D(y) = 0.61 for all y ∈ Y . Then

D is fuzzy δ-preopen in Y . Now F−(D) = {a, b}. mInt(mδcl({a, b})) = mInt({a, b}) =

{b} 6⊇ {a, b} ⇒ F−(D) is not m-δ-preopen in X ⇒ F is not fuzzy lower m-δ-preirresolute

multifunction.

Example 5.24. Fuzzy upper m-δ-preirresolute multifunction 6⇒ fuzzy upper m-γ-

continuous multifunction

LetX = {a, b, c}, m = {φ,X, {c}}, Y = [0, 1], τY = {0Y , 1Y , A} where A(y) = 0.4 for all y ∈

Y . Then (X,m) and (Y, τY ) are m-space and an fts respectively. Let F : (X,m) → (Y, τY )

be defined by F (a) = F (b) = B,F (c) = D where B(y) = 0.3, D(y) = 0.7 for all y ∈ Y . Now

the collection of all fuzzy δ-preopen sets in Y is {0Y , 1Y , U, V } where U ≤ A, V > 1Y \ A.

Then F+(U) = φ, if U < B, F+(U) = {a, b}, if B ≤ U < D, F+(U) = X, if U ≥ D.

Then φ,X are obviously m-δ-preopen in X. Now mInt(mδcl({a, b})) = mIntX = X ⊃

{a, b} ⇒ {a, b} is m-δ-preopen in X ⇒ F+(U) is m-δ-preopen in X for every fuzzy δ-

preopen set U of Y . But mInt(mCl({a, b})) = mInt({a, b}) = φ, mCl(mInt({a, b})) =

φ ⇒ mInt(mCl({a, b}))⋃mCl(mInt({a, b})) = φ 6⊇ {a, b} ⇒ {a, b} is not m-γ-open in
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X ⇒ F is not fuzzy upper m-γ-continuous multifunction.

Example 5.25. Fuzzy lower m-δ-preirresolute multifunction 6⇒ fuzzy lower m-γ-continuous 

multifunction

Let X = {a, b, c}, m = {φ, X, {c}}, Y = [0, 1], τY = {0Y , 1Y , A} where A(y) = 0.5 for all y ∈ 

Y . Then (X, m) and (Y, τY ) are m-space and an fts respectively. Let F : (X, m) → (Y, τY ) 

be defined by F (a) = F (b) = B, F (c) = C where B(y) = 0.51, C(y) = 0.3 for all y ∈ Y . Any 

fuzzy set in Y is fuzzy δ-preopen in Y . Now F −(U) = φ, if U ≤ 1Y \ B, F −(U) = {a, b}, if 

1Y \ B < U ≤ 1Y \ C, F −(U) = X, if U > 1Y \ C. Then as in Example 5.24, F −(U) is m-δ-

preopen in X ⇒ F is fuzzy lower m-δ-preirresolute multifunction. But {a, b} is not m-γ-open 

in X as shown in Example 5.24. So F is not fuzzy lower m-γ-continuous multifunction.

6. Fuzzy Upper (Lower) m-γ-Continuous Multifunction:

More Characterizations and Applications

In this section fuzzy upper (lower) m-γ-continuous multifunction is characterized by fuzzy

upper (lower) nbd [9] of a fuzzy set and also some applications of these fuzzy multifunctions

have been shown.

Definition 6.1 [9]. A fuzzy set A in an fts Y is said to be a fuzzy lower (upper) nbd of

a fuzzy set B of Y if there exists a fuzzy open set V of Y such that BqV (resp., B ≤ V ) and

V 6 q(1Y \ A).

Theorem 6.2. A fuzzy multifunction F : (X,m) → (Y, τY ) is fuzzy upper m-γ-

continuous on X iff for each point x0 ∈ X and each fuzzy upper nbd M of F (x0), F+(M) is

an m-γ-nbd of x0.

Proof. Let F be fuzzy upper m-γ-continuous multifunction on X. Then for any x0 ∈ X and

for any fuzzy upper nbd M of F (x0), there exists a fuzzy open set V of Y such that F (x0) ≤ V

and V 6 q(1Y \M)⇒ V ≤M . Since F is fuzzy upper m-γ-continuous multifunction, there ex-

ists U ∈ mγO(X) containing x0 such that U ⊆ F+(V )⇒ F (U) ≤ V ≤ M ⇒ U ⊆ F+(M).

Therefore, x0 ∈ U ⊆ F+(M)⇒ F+(M) is an m-γ-nbd of x0.

Conversely, let for any x0 ∈ X and any fuzzy open set V of Y with F (x0) ≤ V , we
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have V 6 q(1Y \ V ). Therefore, V is a fuzzy upper nbd of F (x0). Then by hypothesis,

F+(V ) is an m-γ-nbd of x0. Then there exists U ∈ mγO(X) containing x0 such that

x0 ∈ U ⊆ F+(V )⇒ F (U) ≤ V ⇒ F is fuzzy upper m-γ-continuous multifunction.

Theorem 6.3. A fuzzy multifunction F : (X,m)→ (Y, τY ) is fuzzy lowerm-γ-continuous

on X iff for each point x0 ∈ X and each fuzzy lower nbd M of F (x0), F−(M) is an m-γ-nbd

of x0.

Proof. Let F be fuzzy lower m-γ-continuous multifunction on X. Then for any x0 ∈ X

and for any fuzzy lower nbd M of F (x0), there exists a fuzzy open set V of Y such that

F (x0)qV and V 6 q(1Y \M) ⇒ V ≤ M . Since F is fuzzy lower m-γ-continuous multifunc-

tion, there exists U ∈ mγO(X) containing x0 such that U ⊆ F−(V ) ⊆ F−(M). Therefore,

x0 ∈ U ⊆ F−(M)⇒ F−(M) is an m-γ-nbd of x0.

Conversely, let for any x0 ∈ X and any fuzzy open set V of Y with F (x0)qV . Since

V 6 q(1Y \ V ), V is a fuzzy lower nbd of F (x0). Then by hypothesis, F−(V ) is an m-γ-nbd

of x0. Then there exists U ∈ mγO(X) containing x0 such that x0 ∈ U ⊆ F−(V )⇒ F (u)qV ,

for all u ∈ U ⇒ F is fuzzy lower m-γ-continuous multifunction.

Definition 6.4. An m-space (X,m) is said to be m-γ-compact if for every covering of

X by m-γ-open sets of X has a finite subcover.

Theorem 6.5. Let F : (X,m) → (Y, τY ) be a fuzzy upper m-γ-continuous surjective

multifunction and F (x) be a fuzzy compact set of Y for each x ∈ X. If X is m-γ-compact

space, then Y is fuzzy compact space.

Proof. Let A = {Aα : α ∈ Λ} be a fuzzy open cover of Y . Now for each x ∈ X, F (x) is

fuzzy compact in Y and so there is a finite subset Λx of Λ such that F (x) ≤ ⋃{Aα : α ∈ Λx}.

Let Ax =
⋃{Aα : α ∈ Λx}. Then F (x) ≤ A(x) where Ax is a fuzzy open set of Y . Since F

is fuzzy upper m-γ-continuous multifunction, there exists Ux ∈ mγO(X) containing x such

that Ux ⊆ F+(Ax). Then U = {Ux : x ∈ X} is a cover of X by m-γ-open sets of X. Since X

is m-γ-compact, there exists finitely many points x1, x2, ..., xn of X such that X =
n⋃
i=1

Uxi .

As F is surjrctive, 1Y = F (X) = F (
n⋃
i=1

Uxi) =
n⋃
i=1

F (Uxi) ≤
n⋃
i=1

Axi =
n⋃
i=1

⋃
α∈Λxi

Aα ⇒ Y is

fuzzy compact space.
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Definition 6.6 [15]. An fts (Y, τY ) is said to be FNC-space if every fuzzy regular open

cover of Y has a finite subcover.

Remark 6.7. As every fuzzy regular open set is fuzzy open, we can set the following

theorem easily.

Theorem 6.8. Let F : (X,m) → (Y, τY ) be a fuzzy upper m-γ-continuous surjective

multifunction and F (x) be a fuzzy compact set of Y for each x ∈ X. If X is m-γ-compact

space, then Y is FNC-space.

Theorem 6.9. Every m-γ-closed subset of an m-γ-compact space is m-γ-compact.

Proof. Let A be an m-γ-closed subset of an m-γ-compact space (X,m). Let A = {Aα :

α ∈ Λ} be a covering of A by m-γ-open sets of X. Then (X \ A)
⋃

(
⋃
α∈Λ

Aα) is a covering of

X by m-γ-open sets of X. As X is m-γ-compact, there exists a finite subset Λ0 of Λ such

that (X \A)
⋃

(
⋃
α∈Λ0

Aα) covers X. Now discarding the set X \A, we get the finite subcover

{Aα : α ∈ Λ0} of A by m-γ-open sets of X. Hence A is m-γ-compact.

Definition 6.10 [14]. For a fuzzy multifunction F : X → Y , the fuzzy graph multifunc-

tion GF : X → X × Y of F is defined as GF (x) = the fuzzy set x1 × F (x) of X × Y , where

x1 is the fuzzy set in X, whose value is 1 at x ∈ X and 0 at other points of X. We shall

write {x} × F (x) for x1 × F (x).

Theorem 6.11. When X is product related to Y , a fuzzy multifunction F : (X,m) →

(Y, τY ) is fuzzy upper m-γ-continuous if its fuzzy graph multifunction GF : X → X × Y is

fuzzy upper m-γ-continuous multifunction.

Proof. Let GF be a fuzzy upper m-γ-continuous multifunction. Let x ∈ X and V be a fuzzy

open set of Y such that F (x) ≤ V . Then GF (x) ≤ X×V and X×V is easily seen to be open

in X×Y . By hypothesis, there exists U ∈ mγO(X) containing x such that GF (U) ≤ X×V .

Now for any z ∈ U and any y ∈ Y , [F (z)](y) = [GF (z)](z, y) ≤ (X × V )(z, y) = V (y), i.e.,

[F (z)](y) ≤ V (y), for all y ∈ Y ⇒ F (z) ≤ V , for any z ∈ U ⇒ F (U) ≤ V ⇒ F is fuzzy

upper m-γ-continuous multifunction.
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Definition 6.12. The m-γ-frontier of a subset A of an m-space (X,m), denoted by

mγFr(A), is defined by mγFr(A) = mγclA
⋂
mγcl(X \ A) = mγclA \mγintA.

Theorem 6.13. Let F : (X,m) → (Y, τY ) be a fuzzy multifunction where m sat-

isfies Maki condition. Let A = {x ∈ X : F is not fuzzy upper m-γ-continuous at x},

B =
⋃{mγFr(F+(V )) : F (x) ≤ V and V is fuzzy open in Y }. Then A = B.

Proof. Let x ∈ X be such that F is not fuzzy upper m-γ-continuous at x. Then there

exists a fuzzy open set V of Y with F (x) ≤ V such that U 6⊆ F+(V ), for all U ∈ mγO(X)

containing x⇒ U
⋂

(X \F+(V )) 6= φ⇒ x ∈ mγcl(X \F+(V )) = X \mγint(F+(V ))⇒ x /∈

mγint(F+(V )). But x ∈ F+(V ) ⊆ mγcl(F+(V )). Therefore, x ∈ mγFr(F+(V )).

Conversely, let x ∈ X and V be a fuzzy open set of Y with F (x) ≤ V such that

x ∈ mγFr(F+(V )). If possible, let F be fuzzy upper m-γ-continuous at x. Then there

exists U ∈ mγO(X) containing x such that U ⊆ F+(V ). Then x ∈ U = mγintU ⊆

mγint(F+(V )) ⇒ x ∈ mγint(F+(V )) ⇒ x /∈ mγFr(F+(V )), a contradiction and hence F

is not fuzzy upper m-γ-continuous at x.

Theorem 6.14. Let F : (X,m) → (Y, τY ) be a fuzzy multifunction where m sat-

isfies Maki condition. Let A = {x ∈ X : F is not fuzzy lower m-γ-continuous at x},

B =
⋃{mγFr(F−(V )) : F (x)qV and V is fuzzy open in Y }. Then A = B.

Proof. Let x ∈ X be such that F is not fuzzy lower m-γ-continuous at x. Then there

exists a fuzzy open set V of Y with F (x)qV such that U 6⊆ F−(V ), for all U ∈ mγO(X)

containing x⇒ U
⋂

(X \F−(V )) 6= φ⇒ x ∈ mγcl(X \F−(V )) = X \mγint(F−(V ))⇒ x /∈

mγint(F−(V )). But x ∈ F−(V ) ⊆ mγcl(F−(V )). Therefore, x ∈ mγFr(F−(V )).

Conversely, let x ∈ X and V be a fuzzy open set of Y with F (x)qV such that x ∈

mγFr(F−(V )). If possible, let F be fuzzy lower m-γ-continuous at x. Then there ex-

ists U ∈ mγO(X) containing x such that U ⊆ F−(V ). Then x ∈ U = mγintU ⊆

mγint(F−(V )) ⇒ x ∈ mγint(F−(V )) ⇒ x /∈ mγFr(F−(V )), a contradiction and hence

F is not fuzzy lower m-γ-continuous at x.
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