


fuzzy minimal structure was introduced by Alimohammady and Roohi [1] . In [8], Bhat-
tacharyya introduced fuzzy upper (lower) M-continuous multifunctions between a set having
m-structure and a set having fuzzy minimal structure. In this paper we introduce a fuzzy

multifunction between a set having m-structure and a fuzzy topological space.

2. Preliminaries

Let Y be a non-empty set and I = [0,1]. Then a fuzzy set [23] A in Y is a mapping from
Y into I. The set of all fuzzy sets in Y is denoted by I¥. For a fuzzy set A in Y, the
support of A, denoted by suppA [23] and is defined by suppA = {y € Y : A(y) # 0}. A
fuzzy point [21] with the singleton support y € Y and the value ¢ (0 < ¢t < 1) at y will be
denoted by y;. Oy and 1y are the constant fuzzy sets taking respectively the constant values
0 and 1 on Y. The complement of a fuzzy set A in Y will be denoted by 1y \ A [23] and is
defined by (1y \ A)(y) = 1 — A(y), for all y € Y. For two fuzzy sets A and B in Y, we write
A < Biff A(y) < B(y), for each y € Y, while we write AgB to mean A is quasi-coincident
(g-coincident, for short) with B [21] if there exists y € Y such that A(y) + B(y) > 1; the
negation of AgB is written as A 4B. clA and intA of a set A in X (respectively, a fuzzy
set A [23] in Y) respectively stand for the closure and interior of A in X (respectively, fuzzy
closure and fuzzy interior of A in Y'). A fuzzy set A in Y is called fuzzy regular open [3]
(resp., fuzzy semiopen [3], fuzzy S-open [4], fuzzy a-open [10], fuzzy preopen [16], fuzzy
v-open [9]) if intclA = A (resp., A < clintA, A < clintclA, A < intclintA, A < intclA,
A < (cl(intA))\(int(clA))). The complement of a fuzzy semiopen (resp., fuzzy [-open,
fuzzy a-open, fuzzy preopen, fuzzy v-open) set is called fuzzy semiclosed [3] (resp., fuzzy
B-closed [4], fuzzy a-closed [10], fuzzy preclosed [16], fuzzy v-closed [9]). The intersection of
all fuzzy semiclosed (resp., fuzzy f(-closed, fuzzy a-closed, fuzzy preclosed, fuzzy 7-closed)
sets containing a fuzzy set A in Y is called fuzzy semiclosure [3] (resp., fuzzy S-closure [4],
fuzzy a-closure [10], fuzzy preclosure [16], fuzzy ~-closure [9]) of A and is denoted by sclA
(resp., BelA, aclA, pcl A, yclA). A fuzzy set AinY is called a fuzzy neighbourhood (nbd, for
short) [21] of a fuzzy set B in Y if there is a fuzzy open set U in Y such that B< U < A. A
fuzzy set B is called a quasi neighbourhood (¢g-nbd, for short) [21] of a fuzzy set A if there is a
fuzzy open set U in Y such that AqU < B. If, in addition, B is fuzzy regular open, then B is
called a fuzzy regular open ¢g-nbd of A. A fuzzy point x, is said to be a fuzzy d-cluster point

of a fuzzy set A in an fts Y if every fuzzy regular open ¢g-nbd U of z, is g-coincident with
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A [12]. The union of all fuzzy d-cluster points of a fuzzy set A is called the fuzzy §-closure
of A and is denoted by dclA [12]. A fuzzy set A in an fts Y is called fuzzy J-preopen [5] if
A <int(dclA). The complement of a fuzzy d-preopen set is called fuzzy d-preclosed [5]. The
intersection of all fuzzy d-preclosed sets containing a fuzzy set A in an fts Y is called fuzzy
d-preclosure of A and is denoted by dpclA [5]. A subset A of an ordinary topological space
X is called v-open [9] (formerly known as b-open [2]) if A C (cl(intA))U(int(clA)).

3. Some Well Known Definitions, Lemmas and Theorems

In this section, we first recall some definitions, lemmas and theorems for ready references.

Definition 3.1 [19, 20]. A subfamily m of the power set P(X) of a non empty set X is
called a minimal structure (m-structure, for short) on X if ) € m and X € m. (X, m) is called
an m-space. The members of m are called m-open and the complement of an m-open set is

called m-closed.

Definition 3.2 [13]. Let (X, m) be an m-space. For a subset A of X, the m-closure and m-

interior of A are defined as follows :

mCIA=(({F:F2AX\F em}
mIntA=|J{U:U C AU € m}

. Remark 3.3. From Definition 3.1 and Definition 3.2, it is to be noted that mIntA (resp.,
mClA) may not be m-open (resp., m-closed) in an m-space (X, m). But if we assume that
m is closed under arbitrary union (this condition is known as Maki condition [13]), then
immediately, we have that mIntA is an element of m and hence A C X is m-open if and

only if mIntA = A and m-closed if and only if mCIlA = A.

Lemma 3.4 [13]. Let (X, m) be an m-space. For two subsets A, B of X, the following
properties hold :
(i) mCUX \ A) = X \ mIntA, mInt(X \ A) = X \ mCIA,
(ii) If X \ A € m, then mCIA = A and if A € m, then mIntA = A,
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(iii) mClU(D) = 0, mInt(0) = 0, mClU(X) = X, mInt(X) = X,
(iv) If A C B, then mCIl(A) C mCIl(B) and mInt(A) C mint(B),
(v) AC mCI(A) and mInt(A) C A
(vi) mCl(mClA) = mCIlA and mInt(mIntA) = mIntA.
Lemma 3.5 [19]. Let (X, m) be an m-space and A, a subset of X. Then x € mCIA if

and only if UN A # ) for every U € m containing x.

Definition 3.6 [22]. Let (X, m) be an m-space. A subset A of X is said to be
(i) m-regular if A = mInt(mCIlA),
(ii) m-semiopen if A C mCl(mIntA),
(iii) m-a-open if A C mInt(mCl(mIntA)),
(iv) m-preopen if A C mInt(mCIlA).

The complement of the above mentioned sets are called their respective closed sets.

Definition 3.7 [22]. Let (X, m) be an m-space and A C X. The m-d-closure and the

m-d-interior of the set A, are defined, respectively as :
moclA = {z € X : A(YmInt(mCIU) # ¢, for allU € m,x € U}

méintA = J{W : W C A, W is m — regular open set in X}

Definition 3.8 [22]. A subset A of an m-space (X, m) is called
(i) m-d-open if A = mdintA,
(ii) m-0-preopen if A C mInt(mdclA).

The complement of the above mentioned sets are called their respective closed sets.

Definition 3.9 [22]. An m-space (X, m) is said to be m-extremally disconnected if the

m-closure of all m-open sets of X is m-open.
Definition 3.10 [11]. Let A be a fuzzy set in an fts Y. A collection U of fuzzy sets in

Y is called a fuzzy cover of A if sup{U(z):U € U} =1 for each = € suppA. If, in addition,

the members of U are fuzzy open, then U is called a fuzzy open cover of A. In particular, if
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A =1y, we get the definition of fuzzy cover (resp., fuzzy open cover) of the fts Y.

Definition 3.11 [11]. A fuzzy cover U of a fuzzy set A in an fts Y is said to have a finite
subcover Uy if Uy is a finite subcollection of U such that Uy > A. Clearly, if A = 1y, in

particular, then the requirements on U, is YUy = 1y

Definition 3.12 [11]. An fts YV is said to be fuzzy compact if every fuzzy open cover of

Y has a finite subcover.

Definition 3.13 [18]. Let (X,7) and (Y,7y) be respectively an ordinary topological
space and an fts. We say that F': X — Y is a fuzzy multifunction if corresponding to each
x € X, F(z) is a unique fuzzy set in Y.

Henceforth by F': X — Y we shall mean a fuzzy multifunction in the above sense.

Definition 3.14 [18, 14]. For a fuzzy multifunction F' : X — Y, the upper inverse F'*
and lower inverse '~ are defined as follows :

For any fuzzy set AinY, F*(A) ={z € X : F(z) < A} and F~(A) = {z € X : F(x)qA}.

There is a following relationship between the upper and the lower inverses of a fuzzy

multifunction.

Theorem 3.15 [14]. For a fuzzy multifunction F' : X — Y, we have F~(1y \ A) =
X\ Ft(A), for any fuzzy set AinY.

Definition 3.16 [9]. A fuzzy multifunction F': X — Y is called fuzzy
(i) upper y-continuous at a point x € X if for each fuzzy open set V in Y with F(z) <V,
there exists a y-open set U in X containing x such that F(U) <V,
(ii) lower 7-continuous at a point € X if for each fuzzy open set V in Y with F(z)qV/,
there exists a vy-open set U in X containing z such that F'(u)qV, for all u € U,
(iii) upper (lower) y-continuous if F' has this property at each point of X.

Definition 3.17 [8]. A fuzzy multifunction F' : (X, m) — (Y, 7y) is said to be fuzzy

(i) upper m-continuous (resp., upper m-quasi continuous, upper m-precontinuous, upper
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m-d-precontinuous, upper m-a-continuous) if for each x € X and each fuzzy open set V' of
Y with F(x) < V|, there exists an m-open (resp., m-semiopen, m-preopen, m-d-preopen,
m-a-open) set U of X containing x such that F(U) <V,

(ii) lower m-continuous (resp., lower m-quasi continuous, lower m-precontinuous, lower m-4-
precontinuous, lower m-a-continuous) if for each x € X and each fuzzy open set V of Y with
F(z)qV, there exists an m-open (resp., m-semiopen, m-preopen, m-0-preopen, m-q-open)

set U of X containing x such that F'(u)qV, for all u € U.

Definition 3.18 [8]. A fuzzy multifunction F': (X, m) — (Y, 7y) is said to be fuzzy

(i) upper m-irresolute (resp., upper m-preirresolute, upper m-o-preirresolute, upper m-a-
irresolute) if for each x € X and each fuzzy semiopen (resp., fuzzy preopen, fuzzy §-preopen,
fuzzy a-open) set V of Y with F(z) < V, there exists an m-semiopen (resp., m-preopen,
m-d-preopen, m-a-open) set U of X containing x such that F(U) <V,

(ii) lower m-irresolute (resp., lower m-preirresolute, lower m-d-preirresolute, lower m-a-
irresolute) if for each x € X and each fuzzy semiopen (resp., fuzzy preopen, fuzzy §-preopen,
fuzzy a-open) set V' of Y with F'(x)qV, there exists an m-semiopen (resp., m-preopen, m-o-

preopen, m-a-open) set U of X containing = such that F'(u)qV, for all u € U.

Theorem 3.19 [8]. A fuzzy multifunction F' : (X, m) — (Y, 7y) is said to be fuzzy
(i) upper m-continuous (resp., upper m-quasi continuous, upper m-precontinuous, upper
m-d-precontinuous, upper m-a-continuous) iff F7(G) is m-open (resp., m-semiopen, m-

preopen, m-d-preopen, m-a-open) set in X for every fuzzy open set G of Y.

Theorem 3.20 [8]. A fuzzy multifunction F': (X, m) — (Y, 7y) is said to be fuzzy
(i) lower m-continuous (resp., lower m-quasi continuous, lower m-precontinuous, lower m-d-
precontinuous, lower m-a-continuous) iff F'~(G) is m-open (resp., m-semiopen, m-preopen,

m-~0-preopen, m-a-open) set in X for every fuzzy open set G of Y.

Theorem 3.21 [8]. A fuzzy multifunction F': (X, m) — (Y, 7y) is said to be fuzzy
(i) upper m-irresolute (resp., upper m-preirresolute, upper m-o-preirresolute, upper m-a-
irresolute) iff F'*(G) is m-semiopen (resp., m-preopen, m-0-preopen, m-a-open) set in X for

every fuzzy semiopen (resp., fuzzy preopen, fuzzy J-preopen, fuzzy a-open) set G of Y.
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Theorem 3.22 [8]. A fuzzy multifunction F': (X, m) — (Y, 7y) is said to be fuzzy
(i) lower m-irresolute (resp., lower m-preirresolute, lower m-d-preirresolute, lower m-a-
irresolute) iff F'~(G) is m-semiopen (resp., m-preopen, m-j-preopen, m-a-open) set in X

for every fuzzy semiopen (resp., fuzzy preopen, fuzzy é-preopen, fuzzy a-open) set G of Y.

4. Fuzzy Upper (Lower) m-y-Continuous Multifunction:

Characterizations

In this section we first define m-y-open set in an m-space. Afterwards, fuzzy upper and

fuzzy lower m-~-continuous multifunctions are introduced and studied.

Definition 4.1. A subset A in an m-space (X, m) is said to be m-y-open if A C
(mCl(mIntA)) U(mint(mClA)).

The complement of an m-y-open set in an m-space is called m-vy-closed. The union (in-
tersection) of all m-y-open (resp., m-y-closed) sets contained in (resp., containing) a subset
A in an m-space (X, m) is called m-v-interior (m-v-closure) of A, denoted by m~yintA (resp.,
myclA). mryintA (resp., myclA) is not m-vy-open (resp., m-vy-closed), in general, but if m
satisfies Maki condition, then myintA = A (resp., myclA = A) if A is m-vy-open (resp.,
m-vy-closed).

The collection of all m-y-open (resp., m-y-closed) sets in an m-space (X, m) is denoted
by myO(X) (resp., myC(X)).

If we put m = 7, we get the definition of y-open set [9].

Definition 4.2. A subset A of an m-space (X, m) is called an m-y-nbd of a point z € X

if there exists an m-v-open set U in X such that x € U C A.

Result 4.3. Let (X, m) be an m-space and A C X. Then = € myclA iff UN A # ¢ for
every m-y-open set U containing x.
Proof. Let x € mvyclA and U be any m-v-open set of X containing x. If possible, let
UNA=¢. Then A C X \ U where X \ U is m-y-closed set of X and z ¢ X \ U and so by
definition, x € m~yclA, a contradiction.

Conversely, let UNA # ¢, for every m-v-open set U containing x. Let V be an m-y-
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closed set of X containing A. We have to show that = € V. If possible, let z ¢ V. Then
x € X \ 'V which is m-y-open set of X. By assumption, (X \V)NA #¢ = ALV, a

contradiction.

Remark 4.4. It is clear from definition that m-open, m-semiopen, m-preopen, m-a-open
sets are m-v-open, but not conversely follow from next examples. Also m-y-open set and

m-0-preopen set are independent concepts follow from next examples.

Example 4.5. m-vy-open set & m-open, m-semiopen, m-«a-open set
Let X = {a,b,c}, m = {4, X}. Then (X, m) is an m-space. Now {a} is clearly m-y-open
in X, but {a} ¢ m = {a} is not m-open in X. Again, mCl(mInt({a})) = ¢ = {a} is not

m-semiopen. Also, mInt(mCl(miInt({a}))) = ¢ = {a} is not m-a-open in X.

Example 4.6. m-v-open set % m-preopen, m-J-preopen
Let X = {a,b,c}, m = {¢,X,{a},{b}}. Then (X,m) is an m-space. Then {b,c} is
m~v-open as mCl(mInt({b,c})) = mCI({b}) = {b,c}. But {b,c} is not m-preopen as
{b,c} € mInt(mCl({b,c})) = mInt({b,c}) = {b}.
Again {b, c} € mInt(mdcl({b,c})) = mInt({b,c}) = {b} = {b,c} is not m-o-preopen in X.

Example 4.7. m-d-preopen set & m-y-open set
Let X = {a,b,c}, m = {¢, X, {b}}. Then (X, m) is an m-space. Consider the set {a, c}. Now
mCl(mInt({a,c})) = ¢ and mInt(mCl({a,c})) = ¢ = (mCl(mInt({a,c}))) U(mInt(mCl({a,c})))
= ¢ = {a,c} is not m-y-open in X. But {a,c} C X = mIntX = mint(mécl({a,c})) =

{a, c} is m-d-preopen in X.

Note 4.8. Let (X, m) be an m-space where m satisfies Maki condition. If X is m-

extremally disconnected, then m-y-open set is m-preopen and m-J-preopen.

Definition 4.9. A fuzzy multifunction F': (X, m) — (Y, 7y) is called fuzzy
(i) upper m~vy-continuous at a point € X if for each fuzzy open set V in Y with F(z) <V,
there exists an m-y-open set U in X containing x such that F'(U) <V,
(ii) lower m-vy-continuous at a point = € X if for each fuzzy open set V in Y with F(z)qV,

there exists a m-vy-open set U in X containing x such that F'(u)q¢V, for all u € U,
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(iii) upper (lower) m-vy-continuous if F' has this property at each point of X.

Theorem 4.10. For a fuzzy multifunction F': (X, m) — (Y, 7y) where m satisfies Maki
condition, the following statements are equivalent :
a) I is fuzzy upper m-vy-continuous,

b) F(V) € myO(X), for any fuzzy open set V of Y,

(
(
(c) F~(V) € myC(X), for any fuzzy closed set V of Y,
(d) mycl(F~(B)) C F~(clB), for any B € IY,

(e) for each point x € X and each fuzzy nbd V of F(z), F™ (V) is an m-y—nbd of «,

(f) for each point z € X and each fuzzy nbd V' of F(x), there exists an m-y-nbd U of x such
that F(U) <V,

(g) mCl(mInt(F~(B))) N\mInt(mCI(F~(B))) C F~(cIB), for any B € IV,

(h) F*(intB) C mInt(mCIl(F*(B)))UmCl(mInt(FT(B))), for any B € I".

Proof. (a) = (b) Let V be a fuzzy open set of Y and x € F*(V). Then F(z) < V. By(a),
there exists an m-y-open set U containing = such that F'(U) < V. Therefore, we obtain, z €
U C (mCl(mIntU)) U(mInt(mCIU)) C (mCl(mInt(F*T(V))))U(mInt(mCl(F*(V)))) and
so we have FT(V) C (mCl(mInt(F*(V))))UmInt(mClL(FT(V)))) = FT(V) € myO(X).
(b)< (c) Follows from Theorem 3.14.

(c) = (d) Let B € IV. Then clB is fuzzy closed set in Y and so by (c), F~(cIB) € myC(X)
and so mycl(F~(clB)) C F~(clB) = m~cl(F~(B)) € myc(F~(clB)) € F~(clB).

(d) = (c) Let V be a fuzzy closed set of Y. Then ¢lV =V and so by (d), mycl(F~(V)) C
F(dV)=F (V)= F (V) e myC(X).

(b) = (e) Let x € X and V be a fuzzy nbd of F/(z). Then there exists a fuzzy open set G
of Y such that F(z) <G <V =z € F(G) C F(V). Since by (b), F(G) is m-y-open in
X, F*(V) is an m-y-nbd of .

(e)= (f) Let x € X and V be a fuzzy nbd of F(z). Put U = F*(V). By (e), U is an
m-y-nbd of x and F(U) < V.

(f) = (a) Let x € X and V be a fuzzy open set of Y with F(z) < V. Then V is a fuzzy
nbd of F(z). By (f), there exists an m-y-nbd U of x such that F(U) < V. Therefore, there
exists W € myO(X) such that z € W C U and so F(W) < F(U) <V = F(W) < V.

(c) = (g) Let B € IV. Then clB is fuzzy closed in Y and so by (c), F~(cIB) € myC(X) =

(mInt(mClUF~(B)))) N(mCl(mInt(F~(B)))) C (mInt(mCIl(F~(cIB)))) N(mCl(mInt(F~(cIB)))) C

F~(clB).
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(g) = (h)Let B € IY. Then 1y'\B € IY. By (g), (mCl(mInt(F~(1y\B)))) N(mInt(mCI(F~(1y\
B))) € F-(cl(1y\ B)) = (mCl(mInt(X\ F*(B))) \(mInt(mClX \ F*(B)))) € F~(1y \

intB) = X\((mInt(mCI(F*(B)))) UmCl(mInt(F*(B))))) = (X\(mInt(mCI(F*(B))))) N(X\
(mCl(mInt(F*(B))))) € X\F*(intB) = F*(intB) C (mInt(mCl(F*(B))) UmCl(mInt(F*(B)))).
(h) = (b) Let V be a fuzzy open set of Y. By (h), F*(intV) = F (V) C (mInt(mCI(F*(V))))
UmCl(mInt(F*(V)))) = FH(V) € myO(X).

Theorem 4.11. For a fuzzy multifunction F': (X, m) — (Y, 7y) where m satisfies Maki
condition, the following statements are equivalent :
(a) F' is fuzzy lower m-y-continuous,
(b) F~(V) € myO(X), for any fuzzy open set V of Y,
(c) FH(V) € myC(X), for any fuzzy closed set V of Y,
(d) mycl(FT(B)) C F*(cIB), for any B € IV,
(e) F(m~yclA) < cl(F(A)), for any subset A of X,
(f) mCl(mInt(F*(B))) NmInt(mCIF*T(B))) C F*(cIB), for any B € IV,
(g) F~(intB) € mInt(mCI(F~(B)))UmCl(mInt(F~(B))), for any B € IV,
(
(i

)

h) for each point € X and each fuzzy ¢-nbd V of F(x), F~(V) is an m-y—nbd of z,

) for each point x € X and each fuzzy ¢-nbd V of F(x), there exists an m-y-nbd U of z

such that F(u)qV, for all u € U.

Proof (a) = (b) Let x € X and V be a fuzzy open set of Y such that = € F~(V).

Then F(z)qV. By (a), there exists U € myO(X) containing x such that F(u)qV, for

all u €e U = U C F~(V). Thus we have z € U C (mCl(mIntU))U(mInt(mCIlU)) C

(mCl(mInt(F~(V)))) U(mInt(mCIl(EF~(V)))) = F (V) C (mCl(mInt(F~(V))))

U(mInt(mCI(F~(V)))) = F~(V) € myO(X).

(b) < (c) Follows from Theorem 3.14.

(c) = (d) Let B € IY. Then clB is fuzzy closed set of Y. By (c), F™(cIB) € myC(X) =

mycl(FY(B)) C mycl(FT(clB)) C F*(cIB).

(d) = (c) Let V be a fuzzy closed set of Y. Then clV = V. By (d) , myc(F*(V)) =

V) CF (V) =F" (V)= FH(V) e myC(X).

(¢c) = (e) Let A be a subset of X. Then cl(F(A)) is fuzzy closed set of Y. By (c),
FH(c(F(A))) € myC(X) = mycl(FF(cl(F(A)))) € F(cl(F(A))) = F(myel(F*(cl(F(A))))) <

F(PHe(F(A))) < d(F(A)) = cl(F(A)) > Fmycl(F*(F(A))) > F(mryclA).

(e) = (d) Let B € IY. Then F™(B) C X. By (e), F(mycl(F*(B))) < c(F(F*(B))) <

meycl(F
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cdB = mycl(FT(B)) C Fr(cB).

(c) = (f) Let B € IY. Then clB is fuzzy closed set of Y. By (c¢), F*(cIB) € myC(X) =
Ft(cdB) 2 (mInt(mCUF*(cIB)))) NmCl(mInt(F*(cIB)))) 2 (mint(mCIFT(B))))N
(mCl(mInt(F*(B)))).

(f) = (g) Let B € IY. Then 1y \ B € IY. By (f), F*(cl(ly \ B)) 2 (mCl(mInt(F*(1y \
B))) N(mInt(mClU(F*(1y\B)))) = F*(1y\intB) 2 (mCl(mInt(X\F~(B)))) N(mInt(mCIl(X\
F7(B)))) = X\ F~(intB) 2 (X \ (mInt(mCI(F~(B))))) N(X \ (mCl(mInt(F~(B))))) =
X\((mInt(mCI(F~(B))) UmCl(mInt(F~(B))))) = F~(intB) C (mInt(nCI(F~(B))))U
(mCl(mInt(F~(B)))).

(g) = (b) Let V be a fuzzy open set of Y. Then F~ (V) = F~(intV)) C mInt(mCIl(F~(V)))U
mCl(mInt(F~(V))) (by (2)) = F~(V) € myO(X).

(b) = (h) Let z € X and V be a fuzzy ¢-nbd of F(z). Then there exists a fuzzy open set
G of Y such that F(x)gG < V. Then z € F~(G) C F~ (V). By (b), F7(G) € myO(X) and
so F~(V) is an m-y-nbd of z.

(h) = (i) Let z € X and V be a fuzzy ¢-nbd of F(x). Put U = F~(V). By (h), U is an
m~vy-nbd of x and F(u)qV, for all u € U.

(i) = (a) Let z € X and V be a fuzzy open set of Y such that F(x)¢V. Then V is a
fuzzy ¢-nbd of F(z). By (i), there exists an m-y-nbd U of z such that F(u)q¢V, for all
u € U = U C F~ (V). Therefore, there exists W € m~yO(X) containing = such that
x €W CUandso W C F~ (V)= F(w)qV, for all w e W.

If we take m = 7, we get fuzzy upper (lower) -continuous multifunction.

Definition 4.12. For a fuzzy multifunction F' : X — Y, fuzzy multifunction yclF :
X =Y 9, acddF : X - Y 9], fcdF : X - Y [9], dlF : X — Y [6], scIlFF : X —
Y [6], pdFF : X — Y [9], opclF : X — Y [7] are defined by (yclF)(zx) = ~yelF(x),
(aclF)(x) = aclF(x), (BclF)(x) = BcF(x), (cddF)(x) = clF(x), (sclF)(x) = sclF(x),
(pcl F)(z) = pelF(x), (0pel F)(x) = dpclF(x), for all x € X

Lemma 4.13 [9]. Let F': X — Y be a fuzzy multifunction. Then we have (yclF)™(G) =
F~(Q), (aclF)~(G) = F~(G), (BcdF) (G) = F~(G), (cF)~(G) = F(Q), (sdF) (G) =
F=(Q), (pcdF)~(G) = F~(G), (0pclF)~(G) = F~(G), for each fuzzy open set G of Y.

Using Lemma 4.13, we can easily state the following theorem
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Theorem 4.14. For a fuzzy multifunction F' : (X,m) — (Y, 7y), the following state-
ments are equivalent :
(i) F is fuzzy lower m-vy-continuous,
(i) vclF is fuzzy lower m-v-continuous,
(iii) aclF' is fuzzy lower m--continuous,
(iv) BclF' is fuzzy lower m-v-continuous,
(v) sclF is fuzzy lower m-vy-continuous,
(vi) clF is fuzzy lower m-v-continuous,
(vii) pclF' is fuzzy lower m-v-continuous,
(

viil) opel F' is fuzzy lower m-+y-continuous.

S. Mutual Relationship

In this section, the mutual relationship between fuzzy upper (lower) m-y-continuous multi-

function and fuzzy multifunctions in Section 3 are established.

Remark 5.1. Using Remark 4.4, we have from Theorem 3.19 and Theorem 3.20 that
fuzzy upper (lower) m-continuous, fuzzy upper (lower) m-quasi continuous, fuzzy upper
(lower) m-precontinuous, fuzzy upper (lower) m-a-continuous multifunctions are fuzzy up-
per (lower) m-v-continuous multifunction. But the converses are not true, in general, as

shown from the following examples.

Example 5.2. Fuzzy upper m-y-continuity #- fuzzy upper m-continuity
Let X ={a,b,c}, m = {¢, X}, Y =[0,1], v = {0y, 1y, A, B} where A(y) = 0.35, B(y) =
0.4, for all y € Y. Then (X, m) and (Y, 7y) are m-space and an fts respectively. Let F' :
(X,m) — (Y, 7y) be a fuzzy multifunction defined by F(a) = A, F(b) = B, F/(c) = C where
Clyy=06forally € Y. Now FF*(A) ={zr € X : F(z) < A} = {a} ¢ m and so F is not
fuzzy upper m-continuous multifunction. But F*(A) = {a} = int(cl({a}) = X = FT(A)
is m-y-open in X. Again F'*(B) = {a,b} = int(cl({a,b}) = X = FT(B) is m-y-open in

X = F'is fuzzy upper m-y-continuous multifunction.

Example 5.3. Fuzzy lower m~y-continuity # fuzzy lower m-continuity

Let X ={a,b,c}, m ={¢, X}, Y =[0,1], v = {0y, 1y, A, B} where A(y) = 0.35, B(y) =
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0.5, for all y € Y. Then (X, m) and (Y, 7y) are m-space and an fts respectively. Let F' :
(X,m) — (Y, 7y) be a fuzzy multifunction defined by F(a) = A, F(b) = B, F/(¢) = C where
Cly)y=06forally €Y. Now F(A) ={xr € X : F(z)gA} = p e m = F~(A) € myO(X),
F~(B) ={zx € X : F(z)qgB} = {c}. Now int(cl({c})) = X = F~(B) is m-y-open in
X = F is fuzzy lower m-y-continuous multifunction. But F'~(B) ¢ m = F is not fuzzy

lower m-continuous multifunction.

Example 5.4. Fuzzy upper m-y-continuity #- fuzzy upper m-quasi continuity
Consider Example 5.2. Here Ft(A) = {a} € mCl(mInt({a})) = ¢ = F is not fuzzy up-

per m-quasi continuous multifunction though it is fuzzy upper m-y-continuous multifunction.

Example 5.5. Fuzzy lower m~y-continuity # fuzzy lower m-quasi continuity
Consider Example 5.3. Here F'~(B) = {c¢} € mCl(mInt({c})) = ¢ = F~(B) is not m-
semiopen in X = F is not fuzzy lower m-quasi continuous multifunction though it is fuzzy

lower m-vy-continuous multifunction.

Example 5.6. Fuzzy upper m-vy-continuity # fuzzy upper m-a-continuity
Consider Example 5.2. Here FT(A) = {a} € mInt(mCl(mInt({a}))) = ¢ = FT(A) is not
m~a-open in X = F' is not fuzzy upper m-a-continuous multifunction though it is fuzzy

upper m-vy-continuous multifunction.

Example 5.7. Fuzzy lower m-v-continuity # fuzzy lower m-a-continuity
Consider Example 5.3. Here F~(B) = {c} € mInt(mCl(mInt({c}))) = ¢ = F~(B) is not
m-a-open X = F'is not fuzzy lower m-a-continuous multifunction though it is fuzzy lower

m-~y-continuous multifunction.

Example 5.8. Fuzzy upper m-y-continuity #- fuzzy upper m-precontinuity
Let X = {a,b,c}, m = {¢, X, {b},{c}}, Y = [0,1], v = {0y, 1y, A, B} where A(y) =
0.35, B(y) =04, for all y € Y. Then (X, m) and (Y, 7y ) are m-space and an fts respectively.
Let F: (X,m) — (Y, 7y) be a fuzzy multifunction defined by F(a) = F(c) = A, F(b) = B.
Now FT(A) = {a,c}. Now mInt(mCl({a,c})) = mInt({a,c}) = {c} 2 {a,c} = FT(A)
is not m-preopen in X = F'is not fuzzy upper m-precontinuous multifunction though it is

fuzzy upper m-vy-continuous multifunction.
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Example 5.9. Fuzzy lower m-~y-continuity # fuzzy lower m-precontinuity
Let X = {a,b,c}, m = {¢,X,{a},{c}}, Y = [0,1], v = {0y, 1y, A} where A(y) = 0.7,
for all y € Y. Then (X,m) and (Y,7y) are m-space and an fts respectively. Let F :
(X,m) — (Y, 7y) be a fuzzy multifunction defined by F'(a) = A, F(b) = B, F(c) = C where
B(y) = 0.4,C(y) = 0.01 for all y € Y. Now F~(A) = {a,b}. Then mCl(mInt({a,b})) =
mCl({a}) = {a,b} = F~(A) € myO(X) = F is lower m-y-continuous multifunction. But
miInt(mCl({a,b})) = mint({a,b}) = {a} 2 {a,b} = F~(A) is not m-preopen in X = F is

not fuzzy lower m-precontinuous multifunction.

Remark 5.10. Fuzzy upper (lower) m-v-continuity and fuzzy upper (lower) m-d-precontinuity

are independent concepts follow from next examples.

Example 5.11. Fuzzy upper m-y-continuity # fuzzy upper m-J-precontinuity
Consider Example 5.2. Here F(A) = {a}. Now mdcl({a}) = {z € X : {a} NmInt(mCIU) #
o, U em,x e U} ={a}, mInt(micl({a})) = ¢ 2 {a} = {a} is not m-d-preopen in X = F
is not fuzzy upper m-é-precontinuous multifunction though it is fuzzy upper m-~-continuous

multifunction.

Example 5.12. Fuzzy lower m-v-continuity % fuzzy lower m-é-precontinuity
Consider Example 5.3. Here F~(B) = {c}. Now mdcl({c}) = {c} = mInt(mdcl({c})) =
¢ 2 {c} = F is not fuzzy lower m-d-precontinuous multifunction though it is fuzzy lower

m-~vy-continuous multifunction.

Example 5.13. Fuzzy upper m-d-precontinuity #- fuzzy upper m-vy-continuity
Let X = {a,b,c}, m = {¢, X, {b}}, Y = [0,1], v = {0y, 1y, A} where A(y) = 0.5 for all
y € Y. Then (X,m) and (Y, 7y) are m-space and an fts respectively. Let F' : (X,m) —
(Y, 7y) be defined by F(a) = F(c¢) = A, F(b) = B, where B(y) = 0.6 for all y € Y. Now
Ft(A) ={a,c}. Then mInt(mdicl({a,c})) = X D {a,c} = {a,c} is m-d-preopen in X = F
is fuzzy upper m-o-precontinuous multifunction. But mInt(mCl({a,c})) = mint({a,c}) =
¢ 2 {a,c} = FT(A) is not m-y-open in X = F is not fuzzy upper m-y-continuous multi-

function.
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Example 5.14. Fuzzy lower m-d-precontinuity # fuzzy lower m-vy-continuity
Let X = {a,b,c}, m = {¢, X, {b}}, Y = [0,1], v = {0y, 1y, A} where A(y) = 0.6 for all
y € Y. Then (X,m) and (Y, 7y) are m-space and an fts respectively. Let F : (X,m) —
(Y, 7y) be defined by F(a) = F(c) = A, F(b) = B, where B(y) = 0.3 for all y € Y. Now
F~(A) ={a,c}. Then mint(mocl({a,c})) = X D {a,c} = {a,c} is m-6-preopen in X = F
is fuzzy lower m-d-precontinuous multifunction. Now mInt(mCl({a,c})) = mint({a,c}) =
¢, mCl(miInt({a,c})) = ¢ = mint(mCl({a,c})) UmCl(mInt({a,c})) = ¢ = {a,c} is not

m-vy-open in X = F is not fuzzy lower m-~-continuous multifunction.

Remark 5.15. It is clear from Theorem 3.21 and Theorem 3.22 that fuzzy upper (lower)
m-irresolute, fuzzy upper (lower) m-preirresolute, fuzzy upper (lower) m-a-irresolute multi-
functions are fuzzy upper (lower) m-vy-continuous multifunction. But the converses are not
true, in general, follow from next examples. Also fuzzy upper (lower) m-vy-continuous multi-
function and fuzzy upper (lower) m-d-preirresolute multifunction are independent concepts

follow from next examples.

Example 5.16. Fuzzy upper m-y-continuous multifunction % fuzzy upper m-irresolute
multifunction
Consider Example 5.2. Here the fuzzy set A being fuzzy open in Y is fuzzy semiopen in Y.
Now Ft(A) = {a} € mCl(mInt({a})) = ¢ = F*(A) is not m-semiopen in X = F is not
fuzzy upper m-irresolute multifunction though it is fuzzy upper m-vy-continuous multifunc-

tion.

Example 5.17. Fuzzy lower m-vy-continuous multifunction % fuzzy lower m-irresolute
multifunction
Consider Example 5.3. Here the fuzzy set B is fuzzy semiopen in Y. Now F'~(B) = {c} ¢
mCl(mInt({c})) = ¢ = F~(B) is not m-semiopen in X = F is not fuzzy lower m-irresolute

multifunction though it is fuzzy lower m-vy-continuous multifunction.

Example 5.18. Fuzzy upper m-vy-continuous multifunction #- fuzzy upper m-preirresolute

multifunction
Let X = {a,b,c}, m = {¢, X, {b},{c}}, Y = [0,1], v = {0y, 1y, A, B} where A(y) =
0.35,B(y) = 0.4, for all y € Y. Then (X, m) and (Y, 7v) are m-space and an fts respectively.
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Let F : (X,m) — (Y,7y) be defined by F(a) = F(c) = A, F(b) = B. Now Ft(A4) =
{a,c}. Then mCl(mInt({a,c})) = mCl({c}) = {a,c} = F(A) C (mCl(mInt({a,c})))U
(mInt(mCl({a,c}))) = FT(A) € myO(X), F(B) = {b} € mandso F*(B) € myO(X) =
F' is fuzzy upper m-vy-continuous multifunction. Consider the fuzzy set D defined by
D(y) = 0.37 for all y € Y. Then D is fuzzy preopen in Y. Now F*(D) = {a,c}. Now
mInt(mCl({a,c})) = mInt({a,c}) = {c} 2 {a,c} = F*(D) is not m-preopen in X = F is

not fuzzy upper m-preirresolute.

Example 5.19. Fuzzy lower m-y-continuous multifunction # fuzzy lower m-preirresolute
multifunction
Let X = {a,b,c},m ={¢, X,{c}}, Y =[0,1], v = {Oy, 1y, A, B} where A(y) = 0.4, B(y) =
0.44 for all y € Y. Then (X, m) and (Y, 7y) are m-space and an fts respectively. Let
F:(X,m)— (Y,7y) be defined by F(a) = A, F(b) = B, F(c) = C where C(y) = 0.39 for all
y €Y. Here F7(A) = F~(B) = ¢ € m = F is fuzzy lower m-vy-continuous multifunction.
Consider the fuzzy set D defined by D(y) = 0.61 for all y € Y. Then int(clD) =1y > D =
D is fuzzy prepen in Y. Now F~ (D) = {a,b}. Then mInt(mCl({a,b})) = mint({a,b}) =
¢ 2 {a,b} = F~(D) is not m-preopen in X = F is not fuzzy lower m-preirresolute multi-

function.

Example 5.20. Fuzzy upper m-y-continuous multifunction #- fuzzy upper m-a-irresolute
multifunction
Consider Example 5.18. Here D is fuzzy a-open in Y. Now FT(D) = {a,c}. Then
mInt(mCl(mInt({a,c})) = mInt(mCl({c})) = mint({a,c}) = {c} 2 {a,c} = FT(D)
is not m-a-open in X = F' is not fuzzy upper m-a-irresolute multifunction though it is

fuzzy upper m-~-continuous multifunction.

Example 5.21. Fuzzy lower m-v-continuous multifunction - fuzzy lower m-a-irresolute
multifunction
Let X = {a,b,c}, m = {¢, X,{a},{c}}, Y =[0,1], v = {0y, 1y, A} where A(y) = 0.7 for
all y € Y. Then (X,m) and (Y, 7y) are m-space and an fts respectively. Let F': (X, m) —
(Y, 7v) be defined by F(a) = A, F(b) = B, F(c) = C where B(y) = 0.2,C(y) = 0.01 for
all y € Y. Now F~(A) = {a} € m = F(A) € myO(X) = F is fuzzy lower m-v-
continuous multifunction. Consider the fuzzy set D defined by D(y) = 0.81, for all y € Y.
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Then D is fuzzy a-open in Y. Now F~ (D) = {a,b}. Then mInt(mCl(miInt({a,b}))) =
mInt(mCl({a})) = mint({a,b}) = {a} 2 {a,b} = F~(D) is not m-a-open in X = F' is

not fuzzy lower m-a-irresolute multifunction.

Example 5.22. Fuzzy upper m-y-continuous multifunction #- fuzzy upper m-d-preirresolute
multifunction
Consider Example 5.18. Here D is fuzzy d-preopen in Y. Now F*(D) = {a,c}. Then
mlInt(mdcl({a,c})) = mInt({a,c}) = {c} 2 {a,c} = FT(D) is not m-§-preopen in X = F
is not fuzzy upper m-o-preirresolute multifunction though it is fuzzy upper m-~-continuous

multifunction.

Example 5.23. Fuzzy lower m-v-continuous multifunction #- fuzzy lower m-d-preirresolute

multifunction

Let X = {a,b,c}, m = {¢, X, {b},{c}}, Y = [0,1], v = {0y, 1y, A, B} where A(y) =
0.4, B(y) = 0.44, for all y € Y. Then (X, m) and (Y, 7y ) are m-space and an fts respectively.
Let F: (X,m) — (Y, 7y) be defined by F(a) = A, F(b) = B, F(c) = C where C(y) = 0.29
for all y € Y. Then F~(A) = F~(B) = ¢ € m = F is fuzzy lower m-y-continuous mul-
tifunction. Now consider the fuzzy set D defined by D(y) = 0.61 for all y € Y. Then
D is fuzzy d-preopen in Y. Now F~ (D) = {a,b}. mInt(mocl({a,b})) = mInt({a,b}) =
{b} 2 {a,b} = F~(D) is not m-J-preopen in X = F' is not fuzzy lower m-d-preirresolute

multifunction.

Example 5.24. Fuzzy upper m-o-preirresolute multifunction # fuzzy upper m-v-
continuous multifunction
LetX = {a,b,c}, m ={¢, X,{c}}, Y =1[0,1], 7v = {0y, 1y, A} where A(y) = 0.4 for all y €
Y. Then (X, m) and (Y, 7y) are m-space and an fts respectively. Let F': (X,m) — (Y, 7y)
be defined by F(a) = F(b) = B, F(¢) = D where B(y) = 0.3, D(y) = 0.7 for all y € Y. Now
the collection of all fuzzy d-preopen sets in Y is {0y, 1y, U, V} where U < AV > 1y \ A.
Then F*(U) = ¢, it U < B, F*(U) = {a,b},if B< U < D, F*(U) = X, it U > D.
Then ¢, X are obviously m-d-preopen in X. Now mlInt(mdcl({a,b})) = mIntX = X D
{a,b} = {a,b} is m-0-preopen in X = F*(U) is m-d-preopen in X for every fuzzy o-
preopen set U of Y. But mInt(mCl({a,b})) = mInt({a,b}) = ¢, mCl(mInt({a,b})) =
¢ = mint(mCl({a,b}))UmCl(mInt({a,b})) = ¢ 2 {a,b} = {a,b} is not m-y-open in
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X = F'is not fuzzy upper m-~v-continuous multifunction.

Example 5.25. Fuzzy lower m-d-preirresolute multifunction # fuzzy lower m-y-continuous

multifunction

Let X ={a,b,c}, m={¢, X, {c}}, Y =1[0,1], v = {Oy, 1y, A} where A(y) = 0.5 for all y €
Y. Then (X, m) and (Y, 7y) are m-space and an fts respectively. Let F': (X, m) — (Y, 7y)
be defined by F(a) = F(b) = B, F(c) = C where B(y) = 0.51,C(y) = 0.3 for ally € Y. Any
fuzzy set in Y is fuzzy d-preopen in Y. Now F~(U) = ¢, if U < 1y \ B, F~(U) = {a, b}, if
Iy\B<U<1y\C, F~(U)=X,if U > 1y \ C. Then as in Example 5.24, F'~(U) is m-6-
preopen in X = F'is fuzzy lower m-d-preirresolute multifunction. But {a, b} is not m-y-open

in X as shown in Example 5.24. So F'is not fuzzy lower m-7-continuous multifunction.

6. Fuzzy Upper (Lower) m-y-Continuous Multifunction:

More Characterizations and Applications

In this section fuzzy upper (lower) m-y-continuous multifunction is characterized by fuzzy
upper (lower) nbd [9] of a fuzzy set and also some applications of these fuzzy multifunctions

have been shown.

Definition 6.1 [9]. A fuzzy set A in an fts Y is said to be a fuzzy lower (upper) nbd of
a fuzzy set B of Y if there exists a fuzzy open set V of Y such that BqV (resp., B < V) and

V 41y \ A).

Theorem 6.2. A fuzzy multifunction F' : (X,m) — (Y,7y) is fuzzy upper m-v-

continuous on X iff for each point zy € X and each fuzzy upper nbd M of F(xzq), FT(M) is
an m-vy-nbd of x.
Proof. Let F be fuzzy upper m-vy-continuous multifunction on X. Then for any xy € X and
for any fuzzy upper nbd M of F(x¢), there exists a fuzzy open set V of Y such that F(zy) <V
and V' 4(1y\M) =V < M. Since F' is fuzzy upper m-v-continuous multifunction, there ex-
ists U € myO(X) containing x such that U C F*(V) = F(U) <V <M = U C F"(M).
Therefore, zg € U C FH(M) = F*(M) is an m~-y-nbd of x.

Conversely, let for any zop € X and any fuzzy open set V of Y with F(zg) < V, we
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have V' /g(1y \ V). Therefore, V is a fuzzy upper nbd of F(xg). Then by hypothesis,
FT(V) is an m-y-nbd of xy. Then there exists U € myO(X) containing xy such that

g €U CFH (V)= F(U) <V = F is fuzzy upper m-y-continuous multifunction.

Theorem 6.3. A fuzzy multifunction F': (X, m) — (Y, 7v) is fuzzy lower m-7y-continuous

on X iff for each point xy € X and each fuzzy lower nbd M of F(xy), F'~(M) is an m-y-nbd
of zg.
Proof. Let F' be fuzzy lower m-v-continuous multifunction on X. Then for any zy € X
and for any fuzzy lower nbd M of F(zg), there exists a fuzzy open set V' of Y such that
F(zo)gV and V' g(1y \ M) = V < M. Since F is fuzzy lower m-vy-continuous multifunc-
tion, there exists U € mvyO(X) containing x such that U C F~ (V) C F~(M). Therefore,
xg € U C F~(M)= F~ (M) is an m-y-nbd of z.

Conversely, let for any zp € X and any fuzzy open set V of Y with F(xy)gV. Since
V 41y \'V), V is a fuzzy lower nbd of F(zg). Then by hypothesis, F~ (V') is an m-y-nbd
of zg. Then there exists U € myO(X) containing xy such that zo € U C F~ (V) = F(u)qV,

for all u € U = F is fuzzy lower m-v-continuous multifunction.

Definition 6.4. An m-space (X, m) is said to be m-vy-compact if for every covering of

X by m~y-open sets of X has a finite subcover.

Theorem 6.5. Let F' : (X,m) — (Y,7y) be a fuzzy upper m-y-continuous surjective
multifunction and F'(z) be a fuzzy compact set of Y for each x € X. If X is m-y-compact
space, then Y is fuzzy compact space.

Proof. Let A = {A, : @ € A} be a fuzzy open cover of Y. Now for each z € X, F(x) is
fuzzy compact in Y and so there is a finite subset A, of A such that F(z) < U{A, : o € A}
Let A, = U{As : @ € A, }. Then F(z) < A(x) where A, is a fuzzy open set of Y. Since F
is fuzzy upper m-v-continuous multifunction, there exists U, € myO(X) containing = such
that U, € F*(A;). Then U = {U, : x € X} is a cover of X by m-vy-open sets of X. Since X

is m-v-compact, there exists finitely many points x1, xs, ..., z,, of X such that X = U Us,.
i=1

As F is surjrctive, 1y = F(X) = F(|JU,,) = JF(U,) < A =J U Aa =Y is
i=1 i=1 i=1 i=1 ael,,
fuzzy compact space.
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Definition 6.6 [15]. An fts (Y, 7y) is said to be FFNC-space if every fuzzy regular open

cover of Y has a finite subcover.

Remark 6.7. As every fuzzy regular open set is fuzzy open, we can set the following

theorem easily.

Theorem 6.8. Let F' : (X,m) — (Y,7y) be a fuzzy upper m-y-continuous surjective
multifunction and F'(z) be a fuzzy compact set of Y for each z € X. If X is m-y-compact

space, then Y is F'NC-space.

Theorem 6.9. Every m-~-closed subset of an m-y-compact space is m-vy-compact.
Proof. Let A be an m-vy-closed subset of an m-y-compact space (X, m). Let A = {4,
o € A} be a covering of A by m-v-open sets of X. Then (X \ A)U(|J Aa) is a covering of

aEN

X by m~y-open sets of X. As X is m-y-compact, there exists a finite subset Ag of A such
that (X \ A)U U A,) covers X. Now discarding the set X \ A, we get the finite subcover

aclg

{A, 1 a € Ay} of A by m-v-open sets of X. Hence A is m-y-compact.

Definition 6.10 [14]. For a fuzzy multifunction F': X — Y, the fuzzy graph multifunc-
tion Gp: X — X x Y of F is defined as Gr(x) = the fuzzy set x; x F(z) of X x Y, where
x1 is the fuzzy set in X, whose value is 1 at x € X and 0 at other points of X. We shall
write {z} x F(z) for z; x F(x).

Theorem 6.11. When X is product related to Y, a fuzzy multifunction F' : (X, m) —
(Y, 7y) is fuzzy upper m-vy-continuous if its fuzzy graph multifunction Gg : X — X x Y is
fuzzy upper m-vy-continuous multifunction.

Proof. Let G be a fuzzy upper m-v-continuous multifunction. Let x € X and V' be a fuzzy
open set of Y such that F'(z) < V. Then Gp(z) < X xV and X xV is easily seen to be open
in X xY. By hypothesis, there exists U € myO(X) containing x such that Gp(U) < X x V.
Now for any z € U and any y € Y, [F(2)|(y) = [Gr(2)](z,y) < (X x V)(z,y) = V(y), ie.,
[F(2)](y) < V(y), forally € Y = F(z) <V, forany z € U = F(U) <V = F is fuzzy

upper m-vy-continuous multifunction.
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Definition 6.12. The m-vy-frontier of a subset A of an m-space (X, m), denoted by
myFr(A), is defined by myFr(A) = myclANmycl(X \ A) = myclA\ myint A.

Theorem 6.13. Let F : (X,m) — (Y,7y) be a fuzzy multifunction where m sat-

isfies Maki condition. Let A = {z € X : F is not fuzzy upper m-y-continuous at z},
B =U{myFr(F*(V)): F(z) <V and V is fuzzy open in Y'}. Then A = B.
Proof. Let x € X be such that F' is not fuzzy upper m-y-continuous at x. Then there
exists a fuzzy open set V of Y with F'(z) <V such that U € F*(V), for all U € myO(X)
containing r = UNX\FT(V)) £ ¢ =z € myc( X\ FT(V)) = X \myint(F+(V)) = x ¢
myint(FT(V)). But @ € FT(V) C mycl(F+(V)). Therefore, x € myFr(F*(V)).

Conversely, let x € X and V be a fuzzy open set of Y with F(z) < V such that
x € myFr(F*T(V)). If possible, let F' be fuzzy upper m-y-continuous at z. Then there
exists U € myO(X) containing z such that U C F*(V). Then x € U = mvyintU C
myint(FH(V)) = « € myint(FH(V)) = x ¢ myFr(F*(V)), a contradiction and hence F

is not fuzzy upper m-vy-continuous at x.

Theorem 6.14. Let F : (X,m) — (Y,7y) be a fuzzy multifunction where m sat-

isfies Maki condition. Let A = {z € X : F is not fuzzy lower m-v-continuous at x},
B =U{myFr(F~(V)): F(z)qV and V is fuzzy open in Y'}. Then A = B.
Proof. Let x € X be such that F' is not fuzzy lower m-v-continuous at . Then there
exists a fuzzy open set V of Y with F(z)qV such that U € F~(V), for all U € myO(X)
containing z = UNX\F~ (V) # ¢ =z € myc(X\F~(V)) = X \myint(F~(V)) =z ¢
myint(F~(V)). But x € F~(V) C mycl(F~(V)). Therefore, x € myFr(F~—(V)).

Conversely, let x € X and V be a fuzzy open set of Y with F(x)qV such that z €
myFr(F~(V)). If possible, let F' be fuzzy lower m-y-continuous at xz. Then there ex-
ists U € myO(X) containing x such that U C F~(V). Then x € U = myintU C
myint(F~(V)) = x € myint(F~(V)) = x ¢ myFr(F~(V)), a contradiction and hence

F'is not fuzzy lower m-v-continuous at x.
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