m-γ-Continuous Multifunction in Fuzzy Setting

Anjana Bhattacharyya
Department of Mathematics, Victoria Institution (College)
78 B, A.P.C. Road, Kolkata - 700009, India.
E-mail: anjanabhattacharyya@hotmail.com

Abstract

In this paper a new type of fuzzy multifunction is introduced between a set having minimal structure and a fuzzy topological space by introducing m-γ-open set in m-space. Several characterizations and properties of this fuzzy multifunction are studied here. Also the mutual relationships of this newly defined fuzzy multifunction with the fuzzy multifunctions defined in [8] are established here.

AMS Subject Classifications: 54A40, 54C99.

Keywords: m-γ-open set, m-γ-compact space, m-γ-frontier of a set, fuzzy compact space, m-extremally disconnected space.

1. Introduction

Fuzzy multifunction, a function between a topological space and a fuzzy topological space, is introduced by Papageorgiou [18]. He also defined fuzzy upper and lower inverses in [18] though fuzzy lower inverse was redefined by Mukherjee and Malakar [14] suitably. Throughout this paper the definition of fuzzy upper inverse given by Papageorgiou and the definition of fuzzy lower inverse given by Mukherjee and Malakar are used. Noiri and Popa [17] introduced minimal structure (m-structure, for short) on a non-empty set X whereas
fuzzy minimal structure was introduced by Alimohammady and Roohi [1]. In [8], Bhat-
tacharyya introduced fuzzy upper (lower) M-continuous multifunctions between a set having
m-structure and a set having fuzzy minimal structure. In this paper we introduce a fuzzy
multifunction between a set having m-structure and a fuzzy topological space.

2. Preliminaries

Let \(Y \) be a non-empty set and \(I = [0, 1] \). Then a fuzzy set \([23]\) \(A \) in \(Y \) is a mapping from
\(Y \) into \(I \). The set of all fuzzy sets in \(Y \) is denoted by \(I^Y \). For a fuzzy set \(A \) in \(Y \), the
support of \(A \), denoted by \(\text{supp} A \) [23] and is defined by \(\text{supp} A = \{ y \in Y : A(y) \neq 0 \} \). A
t fuzzy point [21] with the singleton support \(y \in Y \) and the value \(t \) \((0 < t \leq 1) \) at \(y \) will be
denoted by \(y_t \). \(0_Y \) and \(1_Y \) are the constant fuzzy sets taking respectively the constant values
0 and 1 on \(Y \). The complement of a fuzzy set \(A \) in \(Y \) will be denoted by \(1_Y \setminus A \) [23] and is
defined by \((1_Y \setminus A)(y) = 1 - A(y) \), for all \(y \in Y \). For two fuzzy sets \(A \) and \(B \) in \(Y \), we write
\(A \leq B \) iff \(A(y) \leq B(y) \), for each \(y \in Y \), while we write \(AqB \) to mean \(A \) is quasi-coincident
(q-coincident, for short) with \(B \) [21] if there exists \(y \in Y \) such that \(A(y) + B(y) > 1 \); the
negation of \(AqB \) is written as \(A \nq B \). \(\text{cl} A \) and \(\text{int} A \) of a set \(A \) in \(X \) (respectively, a fuzzy
set \(A \) [23] in \(Y \)) respectively stand for the closure and interior of \(A \) in \(X \) (respectively, fuzzy
closure and fuzzy interior of \(A \) in \(Y \)). A fuzzy set \(A \) in \(Y \) is called fuzzy regular open [3]
(resp., fuzzy semiopen [3], fuzzy \(\beta \)-open [4], fuzzy \(\alpha \)-open [10], fuzzy \(\gamma \)-open [9]) if
\(\text{int} \text{cl} A = A \) (resp., \(A \leq \text{cl} \text{int} A, A \leq \text{cl} \text{int} \text{cl} A, A \leq \text{int} \text{cl} A, A \leq (\text{cl}(\text{int} A)) \setminus (\text{int}(\text{cl} A))) \). The complement of a fuzzy semiopen (resp., fuzzy \(\beta \)-open,
fuzzy \(\alpha \)-open, fuzzy \(\gamma \)-open) set is called fuzzy semiclosed [3] (resp., fuzzy \(\beta \)-closed,
fuzzy \(\alpha \)-closed [10], fuzzy preclosed [16], fuzzy \(\gamma \)-closed [9]). The intersection of all fuzzy semiclosed (resp., fuzzy \(\beta \)-closed, fuzzy \(\alpha \)-closed, fuzzy preclosed, fuzzy \(\gamma \)-closed) sets containing a fuzzy set \(A \) in \(Y \) is called fuzzy semiclosure [3] (resp., fuzzy \(\beta \)-closure [4],
fuzzy \(\alpha \)-closure [10], fuzzy preclosure [16], fuzzy \(\gamma \)-closure [9]) of \(A \) and is denoted by \(\text{ scl} A \)
(resp., \(\beta \text{cl} A, \alpha \text{cl} A, \text{pcl} A, \gamma \text{cl} A \)). A fuzzy set \(A \) in \(Y \) is called a fuzzy neighbourhood (nbd, for
short) [21] of a fuzzy set \(B \) in \(Y \) if there is a fuzzy open set \(U \) in \(Y \) such that \(B \leq U \leq A \). A
fuzzy set \(B \) is called a quasi neighbourhood (q-nbd, for short) [21] of a fuzzy set \(A \) if there is a
fuzzy open set \(U \) in \(Y \) such that \(AqU \leq B \). If, in addition, \(B \) is fuzzy regular open, then \(B \) is
called a fuzzy regular open q-nbd of \(A \). A fuzzy point \(x_\alpha \) is said to be a fuzzy \(\delta \)-cluster point of
a fuzzy set \(A \) in an fts \(Y \) if every fuzzy regular open q-nbd \(U \) of \(x_\alpha \) is q-coincident with
The union of all fuzzy \(\delta \)-cluster points of a fuzzy set \(A \) is called the fuzzy \(\delta \)-closure of \(A \) and is denoted by \(\delta cl A \) \cite{12}. A fuzzy set \(A \) in an fts \(Y \) is called fuzzy \(\delta \)-preopen \cite{5} if \(A \subseteq \text{int}(\delta cl A) \). The complement of a fuzzy \(\delta \)-preopen set is called fuzzy \(\delta \)-preclosed \cite{5}. The intersection of all fuzzy \(\delta \)-preclosed sets containing a fuzzy set \(A \) in an fts \(Y \) is called fuzzy \(\delta \)-preclosure of \(A \) and is denoted by \(\delta pcl A \) \cite{5}. A subset \(A \) of an ordinary topological space \(X \) is called \(\gamma \)-open \cite{9,20} (formerly known as \(b \)-open \cite{2}) if \(A \subseteq \text{cl}(\text{int}(A)) \cup \text{int}(\text{cl}A) \).

3. Some Well Known Definitions, Lemmas and Theorems

In this section, we first recall some definitions, lemmas and theorems for ready references.

Definition 3.1 [19, 20]. A subfamily \(m \) of the power set \(P(X) \) of a non empty set \(X \) is called a minimal structure (\(m \)-structure, for short) on \(X \) if \(\emptyset \in m \) and \(X \in m \). \((X, m)\) is called an \(m \)-space. The members of \(m \) are called \(m \)-open and the complement of an \(m \)-open set is called \(m \)-closed.

Definition 3.2 [13]. Let \((X, m)\) be an \(m \)-space. For a subset \(A \) of \(X \), the \(m \)-closure and \(m \)-interior of \(A \) are defined as follows :

\[
\text{mCl} A = \bigcap \{ F : F \supseteq A, X \setminus F \in m \}
\]

\[
\text{mInt} A = \bigcup \{ U : U \subseteq A, U \in m \}
\]

Remark 3.3. From Definition 3.1 and Definition 3.2, it is to be noted that \(\text{mInt} A \) (resp., \(\text{mCl} A \)) may not be \(m \)-open (resp., \(m \)-closed) in an \(m \)-space \((X, m)\). But if we assume that \(m \) is closed under arbitrary union (this condition is known as Maki condition \cite{13}), then immediately, we have that \(\text{mInt} A \) is an element of \(m \) and hence \(A \subseteq X \) is \(m \)-open if and only if \(\text{mInt} A = A \) and \(m \)-closed if and only if \(\text{mCl} A = A \).

Lemma 3.4 [13]. Let \((X, m)\) be an \(m \)-space. For two subsets \(A, B \) of \(X \), the following properties hold :

(i) \(\text{mCl}(X \setminus A) = X \setminus \text{mInt} A, \text{mInt}(X \setminus A) = X \setminus \text{mCl} A \),

(ii) If \(X \setminus A \in m \), then \(\text{mCl} A = A \) and if \(A \in m \), then \(\text{mInt} A = A \).
(iii) $m\text{Cl}(\emptyset) = \emptyset, m\text{Int}(\emptyset) = \emptyset, m\text{Cl}(X) = X, m\text{Int}(X) = X$,
(iv) If $A \subset B$, then $m\text{Cl}(A) \subset m\text{Cl}(B)$ and $m\text{Int}(A) \subset m\text{Int}(B)$,
(v) $A \subset m\text{Cl}(A)$ and $m\text{Int}(A) \subset A$
(vi) $m\text{Cl}(m\text{Cl}A) = m\text{Cl}A$ and $m\text{Int}(m\text{Int}A) = m\text{Int}A$.

Lemma 3.5 [19]. Let (X, m) be an m-space and A, a subset of X. Then $x \in m\text{Cl}A$ if and only if $U \cap A \neq \emptyset$ for every $U \in m$ containing x.

Definition 3.6 [22]. Let (X, m) be an m-space. A subset A of X is said to be
(i) m-regular if $A = m\text{Int}(m\text{Cl}A)$,
(ii) m-semiopen if $A \subseteq m\text{Cl}(m\text{Int}A)$,
(iii) m-α-open if $A \subseteq m\text{Int}(m\text{Cl}(m\text{Int}A))$,
(iv) m-preopen if $A \subseteq m\text{Int}(m\text{Cl}A)$.

The complement of the above mentioned sets are called their respective closed sets.

Definition 3.7 [22]. Let (X, m) be an m-space and $A \subseteq X$. The m-δ-closure and the m-δ-interior of the set A, are defined, respectively as :

$m\delta\text{cl}A = \{ x \in X : A \cap m\text{Int}(m\text{Cl}U) \neq \emptyset, \text{ for all } U \in m, x \in U \}$

$m\delta\text{int}A = \bigcup \{ W : W \subseteq A, W \text{ is } m - \text{regular open set in } X \}$

Definition 3.8 [22]. A subset A of an m-space (X, m) is called
(i) m-δ-open if $A = m\delta\text{Int}A$,
(ii) m-δ-preopen if $A \subseteq m\text{Int}(m\delta\text{Cl}A)$.

The complement of the above mentioned sets are called their respective closed sets.

Definition 3.9 [22]. An m-space (X, m) is said to be m-extremally disconnected if the m-closure of all m-open sets of X is m-open.

Definition 3.10 [11]. Let A be a fuzzy set in an fts Y. A collection \mathcal{U} of fuzzy sets in Y is called a fuzzy cover of A if $\sup \{ U(x) : U \in \mathcal{U} \} = 1$ for each $x \in \text{supp}A$. If, in addition, the members of \mathcal{U} are fuzzy open, then \mathcal{U} is called a fuzzy open cover of A. In particular, if
\(A = 1_Y \), we get the definition of fuzzy cover (resp., fuzzy open cover) of the fts \(Y \).

Definition 3.11 [11]. A fuzzy cover \(\mathcal{U} \) of a fuzzy set \(A \) in an fts \(Y \) is said to have a finite subcover \(\mathcal{U}_0 \) if \(\mathcal{U}_0 \) is a finite subcollection of \(\mathcal{U} \) such that \(\bigcup \mathcal{U}_0 \geq A \). Clearly, if \(A = 1_Y \), in particular, then the requirements on \(\mathcal{U}_0 \) is \(\bigcup \mathcal{U}_0 = 1_Y \).

Definition 3.12 [11]. An fts \(Y \) is said to be fuzzy compact if every fuzzy open cover of \(Y \) has a finite subcover.

Definition 3.13 [18]. Let \((X, \tau)\) and \((Y, \tau_Y)\) be respectively an ordinary topological space and an fts. We say that \(F : X \to Y \) is a fuzzy multifunction if corresponding to each \(x \in X \), \(F(x) \) is a unique fuzzy set in \(Y \).

Henceforth by \(F : X \to Y \) we shall mean a fuzzy multifunction in the above sense.

Definition 3.14 [18, 14]. For a fuzzy multifunction \(F : X \to Y \), the upper inverse \(F^+ \) and lower inverse \(F^- \) are defined as follows:
For any fuzzy set \(A \) in \(Y \), \(F^+(A) = \{ x \in X : F(x) \leq A \} \) and \(F^-(A) = \{ x \in X : F(x)qA \} \).

There is a following relationship between the upper and the lower inverses of a fuzzy multifunction.

Theorem 3.15 [14]. For a fuzzy multifunction \(F : X \to Y \), we have \(F^- (1_Y \setminus A) = X \setminus F^+(A) \), for any fuzzy set \(A \) in \(Y \).

Definition 3.16 [9]. A fuzzy multifunction \(F : X \to Y \) is called fuzzy
(i) upper \(\gamma \)-continuous at a point \(x \in X \) if for each fuzzy open set \(V \) in \(Y \) with \(F(x) \leq V \), there exists a \(\gamma \)-open set \(U \) in \(X \) containing \(x \) such that \(F(U) \leq V \),
(ii) lower \(\gamma \)-continuous at a point \(x \in X \) if for each fuzzy open set \(V \) in \(Y \) with \(F(x)qV \), there exists a \(\gamma \)-open set \(U \) in \(X \) containing \(x \) such that \(F(u)qV \), for all \(u \in U \),
(iii) upper (lower) \(\gamma \)-continuous if \(F \) has this property at each point of \(X \).

Definition 3.17 [8]. A fuzzy multifunction \(F : (X, m) \to (Y, \tau_Y) \) is said to be fuzzy
(i) upper \(m \)-continuous (resp., upper \(m \)-quasi continuous, upper \(m \)-precontinuous, upper...
m-δ-precontinuous, upper m-α-continuous) if for each \(x \in X \) and each fuzzy open set \(V \) of \(Y \) with \(F(x) \leq V \), there exists an m-open (resp., m-semiopen, m-preopen, m-δ-preopen, m-α-open) set \(U \) of \(X \) containing \(x \) such that \(F(U) \leq V \),

(ii) lower m-continuous (resp., lower m-quasi continuous, lower m-precontinuous, lower m-δ-precontinuous, lower m-α-continuous) if for each \(x \in X \) and each fuzzy open set \(V \) of \(Y \) with \(F(x)qV \), there exists an m-open (resp., m-semiopen, m-preopen, m-δ-preopen, m-α-open) set \(U \) of \(X \) containing \(x \) such that \(F(u)qV \), for all \(u \in U \).

Definition 3.18 [8]. A fuzzy multifunction \(F : (X, m) \to (Y, \tau_Y) \) is said to be fuzzy
(i) upper m-irresolute (resp., upper m-preirresolute, upper m-δ-preirresolute, upper m-α-irresolute) if for each \(x \in X \) and each fuzzy semiopen (resp., fuzzy preopen, fuzzy δ-preopen, fuzzy α-open) set \(V \) of \(Y \) with \(F(x) \leq V \), there exists an m-semiopen (resp., m-preopen, m-δ-preopen, m-α-open) set \(U \) of \(X \) containing \(x \) such that \(F(U) \leq V \),
(ii) lower m-irresolute (resp., lower m-preirresolute, lower m-δ-preirresolute, lower m-α-irresolute) if for each \(x \in X \) and each fuzzy semiopen (resp., fuzzy preopen, fuzzy δ-preopen, fuzzy α-open) set \(V \) of \(Y \) with \(F(x)qV \), there exists an m-semiopen (resp., m-preopen, m-δ-preopen, m-α-open) set \(U \) of \(X \) containing \(x \) such that \(F(u)qV \), for all \(u \in U \).

Theorem 3.19 [8]. A fuzzy multifunction \(F : (X, m) \to (Y, \tau_Y) \) is said to be fuzzy
(i) upper m-continuous (resp., upper m-quasi continuous, upper m-precontinuous, upper m-δ-precontinuous, upper m-α-continuous) iff \(F^+(G) \) is m-open (resp., m-semiopen, m-preopen, m-δ-preopen, m-α-open) set in \(X \) for every fuzzy open set \(G \) of \(Y \).

Theorem 3.20 [8]. A fuzzy multifunction \(F : (X, m) \to (Y, \tau_Y) \) is said to be fuzzy
(i) lower m-continuous (resp., lower m-quasi continuous, lower m-precontinuous, lower m-δ-precontinuous, lower m-α-continuous) iff \(F^-(G) \) is m-open (resp., m-semiopen, m-preopen, m-δ-preopen, m-α-open) set in \(X \) for every fuzzy open set \(G \) of \(Y \).

Theorem 3.21 [8]. A fuzzy multifunction \(F : (X, m) \to (Y, \tau_Y) \) is said to be fuzzy
(i) upper m-irresolute (resp., upper m-preirresolute, upper m-δ-preirresolute, upper m-α-irresolute) iff \(F^+(G) \) is m-semiopen (resp., m-preopen, m-δ-preopen, m-α-open) set in \(X \) for every fuzzy semiopen (resp., fuzzy preopen, fuzzy δ-preopen, fuzzy α-open) set \(G \) of \(Y \).
Theorem 3.22 [8]. A fuzzy multifunction $F : (X, m) \rightarrow (Y, \tau_Y)$ is said to be fuzzy (i) lower m-irresolute (resp., lower m-preirresolute, lower m-δ-preirresolute, lower m-α-irresolute) iff $F^-(G)$ is m-semiopen (resp., m-preopen, m-δ-preopen, m-α-open) set in X for every fuzzy semiopen (resp., fuzzy preopen, fuzzy δ-preopen, fuzzy α-open) set G of Y.

4. Fuzzy Upper (Lower) m-γ-Continuous Multifunction: Characterizations

In this section we first define m-γ-open set in an m-space. Afterwards, fuzzy upper and fuzzy lower m-γ-continuous multifunctions are introduced and studied.

Definition 4.1. A subset A in an m-space (X, m) is said to be m-γ-open if $A \subseteq (m\text{Cl}(m\text{Int}A)) \cup (m\text{Int}(m\text{Cl}A))$.

The complement of an m-γ-open set in an m-space is called m-γ-closed. The union (intersection) of all m-γ-open (resp., m-γ-closed) sets contained in (resp., containing) a subset A in an m-space (X, m) is called m-γ-interior (m-γ-closure) of A, denoted by $m\gamma\text{int}A$ (resp., $m\gamma\text{cl}A$). $m\gamma\text{int}A$ (resp., $m\gamma\text{cl}A$) is not m-γ-open (resp., m-γ-closed), in general, but if m satisfies Maki condition, then $m\gamma\text{int}A = A$ (resp., $m\gamma\text{cl}A = A$) if A is m-γ-open (resp., m-γ-closed).

The collection of all m-γ-open (resp., m-γ-closed) sets in an m-space (X, m) is denoted by $m\gamma O(X)$ (resp., $m\gamma C(X)$).

If we put $m = \tau$, we get the definition of γ-open set [9].

Definition 4.2. A subset A of an m-space (X, m) is called an m-γ-nbd of a point $x \in X$ if there exists an m-γ-open set U in X such that $x \in U \subseteq A$.

Result 4.3. Let (X, m) be an m-space and $A \subseteq X$. Then $x \in m\gamma\text{cl}A$ iff $U \cap A \neq \phi$ for every m-γ-open set U containing x.

Proof. Let $x \in m\gamma\text{cl}A$ and U be any m-γ-open set of X containing x. If possible, let $U \cap A = \phi$. Then $A \subseteq X \setminus U$ where $X \setminus U$ is m-γ-closed set of X and $x \notin X \setminus U$ and so by definition, $x \notin m\gamma\text{cl}A$, a contradiction.

Conversely, let $U \cap A \neq \phi$, for every m-γ-open set U containing x. Let V be an m-γ-open
closed set of X containing A. We have to show that $x \in V$. If possible, let $x \notin V$. Then $x \in X \setminus V$ which is m-γ-open set of X. By assumption, $(X \setminus V) \cap A \neq \emptyset \Rightarrow A \nsubseteq V$, a contradiction.

Remark 4.4. It is clear from definition that m-open, m-semiopen, m-preopen, m-α-open sets are m-γ-open, but not conversely follow from next examples. Also m-γ-open set and m-δ-preopen set are independent concepts follow from next examples.

Example 4.5. m-γ-open set $\not= m$-open, m-semiopen, m-α-open set

Let $X = \{a,b,c\}$, $m = \{\phi,X\}$. Then (X,m) is an m-space. Now $\{a\}$ is clearly m-γ-open in X, but $\{a\} \notin m \Rightarrow \{a\}$ is not m-open in X. Again, $mCl(mInt(\{a\})) = \emptyset \Rightarrow \{a\}$ is not m-semiopen. Also, $mInt(mCl(mInt(\{a\}))) = \emptyset \Rightarrow \{a\}$ is not m-α-open in X.

Example 4.6. m-γ-open set $\not= m$-preopen, m-δ-preopen

Let $X = \{a,b,c\}$, $m = \{\phi,X,\{a\},\{b\}\}$. Then (X,m) is an m-space. Then $\{b,c\}$ is m-γ-open as $mCl(mInt(\{b,c\})) = mCl(\{b\}) = \{b\}$. But $\{b,c\}$ is not m-preopen as $\{b,c\} \nsubseteq mInt(mCl(\{b,c\})) = mInt(\{b\}) = \{b\}$.

Again $\{b,c\} \nsubseteq mInt(m\delta cl(\{b,c\})) = mInt(\{b\}) = \{b\} \Rightarrow \{b,c\}$ is not m-δ-preopen in X.

Example 4.7. m-δ-preopen set $\not= m$-γ-open set

Let $X = \{a,b,c\}$, $m = \{\phi,X,\{b\}\}$. Then (X,m) is an m-space. Consider the set $\{a,c\}$. Now $mCl(mInt(\{a,c\})) = \phi$ and $mInt(mCl(\{a,c\})) = \phi \Rightarrow (mCl(mInt(\{a,c\})) \cup (mInt(mCl(\{a,c\})))) = \phi \Rightarrow \{a,c\}$ is not m-γ-open in X. But $\{a,c\} \subset X = mIntX = mInt(m\delta cl(\{a,c\})) \Rightarrow \{a,c\}$ is m-δ-preopen in X.

Note 4.8. Let (X,m) be an m-space where m satisfies Maki condition. If X is m-extremally disconnected, then m-γ-open set is m-preopen and m-δ-preopen.

Definition 4.9. A fuzzy multifunction $F : (X,m) \rightarrow (Y,\tau_Y)$ is called fuzzy

(i) upper m-γ-continuous at a point $x \in X$ if for each fuzzy open set V in Y with $F(x) \leq V$, there exists an m-γ-open set U in X containing x such that $F(U) \leq V$,

(ii) lower m-γ-continuous at a point $x \in X$ if for each fuzzy open set V in Y with $F(x)qV$, there exists a m-γ-open set U in X containing x such that $F(u)qV$, for all $u \in U$,
(iii) upper (lower) \(m_{-\gamma}\)-continuous if \(F \) has this property at each point of \(X \).

Theorem 4.10. For a fuzzy multifunction \(F : (X, m) \rightarrow (Y, \tau_Y) \) where \(m \) satisfies Maki condition, the following statements are equivalent:

(a) \(F \) is fuzzy upper \(m_{-\gamma}\)-continuous,
(b) \(F^+(V) \in m_{\gamma}O(X) \), for any fuzzy open set \(V \) of \(Y \),
(c) \(F^-(V) \in m_{\gamma}C(X) \), for any fuzzy closed set \(V \) of \(Y \),
(d) \(m_{\gamma}cl(F^-(B)) \subseteq F^-(clB) \), for any \(B \in I^Y \),
(e) for each point \(x \in X \) and each fuzzy nbd \(V \) of \(F(x) \), \(F^+(V) \) is an \(m_{-\gamma}\)-nbd of \(x \),
(f) for each point \(x \in X \) and each fuzzy nbd \(V \) of \(F(x) \), there exists an \(m_{-\gamma}\)-nbd \(U \) of \(x \) such that \(F(U) \leq V \),

\[mCl(mInt(F^-(B))) \cap mInt(mCl(F^-(B))) \subseteq F^-(clB), \text{ for any } B \in I^Y. \]

\[F^+(intB) \subseteq mInt(mCl(F^+(B))) \cup mCl(mInt(F^+(B))), \text{ for any } B \in I^Y. \]

Proof. (a) \(\Rightarrow \) (b) Let \(V \) be a fuzzy open set of \(Y \) and \(x \in F^+(V) \). Then \(F(x) \leq V \). By (a), there exists an \(m_{-\gamma}\)-open set \(U \) containing \(x \) such that \(F(U) \leq V \). Therefore, we obtain, \(x \in U \subseteq (mCl(mIntU)) \cup (mInt(mClU)) \subseteq (mCl(mInt(F^+(V)))) \cup (mInt(mCl(F^+(V)))) \) and so we have \(F^+(V) \subseteq (mCl(mInt(F^+(V)))) \cup (mInt(mCl(F^+(V)))) \Rightarrow F^+(V) \in m_{\gamma}O(X) \).

(b) \(\Leftrightarrow \) (c) Follows from Theorem 3.14.

(c) \(\Rightarrow \) (d) Let \(B \in I^Y \). Then \(clB \) is fuzzy closed set in \(Y \) and so by (c), \(F^-(clB) \in m_{\gamma}C(X) \) and so \(m_{\gamma}cl(F^-(clB)) \subseteq F^-(clB) \Rightarrow m_{\gamma}cl(F^-(B)) \subseteq m_{\gamma}cl(F^-(clB)) \subseteq F^-(clB) \).

(d) \(\Rightarrow \) (c) Let \(V \) be a fuzzy closed set of \(Y \). Then \(clV = V \) and so by (d), \(m_{\gamma}cl(F^-(V)) \subseteq F^-(clV) = F^-(V) \Rightarrow F^-(V) \in m_{\gamma}C(X) \).

(b) \(\Rightarrow \) (e) Let \(x \in X \) and \(V \) be a fuzzy nbd of \(F(x) \). Then there exists a fuzzy open set \(G \) of \(Y \) such that \(F(x) \leq G \leq V \Rightarrow x \in F^+(G) \subseteq F^+(V) \). Since by (b), \(F^+(G) \) is \(m_{-\gamma}\)-open in \(X \); \(F^+(V) \) is an \(m_{-\gamma}\)-nbd of \(x \).

(e) \(\Rightarrow \) (f) Let \(x \in X \) and \(V \) be a fuzzy nbd of \(F(x) \). Put \(U = F^+(V) \). By (e), \(U \) is an \(m_{-\gamma}\)-nbd of \(x \) and \(F(U) \leq V \).

(f) \(\Rightarrow \) (a) Let \(x \in X \) and \(V \) be a fuzzy open set of \(Y \) with \(F(x) \leq V \). Then \(V \) is a fuzzy nbd of \(F(x) \). By (f), there exists an \(m_{-\gamma}\)-nbd \(U \) of \(x \) such that \(F(U) \leq V \). Therefore, there exists \(W \in m_{\gamma}O(X) \) such that \(x \in W \subseteq U \) and so \(F(W) \leq F(U) \leq V \Rightarrow F(W) \leq V \).

(c) \(\Rightarrow \) (g) Let \(B \in I^Y \). Then \(clB \) is fuzzy closed in \(Y \) and so by (c), \(F^-(clB) \in m_{\gamma}C(X) \Rightarrow (mInt(mCl(F^-(B)))) \cap (mCl(mInt(F^-(B)))) \subseteq (mInt(mCl(F^-(clB)))) \cap (mCl(mInt(F^-(clB)))) \subseteq F^-(clB) \).

265
(g) ⇒ (h) Let \(B \in I^Y \). Then \(1_Y \setminus B \in I^Y \). By (g), \((mCl(mInt(F^-(1_Y \setminus B)))) \cap (mInt(mCl(F^-(1_Y \setminus B)))) \subseteq F^-(cl(1_Y \setminus B)) \Rightarrow (mCl(mInt(X \setminus F^+(B)))) \cap (mInt(mCl(X \setminus F^+(B)))) \subseteq F^-(1_Y \setminus intB) \Rightarrow X \setminus (mInt(mCl(F^+(B)))) \cup (mCl(mInt(F^+(B)))) = (X \setminus (mInt(mCl(F^+(B)))) \cap (X \setminus (mCl(mInt(F^+(B))))))) \subseteq X \setminus F^+(intB) \Rightarrow F^+(intB) \subseteq (mInt(mCl(F^+(B)))) \cup (mCl(mInt(F^+(B))))(mCl(mInt(F^+(B))))). (h) ⇒ (b) Let \(V \) be a fuzzy open set of \(Y \). By (h), \(F^+(intV) = F^+(V) \subseteq (mInt(mCl(F^+(V)))) \cup (mCl(mInt(F^+(V)))) \Rightarrow F^+(V) \in m\gamma O(X) \).

Theorem 4.11. For a fuzzy multifunction \(F : (X, m) \to (Y, \tau_Y) \) where \(m \) satisfies Maki condition, the following statements are equivalent:

(a) \(F \) is fuzzy lower \(m-\gamma \)-continuous,
(b) \(F^+(V) \in m\gamma O(X) \), for any fuzzy open set \(V \) of \(Y \),
(c) \(F^+(V) \in m\gamma C(X) \), for any fuzzy closed set \(V \) of \(Y \),
(d) \(m\gamma cl(F^+(B)) \subseteq F^+(clB) \), for any \(B \in I^Y \),
(e) \(F(m\gamma clA) \leq cl(F(A)) \), for any subset \(A \) of \(X \),
(f) \(mCl(mInt(F^+(B))) \cap mInt(mCl(F^+(B))) \subseteq F^+(clB) \), for any \(B \in I^Y \),
(g) \(F^-(intB) \subseteq mInt(mCl(F^-(B))) \cup mCl(mInt(F^-(B))) \), for any \(B \in I^Y \),
(h) for each point \(x \in X \) and each fuzzy \(q \)-nbd \(V \) of \(F(x) \), \(F^-(V) \) is an \(m-\gamma \)-nbd of \(x \),
(i) for each point \(x \in X \) and each fuzzy \(q \)-nbd \(V \) of \(F(x) \), there exists an \(m-\gamma \)-nbd \(U \) of \(x \) such that \(F(u)qV \), for all \(u \in U \).

Proof (a) ⇒ (b) Let \(x \in X \) and \(V \) be a fuzzy open set of \(Y \) such that \(x \in F^-(V) \). Then \(F(x)qV \). By (a), there exists \(U \in m\gamma O(X) \) containing \(x \) such that \(F(u)qV \), for all \(u \in U \) ⇒ \(U \subseteq F^-(V) \). Thus we have \(x \in U \subseteq (mCl(mIntU)) \cup (mInt(mClU)) \subseteq (mCl(mInt(F^-(V)))) \cup (mInt(mCl(F^-(V)))) \Rightarrow F^-(V) \subseteq (mCl(mInt(F^-(V)))) \cup (mInt(mCl(F^-(V)))) \Rightarrow F^-(V) \in m\gamma O(X) \).

(b) ⇔ (c) Follows from Theorem 3.14.

(c) ⇒ (d) Let \(B \in I^Y \). Then \(clB \) is fuzzy closed set of \(Y \). By (c), \(F^+(clB) \in m\gamma C(X) \Rightarrow m\gamma cl(F^+(B)) \subseteq m\gamma cl(F^+(clB)) \subseteq F^+(clB) \).

(d) ⇒ (c) Let \(V \) be a fuzzy closed set of \(Y \). Then \(clV = V \). By (d), \(m\gamma cl(F^+(V)) = m\gamma cl(F^+(clV)) \subseteq F^+(clV) \subseteq F^+(V) \Rightarrow F^+(V) \subseteq m\gamma C(X) \).

(e) ⇒ (a) Let \(A \) be a subset of \(X \). Then \(cl(F(A)) \) is fuzzy closed set of \(Y \). By (c), \(F^+(cl(F(A))) \in m\gamma C(X) \Rightarrow m\gamma cl(F^+(cl(F(A)))) \subseteq F^+(cl(F(A))) \Rightarrow F(m\gamma cl(F^+(cl(F(A)))))) \leq F(F^+(cl(F(A)))) \leq cl(F(A)) \Rightarrow cl(F(A)) \subseteq F(m\gamma cl(F^+(cl(F(A)))))) \geq F(m\gamma clA) \).

(e) ⇒ (d) Let \(B \in I^Y \). Then \(F^+(B) \subseteq X \). By (e), \(F(m\gamma cl(F^+(B))) \leq cl(F(F^+(B))) \leq cl(F(F^+(V))) \subseteq F^+(cl(F(A)))) \Rightarrow cl(F(A)) \subseteq F(m\gamma cl(F^+(cl(F(A)))))) \geq F(m\gamma clA) \).

266
\[clB \Rightarrow m\gamma cl(F^+(B)) \subseteq F^+(clB). \]

(c) \Rightarrow (f) Let \(B \in \mathcal{I}^Y \). Then \(clB \) is fuzzy closed set of \(Y \). By (c), \(F^+(clB) \in m\gamma C(X) \Rightarrow F^+(clB) \supseteq (m\text{Int}(mCl(F^+(clB)))) \cap (m\text{Cl}(m\text{Int}(F^+(clB)))) \supseteq (m\text{Int}(mCl(F^+(B)))) \cap (mCl(m\text{Int}(F^+(B)))) \).

(f) \Rightarrow (g) Let \(B \in \mathcal{I}^Y \). Then \(1_Y \setminus B \in \mathcal{I}^Y \). By (f), \(F^+(cl(1_Y \setminus B)) \supseteq (m\text{Cl}(m\text{Int}(F^+(1_Y \setminus B)))) \cap (m\text{Int}(m\text{Cl}(F^+(1_Y \setminus B)))) \Rightarrow F^+(1_Y \setminus \text{int}B) \supseteq (m\text{Cl}(m\text{Int}(X \setminus F^-(B)))) \cap (m\text{Int}(m\text{Cl}(X \setminus F^-(B)))) \Rightarrow X \setminus F^-(\text{int}B) \supseteq (X \setminus (m\text{Int}(m\text{Cl}(F^-(B)))) \cap (X \setminus (m\text{Int}(m\text{Cl}(F^-(B))))) = X \setminus ((m\text{Int}(m\text{Cl}(F^-(B)))) \cup (m\text{Cl}(m\text{Int}(F^-(B)))) \cup (m\text{Cl}(m\text{Int}(F^-(B))))).

(g) \Rightarrow (b) Let \(V \) be a fuzzy open set of \(Y \). Then \(F^-(V) = F^-(\text{int}V) \subseteq m\text{Int}(m\text{Cl}(F^-(V))) \cup m\text{Cl}(m\text{Int}(F^-(V))) \) by (g) \(\Rightarrow F^-(V) \in m\gamma O(X) \).

(b) \Rightarrow (h) Let \(x \in X \) and \(V \) be a fuzzy q-nbd of \(F(x) \). Then there exists a fuzzy open set \(G \) of \(Y \) such that \(F(x)qG \subseteq V \). Then \(x \in F^-(G) \subseteq F^-(V) \). By (b), \(F^-(G) \in m\gamma O(X) \) and so \(F^-(V) \) is an \(m\gamma \)-nbd of \(x \).

(h) \Rightarrow (i) Let \(x \in X \) and \(V \) be a fuzzy q-nbd of \(F(x) \). Put \(U = F^-(V) \). By (h), \(U \) is an \(m\gamma \)-nbd of \(x \) and \(F(u)qV \), for all \(u \in U \).

(i) \Rightarrow (a) Let \(x \in X \) and \(V \) be a fuzzy open set of \(Y \) such that \(F(x)qV \). Then \(V \) is a fuzzy q-nbd of \(F(x) \). By (i), there exists an \(m\gamma \)-nbd \(U \) of \(x \) such that \(F(u)qV \), for all \(u \in U \Rightarrow U \subseteq F^-(V) \). Therefore, there exists \(W \in m\gamma O(X) \) containing \(x \) such that \(x \in W \subseteq U \) and so \(W \subseteq F^-(V) \Rightarrow F(w)qV \), for all \(w \in W \).

If we take \(m = \tau \), we get fuzzy upper (lower) \(\gamma \)-continuous multifunction.

Definition 4.12. For a fuzzy multifunction \(F : X \rightarrow Y \), fuzzy multifunction \(\gamma clF : X \rightarrow Y [9] \), \(aclF : X \rightarrow Y [9] \), \(\beta clF : X \rightarrow Y [9] \), \(clF : X \rightarrow Y [6] \), \(sclF : X \rightarrow Y [6] \), \(pclF : X \rightarrow Y [9] \), \(\delta pclF : X \rightarrow Y [7] \) are defined by \((\gamma clF)(x) = \gamma clF(x), (\alpha clF)(x) = \alpha clF(x), (\beta clF)(x) = \beta clF(x), (clF)(x) = clF(x), (sclF)(x) = sclF(x), (pclF)(x) = pclF(x), (\delta pclF)(x) = \delta pclF(x) \), for all \(x \in X \).

Lemma 4.13 [9]. Let \(F : X \rightarrow Y \) be a fuzzy multifunction. Then we have \((\gamma clF)^-(G) = F^-(G), (\alpha clF)^-(G) = F^-(G), (\beta clF)^-(G) = F^-(G), (clF)^-(G) = F^-(G), (sclF)^-(G) = F^-(G), (pclF)^-(G) = F^-(G), (\delta pclF)^-(G) = F^-(G) \), for each fuzzy open set \(G \) of \(Y \).

Using Lemma 4.13, we can easily state the following theorem.
Theorem 4.14. For a fuzzy multifunction $F : (X, m) \to (Y, \tau_Y)$, the following statements are equivalent:

(i) F is fuzzy lower m-γ-continuous,
(ii) $\gamma cl F$ is fuzzy lower m-γ-continuous,
(iii) $\alpha cl F$ is fuzzy lower m-γ-continuous,
(iv) $\beta cl F$ is fuzzy lower m-γ-continuous,
(v) $scl F$ is fuzzy lower m-γ-continuous,
(vi) $cl F$ is fuzzy lower m-γ-continuous,
(vii) $pcl F$ is fuzzy lower m-γ-continuous,
(viii) $\delta pcl F$ is fuzzy lower m-γ-continuous.

5. Mutual Relationship

In this section, the mutual relationship between fuzzy upper (lower) m-γ-continuous multifunction and fuzzy multifunctions in Section 3 are established.

Remark 5.1. Using Remark 4.4, we have from Theorem 3.19 and Theorem 3.20 that fuzzy upper (lower) m-continuous, fuzzy upper (lower) m-quasi continuous, fuzzy upper (lower) m-precontinuous, fuzzy upper (lower) m-α-continuous multifunctions are fuzzy upper (lower) m-γ-continuous multifunction. But the converses are not true, in general, as shown from the following examples.

Example 5.2. Fuzzy upper m-γ-continuity $\not\Rightarrow$ fuzzy upper m-continuity

Let $X = \{a, b, c\}$, $m = \{\phi, X\}$, $Y = [0, 1]$, $\tau_Y = \{0_Y, 1_Y, A, B\}$ where $A(y) = 0.35, B(y) = 0.4$, for all $y \in Y$. Then (X, m) and (Y, τ_Y) are m-space and an fts respectively. Let $F : (X, m) \to (Y, \tau_Y)$ be a fuzzy multifunction defined by $F(a) = A, F(b) = B, F(c) = C$ where $C(y) = 0.6$ for all $y \in Y$. Now $F^+(A) = \{x \in X : F(x) \leq A\} = \{a\} \notin m$ and so F is not fuzzy upper m-continuous multifunction. But $F^+(A) = \{a\} \Rightarrow \text{int(cl}\{a\}) = X \Rightarrow F^+(A)$ is m-γ-open in X. Again $F^+(B) = \{a, b\} \Rightarrow \text{int(cl}\{a, b\}) = X \Rightarrow F^+(B)$ is m-γ-open in $X \Rightarrow F$ is fuzzy upper m-γ-continuous multifunction.

Example 5.3. Fuzzy lower m-γ-continuity $\not\Rightarrow$ fuzzy lower m-continuity

Let $X = \{a, b, c\}$, $m = \{\phi, X\}$, $Y = [0, 1]$, $\tau_Y = \{0_Y, 1_Y, A, B\}$ where $A(y) = 0.35, B(y) =$
0.5, for all \(y \in Y \). Then \((X, m)\) and \((Y, \tau_Y)\) are \(m \)-space and an fts respectively. Let \(F : (X, m) \to (Y, \tau_Y) \) be a fuzzy multifunction defined by \(F(a) = A, F(b) = B, F(c) = C \) where \(C(y) = 0.6 \) for all \(y \in Y \). Now \(F^{-}(A) = \{ x \in X : F(x)qA \} = \phi \in m \Rightarrow F^{-}(A) \in m\gamma O(X) \), \(F^{-}(B) = \{ x \in X : F(x)qB \} = \{ c \} \). Now \(int(cl(\{c\})) = X \Rightarrow F^{-}(B) \) is \(m\gamma \)-open in \(X \Rightarrow F \) is fuzzy lower \(m\gamma \)-continuous multifunction. But \(F^{-}(B) \notin m \Rightarrow F \) is not fuzzy lower \(m \)-continuous multifunction.

Example 5.4. Fuzzy upper \(m\gamma \)-continuity \(\not\Rightarrow \) fuzzy upper \(m \)-quasi continuity
Consider Example 5.2. Here \(F^{+}(A) = \{ a \} \not\subseteq mCl(mInt(\{a\})) = \phi \Rightarrow F^{+}(A) \) is not fuzzy upper \(m \)-quasi continuous multifunction though it is fuzzy upper \(m\gamma \)-continuous multifunction.

Example 5.5. Fuzzy lower \(m\gamma \)-continuity \(\not\Rightarrow \) fuzzy lower \(m \)-quasi continuity
Consider Example 5.3. Here \(F^{-}(B) = \{ c \} \not\subseteq mCl(mInt(\{c\})) = \phi \Rightarrow F^{-}(B) \) is not \(m \)-semiopen in \(X \Rightarrow F \) is not fuzzy lower \(m \)-quasi continuous multifunction though it is fuzzy lower \(m\gamma \)-continuous multifunction.

Example 5.6. Fuzzy upper \(m\gamma \)-continuity \(\not\Rightarrow \) fuzzy upper \(m\alpha \)-continuity
Consider Example 5.2. Here \(F^{+}(A) = \{ a \} \not\subseteq mInt(mCl(mInt(\{a\})) = \phi \Rightarrow F^{+}(A) \) is not \(m\alpha \)-open in \(X \Rightarrow F \) is not fuzzy upper \(m\alpha \)-continuous multifunction though it is fuzzy upper \(m\gamma \)-continuous multifunction.

Example 5.7. Fuzzy lower \(m\gamma \)-continuity \(\not\Rightarrow \) fuzzy lower \(m\alpha \)-continuity
Consider Example 5.3. Here \(F^{-}(B) = \{ c \} \not\subseteq mInt(mCl(mInt(\{c\})) = \phi \Rightarrow F^{-}(B) \) is not \(m\alpha \)-open \(X \Rightarrow F \) is not fuzzy lower \(m\alpha \)-continuous multifunction though it is fuzzy lower \(m\gamma \)-continuous multifunction.

Example 5.8. Fuzzy upper \(m\gamma \)-continuity \(\not\Rightarrow \) fuzzy upper \(m \)-precontinuity
Let \(X = \{ a, b, c \}, m = \{ \phi, X, \{ b \}, \{ c \} \}, Y = [0, 1], \tau_Y = \{ 0_Y, 1_Y, A, B \} \) where \(A(y) = 0.35, B(y) = 0.4 \), for all \(y \in Y \). Then \((X, m)\) and \((Y, \tau_Y)\) are \(m \)-space and an fts respectively.
Let \(F : (X, m) \to (Y, \tau_Y) \) be a fuzzy multifunction defined by \(F(a) = F(c) = A, F(b) = B \). Now \(F^{+}(A) = \{ a, c \} \). Now \(mInt(mCl(\{a, c\})) = mInt(\{a, c\}) = \{ c \} \not\supseteq \{ a, c \} \Rightarrow F^{+}(A) \) is not \(m \)-preopen in \(X \Rightarrow F \) is not fuzzy upper \(m \)-precontinuous multifunction though it is fuzzy upper \(m\gamma \)-continuous multifunction.
Example 5.9. Fuzzy lower m-γ-continuity $\not\Rightarrow$ fuzzy lower m-precontinuity
Let $X = \{a, b, c\}$, $m = \{\phi, X, \{a\}, \{c\}\}$, $Y = [0, 1]$, $\tau_Y = \{0_Y, 1_Y, A\}$ where $A(y) = 0.7$ for all $y \in Y$. Then (X, m) and (Y, τ_Y) are m-space and an fts respectively. Let $F : (X, m) \to (Y, \tau_Y)$ be a fuzzy multifunction defined by $F(a) = A, F(b) = B, F(c) = C$ where $B(y) = 0.4, C(y) = 0.01$ for all $y \in Y$. Now $F^-(A) = \{a, b\}$. Then $m\text{Cl}(m\text{Int}(\{a, b\})) = m\text{Cl}(\{a\}) = \{a, b\} \Rightarrow F^-(A) \in m\gamma O(X) \Rightarrow F$ is lower m-γ-continuous multifunction. But $m\text{Int}(m\text{Cl}(\{a, b\})) = m\text{Int}(\{a, b\}) = \{a\} \not\supset \{a, b\} \Rightarrow F^-(A)$ is not m-preopen in $X \Rightarrow F$ is not fuzzy lower m-precontinuous multifunction.

Remark 5.10. Fuzzy upper (lower) m-γ-continuity and fuzzy upper (lower) m-δ-precontinuity are independent concepts follow from next examples.

Example 5.11. Fuzzy upper m-γ-continuity $\not\Rightarrow$ fuzzy upper m-δ-precontinuity
Consider Example 5.2. Here $F^+(A) = \{a\}$. Now $m\delta\text{cl}(\{a\}) = \{x \in X : \{a\} \cap m\text{Int}(m\text{Cl}U) \neq \phi, U \in m, x \in U\} = \{a\}$, $m\text{Int}(m\delta\text{cl}(\{a\})) = \phi \not\supset \{a\} \Rightarrow \{a\}$ is not m-δ-preopen in $X \Rightarrow F$ is not fuzzy upper m-δ-precontinuous multifunction though it is fuzzy upper m-γ-continuous multifunction.

Example 5.12. Fuzzy lower m-γ-continuity $\not\Rightarrow$ fuzzy lower m-δ-precontinuity
Consider Example 5.3. Here $F^-(B) = \{c\}$. Now $m\delta\text{cl}(\{c\}) = \{c\} \Rightarrow m\text{Int}(m\delta\text{cl}(\{c\})) = \phi \not\supset \{c\} \Rightarrow F$ is not fuzzy lower m-δ-precontinuous multifunction though it is fuzzy lower m-γ-continuous multifunction.

Example 5.13. Fuzzy upper m-δ-precontinuity $\not\Rightarrow$ fuzzy upper m-γ-continuity
Let $X = \{a, b, c\}$, $m = \{\phi, X, \{b\}\}$, $Y = [0, 1]$, $\tau_Y = \{0_Y, 1_Y, A\}$ where $A(y) = 0.5$ for all $y \in Y$. Then (X, m) and (Y, τ_Y) are m-space and an fts respectively. Let $F : (X, m) \to (Y, \tau_Y)$ be defined by $F(a) = F(c) = A, F(b) = B$, where $B(y) = 0.6$ for all $y \in Y$. Now $F^+(A) = \{a, c\}$. Then $m\text{Int}(m\delta\text{cl}(\{a, c\})) = X \supset \{a, c\} \Rightarrow \{a, c\}$ is m-δ-preopen in $X \Rightarrow F$ is fuzzy upper m-δ-precontinuous multifunction. But $m\text{Int}(m\text{Cl}(\{a, c\})) = m\text{Int}(\{a, c\}) = \phi \not\supset \{a, c\} \Rightarrow F^+(A)$ is not m-γ-open in $X \Rightarrow F$ is not fuzzy upper m-γ-continuous multifunction.
Example 5.14. Fuzzy lower m-δ-precontinuity $\not\Rightarrow$ fuzzy lower m-γ-continuity

Let $X = \{a, b, c\}$, $m = \{\phi, X, \{b\}\}$, $Y = [0, 1]$, $\tau_Y = \{0_Y, 1_Y, A\}$ where $A(y) = 0.6$ for all $y \in Y$. Then (X, m) and (Y, τ_Y) are m-space and an fts respectively. Let $F : (X, m) \rightarrow (Y, \tau_Y)$ be defined by $F(a) = F(c) = A, F(b) = B$, where $B(y) = 0.3$ for all $y \in Y$. Now $F^{-}(A) = \{a, c\}$. Then $mInt(m\delta cl(\{a, c\})) = X \supset \{a, c\} \Rightarrow \{a, c\}$ is m-δ-preopen in $X \Rightarrow F$ is fuzzy lower m-δ-precontinuous multifunction. Now $mInt(mCl(mInt(\{a, c\})) = \phi$, $mCl(mInt(\{a, c\})) = \phi \Rightarrow mInt(mCl(mInt(\{a, c\})) \cup mCl(mInt(\{a, c\})) = \phi \Rightarrow \{a, c\}$ is not m-γ-open in $X \Rightarrow F$ is not fuzzy lower m-γ-continuous multifunction.

Remark 5.15. It is clear from Theorem 3.21 and Theorem 3.22 that fuzzy upper (lower) m-irresolute, fuzzy upper (lower) m-preirresolute, fuzzy upper (lower) m-α-irresolute multifunctions are fuzzy upper (lower) m-γ-continuous multifunction. But the converses are not true, in general, follow from next examples. Also fuzzy upper (lower) m-γ-continuous multifunction and fuzzy upper (lower) m-δ-preirresolute multifunction are independent concepts follow from next examples.

Example 5.16. Fuzzy upper m-γ-continuous multifunction $\not\Rightarrow$ fuzzy upper m-irresolute multifunction

Consider Example 5.2. Here the fuzzy set A being fuzzy open in Y is fuzzy semiopen in Y. Now $F^{+}(A) = \{a\} \not\subseteq mCl(mInt(\{a\})) = \phi \Rightarrow F^{+}(A)$ is not m-semiopen in $X \Rightarrow F$ is not fuzzy upper m-irresolute multifunction though it is fuzzy upper m-γ-continuous multifunction.

Example 5.17. Fuzzy lower m-γ-continuous multifunction $\not\Rightarrow$ fuzzy lower m-irresolute multifunction

Consider Example 5.3. Here the fuzzy set B is fuzzy semiopen in Y. Now $F^{-}(B) = \{c\} \not\subseteq mCl(mInt(\{c\})) = \phi \Rightarrow F^{-}(B)$ is not m-semiopen in $X \Rightarrow F$ is not fuzzy lower m-irresolute multifunction though it is fuzzy lower m-γ-continuous multifunction.

Example 5.18. Fuzzy upper m-γ-continuous multifunction $\not\Rightarrow$ fuzzy upper m-preirresolute multifunction

Let $X = \{a, b, c\}$, $m = \{\phi, X, \{b\}, \{c\}\}$, $Y = [0, 1]$, $\tau_Y = \{0_Y, 1_Y, A, B\}$ where $A(y) = 0.35, B(y) = 0.4$, for all $y \in Y$. Then (X, m) and (Y, τ_Y) are m-space and an fts respectively.
Let $F : (X, m) \to (Y, \tau_Y)$ be defined by $F(a) = F(c) = A, F(b) = B$. Now $F^+(A) = \{a, c\}$. Then $mCl(mInt(\{a, c\})) = mInt(\{c\}) = \{a, c\} \Rightarrow F^+(A) \subseteq (mCl(mInt(\{a, c\})) \cup (mInt(mCl(\{a, c\}))) \Rightarrow F^+(A) \in m\gamma O(X), F^+(B) = \{b\} \in m$ and so $F^+(B) \in m\gamma O(X) \Rightarrow F$ is fuzzy upper m-γ-continuous multifunction. Consider the fuzzy set D defined by $D(y) = 0.37$ for all $y \in Y$. Then D is fuzzy preopen in Y. Now $F^+(D) = \{a, c\}$. Now $mInt(mCl(\{a, c\})) = mInt(\{a, c\}) = \{c\} \not\subseteq \{a, c\} \Rightarrow F^+(D)$ is not m-preopen in $X \Rightarrow F$ is not fuzzy upper m-preirresolute.

Example 5.19. Fuzzy lower m-γ-continuous multifunction $\not\Rightarrow$ fuzzy lower m-preirresolute multifunction
Let $X = \{a, b, c\}, m = \{\phi, X, \{c\}\}, Y = [0, 1], \tau_Y = \{0_Y, 1_Y, A, B\}$ where $A(y) = 0.4, B(y) = 0.44$ for all $y \in Y$. Then (X, m) and (Y, τ_Y) are m-space and an fts respectively. Let $F : (X, m) \to (Y, \tau_Y)$ be defined by $F(a) = A, F(b) = B, F(c) = C$ where $C(y) = 0.39$ for all $y \in Y$. Here $F^-(A) = F^-(B) = \phi \in m \Rightarrow F$ is fuzzy lower m-γ-continuous multifunction. Consider the fuzzy set D defined by $D(y) = 0.61$ for all $y \in Y$. Then $int(clD) = 1_Y \geq D \Rightarrow D$ is fuzzy preopen in Y. Now $F^-(D) = \{a, b\}$. Then $mInt(mCl(\{a, b\})) = mInt(\{a, b\}) = \phi \not\subseteq \{a, b\} \Rightarrow F^-(D)$ is not m-preopen in $X \Rightarrow F$ is not fuzzy lower m-preirresolute multifunction.

Example 5.20. Fuzzy upper m-γ-continuous multifunction $\not\Rightarrow$ fuzzy upper m-α-irresolute multifunction
Consider Example 5.18. Here D is fuzzy α-open in Y. Now $F^+(D) = \{a, c\}$. Then $mInt(mCl(mInt(\{a, c\})) = mInt(mCl(\{c\})) = mInt(\{a, c\}) = \{c\} \not\subseteq \{a, c\} \Rightarrow F^+(D)$ is not m-α-open in $X \Rightarrow F$ is not fuzzy upper m-α-irresolute multifunction though it is fuzzy upper m-γ-continuous multifunction.

Example 5.21. Fuzzy lower m-γ-continuous multifunction $\not\Rightarrow$ fuzzy lower m-α-irresolute multifunction
Let $X = \{a, b, c\}, m = \{\phi, X, \{a\}, \{c\}\}, Y = [0, 1], \tau_Y = \{0_Y, 1_Y, A\}$ where $A(y) = 0.7$ for all $y \in Y$. Then (X, m) and (Y, τ_Y) are m-space and an fts respectively. Let $F : (X, m) \to (Y, \tau_Y)$ be defined by $F(a) = A, F(b) = B, F(c) = C$ where $B(y) = 0.2, C(y) = 0.01$ for all $y \in Y$. Now $F^-(A) = \{a\} \in m \Rightarrow F^-(A) \in m\gamma O(X) \Rightarrow F$ is fuzzy lower m-γ-continuous multifunction. Consider the fuzzy set D defined by $D(y) = 0.81$, for all $y \in Y$. 272
Then D is fuzzy α-open in Y. Now $F^{-}(D) = \{a,b\}$. Then $mInt(mCl(mInt(\{a,b\}))) = mInt(mCl(\{a\})) = mInt(\{a,b\}) = \{a\} \not\supseteq \{a,b\} \Rightarrow F^{-}(D)$ is not m-α-open in $X \Rightarrow F$ is not fuzzy lower m-α-irresolute multifunction.

Example 5.22. Fuzzy upper m-γ-continuous multifunction \nRightarrow fuzzy upper m-δ-preirresolute multifunction

Consider Example 5.18. Here D is fuzzy δ-preopen in Y. Now $F^{+}(D) = \{a,c\}$. Then $mInt(m\delta cl(\{a,c\})) = mInt(\{a,c\}) = \{c\} \not\supseteq \{a,c\} \Rightarrow F^{+}(D)$ is not m-δ-preopen in $X \Rightarrow F$ is not fuzzy upper m-δ-preirresolute multifunction though it is fuzzy upper m-γ-continuous multifunction.

Example 5.23. Fuzzy lower m-γ-continuous multifunction \nRightarrow fuzzy lower m-δ-preirresolute multifunction

Let $X = \{a,b,c\}$, $m = \{\phi,X,\{b\},\{c\}\}$, $Y = [0,1]$, $\tau_{Y} = \{0_{Y},1_{Y},A,B\}$ where $A(y) = 0.4, B(y) = 0.44$, for all $y \in Y$. Then (X,m) and (Y,τ_{Y}) are m-space and an fts respectively. Let $F : (X,m) \rightarrow (Y,\tau_{Y})$ be defined by $F(a) = A, F(b) = B, F(c) = C$ where $C(y) = 0.29$ for all $y \in Y$. Then $F^{-}(A) = F^{-}(B) = \phi \in m \Rightarrow F$ is fuzzy lower m-γ-continuous multifunction. Now consider the fuzzy set D defined by $D(y) = 0.61$ for all $y \in Y$. Then D is fuzzy δ-preopen in Y. Now $F^{-}(D) = \{a,b\}$. Then $mInt(m\delta cl(\{a,b\})) = mInt(\{a,b\}) = \{b\} \not\supseteq \{a,b\} \Rightarrow F^{-}(D)$ is not m-δ-preopen in $X \Rightarrow F$ is not fuzzy lower m-δ-preirresolute multifunction.

Example 5.24. Fuzzy upper m-δ-preirresolute multifunction \nRightarrow fuzzy upper m-γ-continuous multifunction

Let $X = \{a,b,c\}$, $m = \{\phi,X,\{c\}\}, Y = [0,1], \tau_{Y} = \{0_{Y},1_{Y},A\}$ where $A(y) = 0.4$ for all $y \in Y$. Then (X,m) and (Y,τ_{Y}) are m-space and an fts respectively. Let $F : (X,m) \rightarrow (Y,\tau_{Y})$ be defined by $F(a) = F(b) = B, F(c) = D$ where $B(y) = 0.3, D(y) = 0.7$ for all $y \in Y$. Now the collection of all fuzzy δ-preopen sets in Y is $\{0_{Y},1_{Y},U,V\}$ where $U \leq A,V > 1_{Y} \setminus A$. Then $F^{+}(U) = \phi$, if $U < B$, $F^{+}(U) = \{a,b\}$, if $B \leq U < D$, $F^{+}(U) = X$, if $U \geq D$. Then ϕ,X are obviously m-δ-preopen in X. Now $mInt(m\delta cl(\{a,b\})) = mIntX = X \supset \{a,b\} \Rightarrow \{a,b\}$ is m-δ-preopen in $X \Rightarrow F^{+}(U)$ is m-δ-preopen in X for every fuzzy δ-preopen set U of Y. But $mInt(mCl(mInt(\{a,b\})) = mInt(\{a,b\}) = \phi, mCl(mInt(\{a,b\})) = \phi \Rightarrow mInt(mCl(mInt(\{a,b\})) \cup mCl(mInt(\{a,b\})) = \phi \not\supseteq \{a,b\} \Rightarrow \{a,b\}$ is not m-γ-open in.
Therefore, \(x \in U \) and \(\gamma \). and in for any fuzzy upper nbd \(F \). Proof In this section fuzzy upper (lower) \(m \)-\(\gamma \)-continuous multifunction: \(F \). Let \(X = \{ a, b, c \}, m = \{ \phi, X, \{ c \} \}, Y = [0, 1], \tau_Y = \{ 0, 1, A \} \) where \(A(y) = 0.5 \) for all \(y \in Y \). Then \((X, m) \) and \((Y, \tau_Y) \) are \(m \)-space and an fts respectively. Let \(F : (X, m) \to (Y, \tau_Y) \) be defined by \(F(a) = F(b) = B, F(c) = C \) where \(B(y) = 0.51, C(y) = 0.3 \) for all \(y \in Y \). Any fuzzy set in \(Y \) is fuzzy \(\delta \)-preopen in \(Y \). Now \(F^{-1}(U) = \phi \), if \(U \subseteq 1 \setminus B, F^{-1}(U) = \{ a, b \} \), if \(1 \setminus B < U \subseteq 1 \setminus C, F^{-1}(U) = X \), if \(U > 1 \setminus C \). Then as in Example 5.24, \(F^{-1}(U) \) is \(m \)-\(\delta \)-preopen in \(X \) \(\Rightarrow \) \(F \) is fuzzy lower \(m \)-\(\delta \)-preirresolute multifunction. But \(\{ a, b \} \) is not \(m \)-\(\gamma \)-open in \(X \) as shown in Example 5.24. So \(F \) is not fuzzy lower \(m \)-\(\gamma \)-continuous multifunction.

6. Fuzzy Upper (Lower) \(m \)-\(\gamma \)-Continuous Multifunction:

More Characterizations and Applications

In this section fuzzy upper (lower) \(m \)-\(\gamma \)-continuous multifunction is characterized by fuzzy upper (lower) nbd \([9] \) of a fuzzy set and also some applications of these fuzzy multifunctions have been shown.

Definition 6.1 [9]. A fuzzy set \(A \) in an fts \(Y \) is said to be a fuzzy lower (upper) nbd of a fuzzy set \(B \) of \(Y \) if there exists a fuzzy open set \(V \) of \(Y \) such that \(BqV \) (resp., \(B \leq V \)) and \(V \notq (1_Y \setminus A) \).

Theorem 6.2. A fuzzy multifunction \(F : (X, m) \to (Y, \tau_Y) \) is fuzzy upper \(m \)-\(\gamma \)-continuous on \(X \) iff for each point \(x_0 \in X \) and each fuzzy upper nbd \(M \) of \(F(x_0) \), \(F^+(M) \) is an \(m \)-\(\gamma \)-nbd of \(x_0 \).

Proof. Let \(F \) be fuzzy upper \(m \)-\(\gamma \)-continuous multifunction on \(X \). Then for any \(x_0 \in X \) and for any fuzzy upper nbd \(M \) of \(F(x_0) \), there exists a fuzzy open set \(V \) of \(Y \) such that \(F(x_0) \leq V \) and \(V \notq (1_Y \setminus M) \Rightarrow V \leq M \). Since \(F \) is fuzzy upper \(m \)-\(\gamma \)-continuous multifunction, there exists \(U \in m\gamma O(X) \) containing \(x_0 \) such that \(U \subseteq F^+(V) \Rightarrow F(U) \leq V \leq M \Rightarrow U \subseteq F^+(M) \). Therefore, \(x_0 \in U \subseteq F^+(M) \Rightarrow F^+(M) \) is an \(m \)-\(\gamma \)-nbd of \(x_0 \).

Conversely, let for any \(x_0 \in X \) and any fuzzy open set \(V \) of \(Y \) with \(F(x_0) \leq V \), we
have $V/\varnothing(1_Y \setminus V)$. Therefore, V is a fuzzy upper nbd of $F(x_0)$. Then by hypothesis, $F^+(V)$ is an m-γ-nbd of x_0. Then there exists $U \in m\gamma O(X)$ containing x_0 such that $x_0 \in U \subseteq F^+(V) \Rightarrow F(U) \subseteq V \Rightarrow F$ is fuzzy upper m-γ-continuous multifunction.

Theorem 6.3. A fuzzy multifunction $F : (X, m) \to (Y, \tau_Y)$ is fuzzy lower m-γ-continuous on X iff for each point $x_0 \in X$ and each fuzzy lower nbd M of $F(x_0)$, $F^{-}(M)$ is an m-γ-nbd of x_0.

Proof. Let F be fuzzy lower m-γ-continuous multifunction on X. Then for any $x_0 \in X$ and for any fuzzy lower nbd M of $F(x_0)$, there exists a fuzzy open set V of Y such that $F(x_0)qV$ and $V \not\in \varnothing(1_Y \setminus M) \Rightarrow V \subseteq M$. Since F is fuzzy lower m-γ-continuous multifunction, there exists $U \in m\gamma O(X)$ containing x_0 such that $U \subseteq F^{-}(V) \subseteq F^{-}(M)$. Therefore, $x_0 \in U \subseteq F^{-}(M) \Rightarrow F^{-}(M)$ is an m-γ-nbd of x_0.

Conversely, let for any $x_0 \in X$ and any fuzzy open set V of Y with $F(x_0)qV$. Since $V \not\in \varnothing(1_Y \setminus V)$, V is a fuzzy lower nbd of $F(x_0)$. Then by hypothesis, $F^{-}(V)$ is an m-γ-nbd of x_0. Then there exists $U \in m\gamma O(X)$ containing x_0 such that $x_0 \in U \subseteq F^{-}(V) \Rightarrow F(u)qV$, for all $u \in U \Rightarrow F$ is fuzzy lower m-γ-continuous multifunction.

Definition 6.4. An m-space (X, m) is said to be m-γ-compact if for every covering of X by m-γ-open sets of X has a finite subcover.

Theorem 6.5. Let $F : (X, m) \to (Y, \tau_Y)$ be a fuzzy upper m-γ-continuous surjective multifunction and $F(x)$ be a fuzzy compact set of Y for each $x \in X$. If X is m-γ-compact space, then Y is fuzzy compact space.

Proof. Let $\mathcal{A} = \{A_\alpha : \alpha \in \Lambda\}$ be a fuzzy open cover of Y. Now for each $x \in X$, $F(x)$ is fuzzy compact in Y and so there is a finite subset Λ_x of Λ such that $F(x) \subseteq \bigcup \{A_\alpha : \alpha \in \Lambda_x\}$. Let $A_x = \bigcup \{A_\alpha : \alpha \in \Lambda_x\}$. Then $F(x) \subseteq A(x)$ where A_x is a fuzzy open set of Y. Since F is fuzzy upper m-γ-continuous multifunction, there exists $U_x \in m\gamma O(X)$ containing x such that $U_x \subseteq F^+(A_x)$. Then $\mathcal{U} = \{U_x : x \in X\}$ is a cover of X by m-γ-open sets of X. Since X is m-γ-compact, there exists finitely many points $x_1, x_2, ..., x_n$ of X such that $X = \bigcup_{i=1}^{n} U_{x_i}$. As F is surjective, $1_Y = F(X) = F\left(\bigcup_{i=1}^{n} U_{x_i}\right) = \bigcup_{i=1}^{n} F(U_{x_i}) \subseteq \bigcup_{i=1}^{n} A_{x_i} = \bigcup_{i=1}^{n} \bigcup_{\alpha \in \Lambda_{x_i}} A_\alpha \Rightarrow Y$ is fuzzy compact space.
Definition 6.6 [15]. An fts (Y, τ_Y) is said to be FNC-space if every fuzzy regular open cover of Y has a finite subcover.

Remark 6.7. As every fuzzy regular open set is fuzzy open, we can set the following theorem easily.

Theorem 6.8. Let F : (X, m) → (Y, τ_Y) be a fuzzy upper m-γ-continuous surjective multifunction and F(x) be a fuzzy compact set of Y for each x ∈ X. If X is m-γ-compact space, then Y is FNC-space.

Theorem 6.9. Every m-γ-closed subset of an m-γ-compact space is m-γ-compact.

Proof. Let A be an m-γ-closed subset of an m-γ-compact space (X, m). Let A = {A_α : α ∈ Λ} be a covering of A by m-γ-open sets of X. Then (X \ A) ∪ (\bigcup_{α ∈ Λ} A_α) is a covering of X by m-γ-open sets of X. As X is m-γ-compact, there exists a finite subset Λ_0 of Λ such that (X \ A) ∪ (\bigcup_{α ∈ Λ_0} A_α) covers X. Now discarding the set X \ A, we get the finite subcover \{A_α : α ∈ Λ_0\} of A by m-γ-open sets of X. Hence A is m-γ-compact.

Definition 6.10 [14]. For a fuzzy multifunction F : X → Y, the fuzzy graph multifunction G_F : X → X × Y of F is defined as G_F(x) = the fuzzy set x_1 × F(x) of X × Y, where x_1 is the fuzzy set in X, whose value is 1 at x ∈ X and 0 at other points of X. We shall write \{x\} × F(x) for x_1 × F(x).

Theorem 6.11. When X is product related to Y, a fuzzy multifunction F : (X, m) → (Y, τ_Y) is fuzzy upper m-γ-continuous if its fuzzy graph multifunction G_F : X → X × Y is fuzzy upper m-γ-continuous multifunction.

Proof. Let G_F be a fuzzy upper m-γ-continuous multifunction. Let x ∈ X and V be a fuzzy open set of Y such that F(x) ≤ V. Then G_F(x) ≤ X × V and X × V is easily seen to be open in X × Y. By hypothesis, there exists U ∈ mγO(X) containing x such that G_F(U) ≤ X × V. Now for any z ∈ U and any y ∈ Y, [F(z)](y) = [G_F(z)](z, y) ≤ (X × V)(z, y) = V(y), i.e., [F(z)](y) ≤ V(y), for all y ∈ Y ⇒ F(z) ≤ V, for any z ∈ U ⇒ F(U) ≤ V ⇒ F is fuzzy upper m-γ-continuous multifunction.
Definition 6.12. The m-γ-frontier of a subset A of an m-space (X, m), denoted by $m\gamma Fr(A)$, is defined by $m\gamma Fr(A) = m\gamma cl A \cap m\gamma cl (X \setminus A) = m\gamma cl A \setminus m\gamma int A$.

Theorem 6.13. Let $F : (X, m) \to (Y, \tau_Y)$ be a fuzzy multifunction where m satisfies Maki condition. Let $A = \{x \in X : F$ is not fuzzy upper m-γ-continuous at $x\}$, $B = \bigcup\{m\gamma Fr(F^+(V)) : F(x) \leq V \text{ and } V \text{ is fuzzy open in } Y\}$. Then $A = B$.

Proof. Let $x \in X$ be such that F is not fuzzy upper m-γ-continuous at x. Then there exists a fuzzy open set V of Y with $F(x) \leq V$ such that $U \not\subseteq F^+(V)$, for all $U \in m\gamma O(X)$ containing $x \Rightarrow U \cap (X \setminus F^+(V)) \neq \emptyset \Rightarrow x \in m\gamma cl (X \setminus F^+(V)) = X \setminus m\gamma int(F^+(V)) \Rightarrow x \notin m\gamma int(F^+(V))$. But $x \in F^+(V) \subseteq m\gamma cl(F^+(V))$. Therefore, $x \in m\gamma Fr(F^+(V))$.

Conversely, let $x \in X$ and V be a fuzzy open set of Y with $F(x) \leq V$ such that $x \in m\gamma Fr(F^+(V))$. If possible, let F be fuzzy upper m-γ-continuous at x. Then there exists $U \in m\gamma O(X)$ containing x such that $U \subseteq F^+(V)$. Then $x \in U = m\gamma int U \subseteq m\gamma int(F^+(V)) \Rightarrow x \in m\gamma int(F^+(V)) \Rightarrow x \notin m\gamma Fr(F^+(V))$, a contradiction and hence F is not fuzzy upper m-γ-continuous at x.

Theorem 6.14. Let $F : (X, m) \to (Y, \tau_Y)$ be a fuzzy multifunction where m satisfies Maki condition. Let $A = \{x \in X : F$ is not fuzzy lower m-γ-continuous at $x\}$, $B = \bigcup\{m\gamma Fr(F^-(V)) : F(x)qV \text{ and } V \text{ is fuzzy open in } Y\}$. Then $A = B$.

Proof. Let $x \in X$ be such that F is not fuzzy lower m-γ-continuous at x. Then there exists a fuzzy open set V of Y with $F(x)qV$ such that $U \not\subseteq F^-(V)$, for all $U \in m\gamma O(X)$ containing $x \Rightarrow U \cap (X \setminus F^-(V)) \neq \emptyset \Rightarrow x \in m\gamma cl (X \setminus F^-(V)) = X \setminus m\gamma int(F^-(V)) \Rightarrow x \notin m\gamma int(F^-(V))$. But $x \in F^-(V) \subseteq m\gamma cl(F^-(V))$. Therefore, $x \in m\gamma Fr(F^-(V))$.

Conversely, let $x \in X$ and V be a fuzzy open set of Y with $F(x)qV$ such that $x \in m\gamma Fr(F^-(V))$. If possible, let F be fuzzy lower m-γ-continuous at x. Then there exists $U \in m\gamma O(X)$ containing x such that $U \subseteq F^-(V)$. Then $x \in U = m\gamma int U \subseteq m\gamma int(F^-(V)) \Rightarrow x \in m\gamma int(F^-(V)) \Rightarrow x \notin m\gamma Fr(F^-(V))$, a contradiction and hence F is not fuzzy lower m-γ-continuous at x.
References

[8] Bhattacharyya, Anjana, Fuzzy upper and lower M-continuous multifunctions, ”*Vasile Alecsandri*” University of Bacău, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics, **21** (2) (2015), 125-144.

278

Published: Volume 2018, Issue 7 / July 25, 2018