

### Fuzzy m- $\beta$ -Irresolute Function

#### Anjana Bhattacharyya

Department of Mathematics, Victoria Institution (College) 78 B, A.P.C. Road, Kolkata - 700009, INDIA

E-mail: anjanabhattacharyya@hotmail.com

#### **Abstract**

In [3], fuzzy m- $\beta$ -open set is introduced. Using this concept as a basic tool, in this paper we introduce  $\beta$ -irresolute function in fuzzy m-space, termed as fuzzy m- $\beta$ -irresolute function. Afterwards, it is shown that fuzzy m- $\beta$ -irresolute function is fuzzy m-e\*-continuous function [3] as well as fuzzy almost e\*-continuous function [3], but not conversely. Lastly some applications of this newly defined function are given.

AMS Subject Classifications: 54A40, 54C99.

**Keywords**: Fuzzy m-space, fuzzy m- $\beta$ -open set, fuzzy m-e\*-open set, fuzzy m- $\beta$ -compact space (set), fuzzy m- $\beta$ -irresolute function.

### 1. Introduction

Fuzzy minimal structure (m-structure, for short) is introduced by Alimohammady and Roohi in [1] as follows: A family  $\mathcal{M}$  of fuzzy sets in a non-empty set X is said to be fuzzy minimal structure on X if  $\alpha 1_X \in \mathcal{M}$  for every  $\alpha \in [0,1]$ . A more general version of fuzzy minimal structure (in the sense of Chang) are introduced in [5, 8] as follows: A family  $\mathcal{F}$  of fuzzy sets in a non-empty set X is a fuzzy minimal structure on X if  $0_X \in \mathcal{F}$  and  $1_X \in \mathcal{F}$ . Throughout this paper, we use the notion of fuzzy minimal structure in the sense of Chang. Using this concept in [2] fuzzy m-space is introduced and studied. Fuzzy m-open set [3], fuzzy m-e\*-open set [3] are introduced and found their interrelations

in [3]. In [3], fuzzy m-compact, fuzzy m-e\*-compact, fuzzy m-P-compact, fuzzy m-P-closed spaces are introduced. Here we introduce fuzzy m- $\beta$ -compact, fuzzy m-semicompact, fuzzy m-S-closed, fuzzy m-S-closed spaces. Introducing fuzzy m- $\beta$ -irresolute function, we have shown that fuzzy m- $\beta$ -compact space remains invariant under fuzzy m- $\beta$ -irresolute function. Again it is shown that the image of a fuzzy m- $\beta$ -compact space under fuzzy m- $\beta$ -irresolute function is fuzzy m-semicompact as well as fuzzy m-S-closed space.

### 2. Preliminaries

A fuzzy set [10] A is a mapping from a non-empty set X into the closed interval I = [0, 1], i.e.,  $A \in I^X$ . The support [10] of a fuzzy set A, denoted by suppA and is defined by  $suppA = \{x \in X : A(x) \neq 0\}$ . The fuzzy set with the singleton support  $\{x\} \subseteq X$  and the value t  $(0 < t \le 1)$  will be denoted by  $x_t$ .  $0_X$  and  $1_X$  are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement [10] of a fuzzy set A in X is denoted by  $1_X \setminus A$  and is defined by  $(1_X \setminus A)(x) = 1 - A(x)$ , for each  $x \in X$ . For any two fuzzy sets A, B in A,  $A \le B$  means  $A(x) \le B(x)$ , for all  $A \in X$  [10] while  $A \in X$  means  $A \in X$  is quasi-coincident (q-coincident, for short) [9] with  $A \in X$  i.e., there exists  $A \in X$  such that  $A \in X$  in  $A \in X$  i.e., there exists  $A \in X$  such that  $A \in X$  in  $A \in X$  in  $A \in X$  means  $A \in X$  in  $A \notin X$  is denoted by  $A \not\subseteq X$  and a fuzzy set  $A \in X$  in  $A \in X$  in  $A \in X$  in  $A \in X$  means  $A \in X$  in  $A \notin X$  is denoted by  $A \not\subseteq X$  and a fuzzy set  $A \in X$  in  $A \in X$  means  $A \in X$  is a fuzzy point  $A \in X$  in  $A \in X$  means  $A \in X$  in  $A \in X$  means  $A \in X$  i.e.,  $A \in X$  means  $A \in X$  means  $A \in X$  i.e.,  $A \in X$  means  $A \in X$  means

# 3. Some Well-Known Definitions, Proposition, Lemma and Theorem in Fuzzy m-Space

Let X be a non-empty set and m be a fuzzy minimal structure on X. Then the members of m are called fuzzy m-open sets and (X, m) is called a fuzzy m-space [2]. The complement of a fuzzy m-open set in a fuzzy m-space is called a fuzzy m-closed set.

**Definition 3.1** [2]. Let (X, m) be a fuzzy m-space. For  $A \in I^X$ , the fuzzy m-closure and fuzzy m-interior of A, denoted by mclA and mintA respectively, are defined as follows:

$$mclA = \bigwedge \{F : A \le F, 1_X \setminus F \in m\}$$
  
 $mintA = \bigvee \{D : D \le A, D \in m\}$ 

It is to be noted that given a fuzzy minimal structure m on X, if  $A \in I^X$ , then mintA may not be an element of m. But if m satisfies M-condition (i.e., m is closed under arbitrary union) [2], then mintA is an element of m.

**Proposition 3.2** [2]. Let (X, m) be a fuzzy m-space. Then for any  $A \in I^X$ , a fuzzy point  $x_{\alpha} \in mclA$  iff for any  $U \in m$  with  $x_{\alpha}qU$ , UqA.

**Lemma 3.3** [2]. Let (X, m) be a fuzzy m-space. For  $A, B \in I^X$ , the following statements are true:

- (i)  $A \leq B \Rightarrow mintA \leq mintB, mclA \leq mclB,$
- (ii)  $mint0_X = 0_X$ ,  $mint1_X = 1_X$ ,  $mcl0_X = 0_X$ ,  $mcl1_X = 1_X$ ,
- (iii)  $mintA \le A \le mclA$ ,
- (iv) mclA = A if  $1_X \setminus A \in m$ , mintA = A, if  $A \in m$ ,
- (v)  $mcl(1_X \setminus A) = 1_X \setminus mintA, mint(1_X \setminus A) = 1_X \setminus mclA,$
- (vi) mcl(mclA) = mclA and mint(mintA) = mintA.

**Definition 3.4** [3]. Let (X, m) be a fuzzy m-space and  $A \in I^X$ . Then A is said to be

- (i) fuzzy m-regular open if A = mint(mclA),
- (ii) fuzzy m-semiopen if  $A \leq mcl(mintA)$ ,
- (iii) fuzzy m-preopen if  $A \leq mint(mclA)$ ,
- (iv) fuzzy m- $\beta$ -open if  $A \leq mcl(mint(mclA))$ .

The complement of the above mentioned sets are called their respective closed sets.

The infimum of all fuzzy m-semiclosed (resp., fuzzy m-preclosed, fuzzy m- $\beta$ -closed) sets containing a fuzzy set A in a fuzzy m-space (X, m) is called fuzzy m-semiclosure (resp., fuzzy m-preclosure, fuzzy m- $\beta$ -closure) of A, denoted by msclA (resp., mpclA,  $m\beta clA$ ).

The family of all fuzzy m-regular open (resp., fuzzy m-semiopen, fuzzy m-preopen, fuzzy m- $\beta$ -open) sets is denoted by mRO(X) (resp., mSO(X), mPO(X),  $m\beta O(X)$ ). The family of all fuzzy m- $\beta$ -closed sets in a fuzzy m-space (X, m) is denoted by  $m\beta C(X)$ .

**Definition 3.5** [3]. Let (X, m) be a fuzzy m-space and  $A \in I^X$ . The fuzzy m- $\delta$ -closure and fuzzy m- $\delta$ -interior of A, denoted by  $m\delta clA$  and  $m\delta intA$  respectively, are defined by :

$$m\delta clA = \{x_{\alpha} \in X : Aqmint(mclU), for all U \in m, x_{\alpha}qU\}$$

 $m\delta int A = \bigvee \{W : W \le A, W \in mRO(X)\}$ 

.

**Definition 3.6** [3]. Let (X, m) be a fuzzy m-space and  $A \in I^X$ . Then A is called fuzzy m- $e^*$ -open if  $A \leq mcl(mint(m\delta clA))$ .

The complement of a fuzzy m-e\*-open set is called fuzzy m-e\*-closed.

The family of all fuzzy m- $e^*$ -open sets in a fuzzy m-space (X, m) is denoted by  $me^*O(X)$ .

**Remark 3.7**. It is shown in [3] that  $m\beta O(X) \subseteq me^*O(X)$ . But not conversely. And arbitrary union of fuzzy m- $\beta$ -open sets is fuzzy m- $\beta$ -open.

**Definition 3.8** [3]. Let (X, m) and (Y, m') be two fuzzy m-spaces and  $f: (X, m) \to (Y, m')$  be a function. Then f is called fuzzy

- (i) (m, m')-e\*-continuous if  $f^{-1}(A) \in me^*O(X)$  for all  $A \in m'$ ,
- (ii) (m, m')-almost- $e^*$ -continuous if  $f^{-1}(A) \in me^*O(X)$  for all  $A \in m'RO(Y)$ .

## 4. Fuzzy (m, m')- $\beta$ -Irresolute Function : Some Characterizations

In this section we first introduce fuzzy m- $\beta$ -nbd (resp., fuzzy m- $\beta$ -q-nbd) of a fuzzy point and then introduce fuzzy (m, m')- $\beta$ -irresolute function and characterize it in several ways.

**Definition 4.1.** A fuzzy set A in a fuzzy m-space (X, m) is called a fuzzy m- $\beta$ -nbd of a fuzzy point  $x_{\alpha}$  if there exists a fuzzy m- $\beta$ -open set U in X such that  $x_{\alpha} \leq U \leq A$ .

**Definition 4.2.** A fuzzy set A in a fuzzy m-space (X, m) is called a fuzzy m- $\beta$ -q-nbd of a fuzzy point  $x_{\alpha}$  if there exists a fuzzy m- $\beta$ -open set U in X such that  $x_{\alpha}qU \leq A$ . If, in addition, A is fuzzy m- $\beta$ -open, then A is called fuzzy m- $\beta$ -open-q-nbd of  $x_{\alpha}$ .

**Definition 4.3**. Let (X, m) and Y, m') are two fuzzy m-spaces. A function  $f: (X, m) \to (Y, m')$  is said to be fuzzy (m, m')- $\beta$ -irresolute if  $f^{-1}(A) \in m\beta O(X)$  for each  $A \in m'\beta O(Y)$ .

**Theorem 4.4**. Let (X, m) and (Y, m') are two fuzzy m-spaces and  $f: (X, m) \to (Y, m')$  be a function where m and m' satisfy M-condition. Then the following statements are equivalent:

- (a) f is fuzzy (m, m')- $\beta$ -irresolute,
- (b) for each fuzzy point  $x_{\alpha}$  in X and each  $A \in m'\beta O(Y)$  with  $f(x_{\alpha}) \leq A$ , there exists  $B \in m\beta O(X)$  such that  $x_{\alpha} \leq B$  and  $f(B) \leq A$ ,
- (c)  $f^{-1}(B) \in m\beta C(X)$  for each  $B \in m'\beta C(Y)$ ,
- (d) for each fuzzy point  $x_{\alpha}$  in X, the inverse of each fuzzy m'- $\beta$ -nbd B of  $f(x_{\alpha})$  in Y is a fuzzy m- $\beta$ -nbd of  $x_{\alpha}$  in X,
- (e) for each fuzzy point  $x_{\alpha}$  in X and each fuzzy m'- $\beta$ -nbd B of  $f(x_{\alpha})$ , there exists a fuzzy m- $\beta$ -nbd C of  $x_{\alpha}$  in X such that  $f(C) \leq B$ ,
- (f) for each fuzzy set D in X,  $f(m\beta clD) \leq m'\beta cl(f(D))$ ,
- (g) for each fuzzy set B in Y,  $m\beta cl(f^{-1}(B)) \leq f^{-1}(m'\beta clB)$ .
- **Proof.** (b)  $\Rightarrow$  (a) Let A be a fuzzy m'- $\beta$ -open set in Y and  $x_{\alpha}$ , a fuzzy point in  $f^{-1}(A)$ . Then  $f(x_{\alpha}) \leq A$ . By (b), there exists a fuzzy m- $\beta$ -open set B in X such that  $x_{\alpha} \leq B$  and  $f(B) \leq A$ . Thus  $B \leq f^{-1}(A)$ . We have to show that  $f^{-1}(A) \leq mcl(mint(mcl(f^{-1}(A))))$ . As  $B \in m\beta O(X)$ ,  $x_{\alpha} \leq B \leq mcl(mint(mclB)) \leq mcl(mint(mcl(f^{-1}(A)))) \Rightarrow f^{-1}(A) \leq mcl(mint(mcl(f^{-1}(A))))$ .
- (a)  $\Rightarrow$  (c). Let  $B \in m'\beta C(Y)$ . Then  $1_Y \setminus B \in m'\beta O(Y)$ . By (a),  $f^{-1}(1_Y \setminus B) = 1_X \setminus f^{-1}(B) \in m\beta O(X) \Rightarrow f^{-1}(B) \in m\beta C(X)$ .
- (c)  $\Rightarrow$  (a) Straightforward.
- (a)  $\Rightarrow$  (d) Let  $x_{\alpha}$  be a fuzzy point in X and B, a fuzzy m'- $\beta$ -nbd of  $f(x_{\alpha})$  in Y. Then there exists  $U \in m'\beta O(Y)$  such that  $f(x_{\alpha}) \leq U \leq B$ . Then  $x_{\alpha} \in f^{-1}(U) \leq f^{-1}(B)$ . By (a),  $f^{-1}(U) \in m\beta O(X)$ . Hence the proof.
- (d)  $\Rightarrow$  (e) Since  $f(f^{-1}(B)) \leq B$ , the result follows by taking  $C = f^{-1}(B)$ .
- (e)  $\Rightarrow$  (b) Let  $x_{\alpha}$  be a fuzzy point in X and A, any fuzzy m'- $\beta$ -open set in Y with  $f(x_{\alpha}) \leq A$ . Then A is a fuzzy m'- $\beta$ -nbd of  $f(x_{\alpha})$  in Y. By (e), there exists a fuzzy m- $\beta$ -nbd C of  $x_{\alpha}$  in X such that  $f(C) \leq A$ . Therefore, there exists  $U \in m\beta O(X)$  such that  $x_{\alpha} \leq U \leq C$  and so  $f(U) \leq f(C) \leq A \Rightarrow f(U) \leq A$ .
- (c)  $\Rightarrow$  (f) Let D be any fuzzy set in X. Then  $m'\beta cl(f(D))$  is fuzzy m'- $\beta$ -closed set in Y as m' satisfies M-condition. By (c),  $f^{-1}(m'\beta cl(f(D))) \in m\beta C(X)$ . Now  $D \leq f^{-1}(f(D)) \leq f^{-1}(m'\beta cl(f(D)))$ , i.e.,  $m\beta clD \leq m\beta cl(f^{-1}(m'\beta cl(f(D)))) = f^{-1}(m'\beta cl(f(D)))$  as m satisfies

fies M-condition. Therefore,  $f(m\beta clD) \leq m'\beta cl(f(D))$ .

- (f)  $\Rightarrow$  (c) Let  $B \in m'\beta C(Y)$ . Put  $D = f^{-1}(B)$ . By (f),  $f(m\beta clD) \leq m'\beta cl(f(D)) = m'\beta cl(f(f^{-1}(B))) \leq m'\beta clB = B$ . Thus  $m\beta clD \leq f^{-1}(f(m\beta clD)) \leq f^{-1}(B) = D$ . Hence  $D = f^{-1}(B) \in m\beta C(X)$ .
- (f)  $\Rightarrow$  (g) Let  $B \in I^Y$ . Let  $D = f^{-1}(B)$ . By (f),  $f(m\beta clD) \leq m'\beta cl(f(D))$ , i.e.,  $m\beta clD \leq f^{-1}(m'\beta cl(f(D)))$ , i.e.,  $m\beta cl(f^{-1}(B)) \leq f^{-1}(m'\beta cl(f(f^{-1}(B)))) \leq f^{-1}(m'\beta clB)$ . (g)  $\Rightarrow$  (f) Let  $D \in I^X$ . By (g),  $m\beta cl(f^{-1}(f(D))) \leq f^{-1}(m'\beta cl(f(D))) \Rightarrow m\beta clD \leq f^{-1}(m'\beta cl(f(D))) \Rightarrow f(m\beta clD) \leq m'\beta cl(f(D))$ .

**Theorem 4.5**. A function  $f:(X,m)\to (Y,m')$  is fuzzy  $(m,m')-\beta$ -irresolute function iff for each fuzzy point  $x_{\alpha}$  in X and any fuzzy  $m'-\beta$ -open-q-nbd V of  $f(x_{\alpha})$  in Y, there exists a fuzzy m- $\beta$ -open-q-nbd U of  $x_{\alpha}$  in X such that  $f(U) \leq V$ .

**Proof.** Let  $f:(X,m) \to (Y,m')$  be fuzzy (m,m')- $\beta$ -irresolute function and  $x_{\alpha}$  be a fuzzy point in X. Let V be a fuzzy m'- $\beta$ -open-q-nbd of  $f(x_{\alpha})$  in Y. Then  $f^{-1}(V)$  (= U, say) is a fuzzy m- $\beta$ -open-q-nbd of  $x_{\alpha}$  in X such that  $f(U) = f(f^{-1}(V)) \leq V$ .

Conversely, let  $x_{\alpha}$  be a fuzzy point in X and V be any fuzzy m'- $\beta$ -open set containing  $f(x_{\alpha})$ . Let  $K_{\alpha}$  be a positive integer such that  $1/K_{\alpha} < \alpha$ . Then  $0 < 1 - \alpha + 1/n = t_n$  (say) < 1, for all  $n \ge K_{\alpha}$ . Now  $y_{t_n}qV$  for each  $n \ge K_{\alpha}$ , where y = f(x). Then by hypothesis, there exists a fuzzy m- $\beta$ -open set  $U_n$  in X such that  $x_{t_n}qU_n$  and  $f(U_n) \le V$ , for all  $n \ge K_{\alpha}$ . Put  $U = \bigcup_{n \ge K_{\alpha}} U_n$ . Then  $U \in m\beta O(X)$  (by Note 3.7) such that  $f(U) \le V$ . Also  $t_n + U_n(x) > 1$  for all  $n \ge K_{\alpha} \Rightarrow 1 - \alpha + 1/n + U_n(x) > 1$  for all  $n \ge K_{\alpha} \Rightarrow \alpha < U_n(x) + 1/n$  for all  $n \ge K_{\alpha} \Rightarrow \alpha \le \sup_{n \ge K_{\alpha}} U_n(x) = U(x) \Rightarrow x_{\alpha} \le U$ . Hence by Theorem 4.4, F is fuzzy (m, m')- $\beta$ -irresolute function.

### 5. Mutual Relationship

In [4], fuzzy (m, m')-irresolute function is defined and studied. In this section we first show that fuzzy (m, m')-irresolute function and fuzzy (m, m')- $\beta$ -irresolute function are independent concepts. In [3], we have introduced fuzzy (m, m')- $e^*$ -continuous function and fuzzy (m, m')-almost- $e^*$ -continuous function. It is obvious that fuzzy (m, m')- $\beta$ -irresolute function is fuzzy (m, m')- $e^*$ -continuous function as well as fuzzy (m, m')-almost- $e^*$ -continuous function. But the converses are not true, in general.

**Definition 5.1** [4]. Let (X, m) and (Y, m') be two fuzzy m-spaces. Then a function  $f: (X, m) \to (Y, m')$  is said to be fuzzy (m, m')-irresolute if  $f^{-1}(A) \in mSO(X)$  for each  $A \in m'SO(Y)$ .

**Remark 5.2**. The next two examples show that fuzzy (m, m')-irresolute function and fuzzy (m, m')- $\beta$ -irresolute function are independent concepts.

Example 5.3. Fuzzy (m, m')- $\beta$ -irresolute function  $\Rightarrow$  fuzzy (m, m')-irresolute function Let  $X = \{a, b\}$ ,  $m = \{0_X, 1_X, A\}$ ,  $m' = \{0_X, 1_X, C\}$  where A(a) = 0.5, A(b) = 0.4 and C(a) = 0.6, C(b) = 0.5. Then (X, m) and (X, m') are two fuzzy m-spaces. Consider the function  $f: (X, m) \to (X, m')$  defined by f(a) = b, f(b) = a. We claim that f is fuzzy (m, m')- $\beta$ -irresolute function, but not fuzzy (m, m')-irresolute function. Now  $mSO(X) = \{0_X, 1_X, U\}$  where  $A \le U \le 1_X \setminus A$  and  $m'SO(X) = \{0_X, 1_X, V\}$  where  $V \ge C$ . Again any fuzzy set in (X, m) is fuzzy m- $\beta$ -open in (X, m) and  $m'\beta O(X) = \{0_X, 1_X, W\}$  where  $W \not\le 1_X \setminus C$ . Let  $B \in m'SO(X)$  be defined by B(a) = B(b) = 0.6. Now  $[f^{-1}(B)](a) = B(f(a)) = B(b) = 0.6$ ,  $[f^{-1}(B)](b) = B(f(b)) = B(a) = 0.6$  and so  $f^{-1}(B) \not\in mSO(X)$ . Therefore, f is not fuzzy (m, m')-irresolute function. Since any fuzzy set in (X, m) is fuzzy m- $\beta$ -open in (X, m), f is clearly fuzzy (m, m')- $\beta$ -irresolute function.

Example 5.4. Fuzzy (m, m')-irresolute function  $\Rightarrow$  fuzzy (m, m')- $\beta$ -irresolute function Let  $X = \{a, b\}$ ,  $m = \{0_X, 1_X, A\}$ ,  $m' = \{0_X, 1_X, B\}$  where A(a) = 0.5, A(b) = 0.7 and B(a) = 0.6, B(b) = 0.7. Then (X, m) and (X, m') are two fuzzy m-spaces. Consider the identity function  $i: (X, m) \to (X, m')$ . Now  $mSO(X) = \{0_X, 1_X, V\}$  where  $V \ge A$  and  $m\beta O(X) = \{0_X, 1_X, A, U\}$  where  $U \not \le 1_X \setminus A$ . Again,  $m'SO(X) = \{0_X, 1_X, C\}$  where  $B \le C$  and  $m'\beta O(X) = \{0_X, 1_X, W\}$  where  $W \not \le 1_X \setminus B$ . We claim that i is fuzzy (m, m')-irresolute function, but not fuzzy (m, m')- $\beta$ -irresolute function. Now  $[i^{-1}(C)](a) = C(i(a)) = C(a) \ge B(a)$ ,  $[i^{-1}(C)](b) = C(i(b)) = C(b) \ge B(b)$  and  $B \ge A \Rightarrow i^{-1}(C) \ge A \Rightarrow i^{-1}(C) \in mSO(X)$  which shows that i is fuzzy (m, m')-irresolute function. But W(a) = 0.6, W(b) = 0.3 being a fuzzy m'- $\beta$ -open set in (X, m') and  $i^{-1}(W) = W \not \in m\beta O(X) \Rightarrow i$  is not fuzzy (m, m')- $\beta$ -irresolute function.

**Example 5.5.** Fuzzy (m, m')- $e^*$ -continuous, fuzzy (m, m')-almost- $e^*$ -continuous function  $\Rightarrow$  fuzzy (m, m')- $\beta$ -irresolute function Let  $X = \{a, b\}, m = \{0_X, 1_X, A\}, m' = \{0_X, 1_X\}$  where A(a) = 0.5, A(b) = 0.6. Then (X, m) and (X, m') are two fuzzy m-spaces. Consider the identity function  $i: (X, m) \to (X, m')$ .

and (X, m') are two fuzzy m-spaces. Consider the identity function  $i: (X, m) \to (X, m')$ . Clearly i is fuzzy (m, m')- $e^*$ -continuous as well as fuzzy (m, m')-almost- $e^*$ -continuous function. Now any fuzzy set in (X, m') is fuzzy m'- $\beta$ -open. Consider the fuzzy set B defined by B(a) = 0.5, B(b) = 0.3. Then  $B \in m'\beta O(X)$ . Now  $i^{-1}(B) = B \not\leq mcl(mint(mclB)) = 0_X \Rightarrow B \not\in m\beta O(X) \Rightarrow i$  is not fuzzy (m, m')- $\beta$ -irresolute function.

**Result 5.6**. In a fuzzy m-space (X, m),  $m\delta clA = mclA$ , for all  $A \in mSO(X)$ .

**Proof.** It is clear from definition that  $mclA \leq m\delta clA$ . So we have to show that  $m\delta clA \leq mclA$ , for all  $A \in mSO(X)$ .

Let  $x_{\alpha}$  be a fuzzy point in X such that  $x_{\alpha} \in m\delta clA$ , but  $x_{\alpha} \notin mclA$ . Then by Proposition 3.2, there is a fuzzy m-open set U in X with  $x_{\alpha}qU$ , but U /qA. Then  $U \leq 1_X \setminus A \Rightarrow mint(mclU) \leq mint(mcl(1_X \setminus A)) = 1_X \setminus mcl(mintA) \leq 1_X \setminus A$  (as  $A \in mSO(X)$ ,  $A \leq mcl(mintA) \Rightarrow 1_X \setminus A \geq 1_X \setminus mcl(mintA)$ )  $\Rightarrow mint(mclU)$  / $qA \Rightarrow x_{\alpha} \notin m\delta clA$ , a contradiction.

**Definition 5.7.** A fuzzy m-space (X, m) is called fuzzy

- (i)  $mT_{\beta}$ -space if every fuzzy m- $\beta$ -open set in X is fuzzy m-open,
- (ii)  $mT_{e^*}$ -space if every fuzzy m- $e^*$ -open set in X is fuzzy m- $\beta$ -open.

**Remark 5.8.** In a fuzzy m-space (X, m), if a fuzzy set A is fuzzy m-semiopen, then A is fuzzy m- $e^*$ -open iff it is fuzzy m- $\beta$ -open and so a function  $f:(X,m) \to (Y,m')$  where X is fuzzy  $mT_{e^*}$ -space and Y is fuzzy  $mT_{\beta}$ -space is fuzzy (m,m')- $\beta$ -irresolute iff it is fuzzy (m,m')- $e^*$ -continuous.

### 6. Applications

In this section we first recall some definitions for ready references.

**Definition 6.1** [6, 7]. Let A be a fuzzy set. A collection  $\mathcal{U}$  of fuzzy sets is called a fuzzy cover of A if  $sup\{U(x): U \in \mathcal{U}\} = 1$  for each  $x \in suppA$ . If, in addition,  $A = 1_X$ , we get the definition of fuzzy cover of X.

**Definition 6.2** [6, 7]. A fuzzy cover  $\mathcal{U}$  of a fuzzy set A is said to have a finite subcover  $\mathcal{U}_0$ , if  $\mathcal{U}_0$  is a finite subcollection of  $\mathcal{U}$  such that  $\bigcup \mathcal{U}_0 \geq A$ . If, in particular,  $A = 1_X$ , then the requirement on  $\mathcal{U}_0$  is  $\bigcup \mathcal{U}_0 = 1_X$ .

**Definition 6.3**. A fuzzy set A in a fuzzy m-space (X, m) is said to be fuzzy m-compact (resp., fuzzy m-e\*-compact) if every fuzzy cover of A by fuzzy m-open (resp., fuzzy me\*O(X)) sets in X has a finite subcover  $\mathcal{U}_0$  of  $\mathcal{U}$ . If, in particular,  $A = 1_X$ , we get the definition of fuzzy m-compact (resp., fuzzy m-e\*-compact) space.

**Definition 6.4.** A fuzzy set A in a fuzzy m-space (X, m) is said to be fuzzy m- $\beta$ -compact (resp., fuzzy m-semicompact, fuzzy m-precompact) if for every cover of A by fuzzy m- $\beta$ -open (resp., fuzzy m-semiopen, fuzzy m-preopen) sets of X has a finite subcover. If, in particular,  $A = 1_X$ , we get the definition of fuzzy m- $\beta$ -compact (resp., fuzzy m-semicompact, fuzzy m-precompact) space.

**Definition 6.5.** A fuzzy m-space (X, m) is said to be fuzzy m-S-closed (resp., fuzzy m-S-closed, fuzzy m-S-closed (resp., fuzzy m-S-clos

**Remark 6.6.** It is clear from definitions that fuzzy m- $\beta$ -compact space is fuzzy m-compact. The converse is true only in fuzzy  $mT_{\beta}$ -space. Again, fuzzy m-e\*-compact space is fuzzy m- $\beta$ -compact. The converse is true only in fuzzy  $mT_{e^*}$ -space. Also, fuzzy m- $\beta$ -compact space is fuzzy m-precompact as well as fuzzy m-P-closed.

**Theorem 6.7**. Let (X, m) and (Y, m') be two fuzzy m-spaces where X is fuzzy m- $\beta$ -compact space. Let  $f: (X, m) \to (Y, m')$  be fuzzy (m, m')- $\beta$ -irresolute, surjective function. Then Y is fuzzy m'-semicompact.

**Proof.** Let  $\mathcal{V} = \{V_{\alpha} : \alpha \in \Lambda\}$  be a fuzzy cover of Y by fuzzy m'-semiopen sets of Y. Since fuzzy m-semiopen sets are fuzzy m- $\beta$ -open,  $\mathcal{U} = \{f^{-1}(V_{\alpha}) : \alpha \in \Lambda\}$  is a fuzzy m- $\beta$ -open sets of X which covers X as f is fuzzy (m, m')- $\beta$ -irresolute function. As X is fuzzy m- $\beta$ -compact space, there is a finite subfamily  $\Lambda_0$  of  $\Lambda$  such that  $\mathcal{U}_0 = \{f^{-1}(V_{\alpha}) : \alpha \in \Lambda_0\}$  also covers X, i.e.,  $1_X = \bigcup_{\alpha \in \Lambda_0} f^{-1}(V_{\alpha}) \Rightarrow 1_Y = f(1_X) = f(\bigcup_{\alpha \in \Lambda_0} f^{-1}(V_{\alpha})) = \bigcup_{\alpha \in \Lambda_0} f(f^{-1}(V_{\alpha})) \leq \bigcup_{\alpha \in \Lambda_0} V_{\alpha} \Rightarrow Y$  is fuzzy m'-semicompact space.

Note 6.8. Since every fuzzy m-semicompact space is fuzzy m-S-closed (resp., fuzzy m-S-closed, fuzzy m-precompact, fuzzy m-P-closed) space, then we can state the following theorem.

**Theorem 6.9.** Let (X, m) and (Y, m') be two fuzzy m-spaces where X is fuzzy m- $\beta$ -compact space. Let  $f: (X, m) \to (Y, m')$  be fuzzy (m, m')- $\beta$ -irresolute, surjective function. Then Y is fuzzy m'-S-closed (resp., fuzzy m'- $\beta$ -compact, fuzzy m'-precompact, fuzzy m'-P-closed) space.

**Remark 6.10**. Since for a fuzzy set A in a fuzzy m-space (X, m),  $m\beta clA \leq msclA$ ,  $m\beta clA \leq mpclA$ ,  $m\beta clA \leq mclA$ , we can state the following theorem easily.

**Theorem 6.11**. Let (X, m) and (Y, m') be two fuzzy m-spaces where X is fuzzy m- $\beta$ -closed space. Let  $f:(X, m) \to (Y, m')$  be fuzzy (m, m')- $\beta$ -irresolute, surjective function. Then Y is fuzzy m'-S-closed (resp., fuzzy m'-s-closed, fuzzy m'-P-closed) space.

**Theorem 6.12**. Every fuzzy m- $\beta$ -closed set A in a fuzzy m- $\beta$ -compact space (X, m) is fuzzy m- $\beta$ -compact.

**Proof.** Let A be a fuzzy m- $\beta$ -closed set in a fuzzy m- $\beta$ -compact space (X, m). Let  $\mathcal{U}$  be a fuzzy cover of A by fuzzy m- $\beta$ -open sets of X. Then  $\mathcal{V} = \mathcal{U} \cup (1_X \setminus A)$  is a fuzzy m- $\beta$ -open cover of X. By hypothesis, there exists a finite subcollection  $\mathcal{V}_0$  of  $\mathcal{V}$  which also covers X. If  $\mathcal{V}_0$  contains  $1_X \setminus A$ , we omit it and get a finite subcover of A. Consequently, A is fuzzy m- $\beta$ -compact set.

**Theorem 6.13**. Let (X, m) and (Y, m') be two fuzzy m-spaces and  $f: (X, m) \to (Y, m')$  be fuzzy (m, m')- $\beta$ -irresolute function. If A is fuzzy m- $\beta$ -compact relative to X, then the image f(A) is fuzzy m'- $\beta$ -compact relative to Y.

**Proof.** Let  $A(\in I^X)$  be fuzzy m- $\beta$ -compact relative to X and  $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$  be a fuzzy cover of f(A) by fuzzy m'- $\beta$ -open sets of Y, i.e.,  $f(A) \leq \bigcup_{\alpha \in \Lambda} U_\alpha \Rightarrow A \leq f^{-1}(\bigcup_{\alpha \in \Lambda} U_\alpha) = \bigcup_{\alpha \in \Lambda} f^{-1}(U_\alpha) \Rightarrow \mathcal{V} = \{f^{-1}(U_\alpha) : \alpha \in \Lambda\}$  is a fuzzy cover of A by fuzzy m- $\beta$ -open sets of X as f is fuzzy (m, m')- $\beta$ -irresolute function. As A is fuzzy m- $\beta$ -compact relative to X, there exists a finite subcollection  $\mathcal{V}_0 = \{f^{-1}(U_{\alpha_i}) : 1 \leq i \leq n\}$  of  $\mathcal{V}$  such that  $A \leq \bigcup_{i=1}^n f^{-1}(U_{\alpha_i}) \Rightarrow f(A) \leq f(\bigcup_{i=1}^n f^{-1}(U_{\alpha_i})) = \bigcup_{i=1}^n f(f^{-1}(U_{\alpha_i})) \leq \bigcup_{i=1}^n U_{\alpha_i} \Rightarrow \mathcal{U}_0 = \{U_{\alpha_i} : 1 \leq i \leq n\}$  is a finite subcover of f(A). Hence the result.

### References

- [1] Alimohammady, M. and Roohi, M.; Fuzzy minimal structure and fuzzy minimal vector spaces, *Chaos, Solitons and Fractals*, **27** (2006), 599-605.
- [2] Bhattacharyya, Anjana; Fuzzy upper and lower M-continuous multifunctions, "Vasile Alecsandri" University of Bacău, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics, 21 (2) (2015), 125-144.
- [3] Bhattacharyya, Anjana; Several concepts of continuity in fuzzy m-space, Annals of Fuzzy Mathematics and Informatics, 13 (2) (2017), 5-21.
- [4] Bhattacharyya, Anjana; Fuzzy *m*-irresolute function, (Communicated).
- [5] Brescan, M.; On quasi-irresolute function in fuzzy minimal structures, BULETINUL Universității Petrol - Gaze din Ploiești, Seria Matematică-Informatică-Fizică, Vol. LXII, (No. 1) (2010), 19-25.
- [6] Chang, C.L.; Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [7] Ganguly, S. and Saha, S.; A note on compactness in fuzzy setting, Fuzzy Sets and Systems, 34 (1990), 117-124.
- [8] Nematollahi, M.J. and Roohi, M.; Fuzzy minimal structures and fuzzy minimal subspaces, Italian Journal of Pure and Applied Mathematics 27 (2010), 147-156.

- [9] Pu, Pao Ming and Liu, Ying Ming; Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence, *Jour. Math. Anal. Appl.*, **76** (1980), 571-599.
- [10] Zadeh, L.A.; Fuzzy Sets, Inform. Control, 8 (1965), 338-353.

Published: Volume 2018, Issue 6 / June 25, 2018