

$$\alpha^{e^*}$$
-Closed Set

Anjana Bhattacharyya

Department of Mathematics, Victoria Institution (College), 78 B, A.P.C. Road, Kolkata - 700009, India.

Abstract

This paper deals with a new type of crisp set viz., α^{e^*} -closed set which inherits α - e^* -almost compactness of a space X where the underlying structure on X is a fuzzy topology. Also a new type of continuous-like function between two fuzzy topological spaces is introduced under which α - e^* -almost compactness for crisp subsets remains invariant.

AMS Subject Classifications: 54A40, 54C99, 54D20.

Keywords: $\alpha - e^*$ -almost compactness, $\alpha - e^*$ -almost compact set, $\alpha - e^*$ -Urysohn space, $\alpha - e^*$ -closed set, $\alpha - e^*$ -continuity, fuzzy e^* -open function.

1. Introduction

It is clear from definition that taking the idea of fuzzy cover given by Chang [4], many mathematicians have engaged themselves to introduce different types of compactness in fuzzy set theory. Gantner et al. [6] generalized the concept of fuzzy cover in 1978 by introducing α -shading where $0 < \alpha < 1$. Using this idea, in [3], α - e^* -almost compactness for crisp set is introduced and studied. In [2], fuzzy e^* -open set is introduced. Here we introduce a crisp set, viz., α^{e^*} -closed set where the underlying topology is a fuzzy topology.

2. Preliminaries

In what follows, by (X, τ) or simply by X, we mean an fts in the sense of Chang [4]. A crisp set A in an fts X means an ordinary subset of the set X where the underlying structure of the set X being a fuzzy topology τ . A fuzzy set [8] A is a mapping from a nonempty set X into the closed interval I = [0,1] of the real line, i.e., $A \in I^X$. For a fuzzy set A, the fuzzy closure [4] and fuzzy interior [4] of A in X are denoted by clA and intA respectively. The support [8] of a fuzzy set A in X will be denoted by suppA and is defined by $suppA = \{x \in X : A(x) \neq 0\}$. A fuzzy point [7] in X with the singleton support $\{x\} \subseteq X$ and the value α ($0 < \alpha \le 1$) at x will be denoted by x_{α} . For a fuzzy set A, the complement [8] of A in X will be denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for each $x \in X$. For any two fuzzy sets A and B in X, we write $A \le B$

Corresponding author: Anjana Bhattacharyya, Department of Mathematics, Victoria Institution (College), 78 B, A.P.C. Road, Kolkata - 700009, India. E-mail: anjanabhattacharyya@hotmail.com.

if $A(x) \leq B(x)$, for each $x \in X$ [8] while we write AqB if A is quasi-coincident (q-coincident, for short) with B [7], i.e., if there exists $x \in X$ such that A(x) + B(x) > 1; the negation of these statements are written as $A \leq B$ and AqB respectively. A fuzzy set A is called fuzzy regular open [1] if A = int(clA). A fuzzy set B is called a quasi-neighbourhood (q-nbd, for short) [7] of a fuzzy point x_t if there is a fuzzy open set U in X such that $x_tqU \leq B$. If, in addition, B is fuzzy open (resp., fuzzy regular open), then B is called a fuzzy open [7] (resp., fuzzy regular open [1]) q-nbd of x_t . A fuzzy point x_{α} is said to be a fuzzy δ -cluster point of a fuzzy set A in an fts X if every fuzzy regular open q-nbd U of x_{α} is q-coincident with A [5]. The union of all fuzzy δ -cluster points of A is called the fuzzy δ -closure of A and is denoted by δclA [5].

3. Fuzzy *e*^{*}-open Set: Some Properties

In this section we recall first the definition of fuzzy e^* -open set and some of its results from [2].

Definition 3.1 [2]. A fuzzy set A in an fts X is said to be fuzzy e^* -open if $A \le cl(int(\delta clA))$. The complement of a fuzzy e^* -open set is called fuzzy e^* -closed.

Definition 3.2 [2]. The intersection of all fuzzy e^* -closed sets containing a fuzzy set A in X is called fuzzy e^* -closure of A, to be denoted by e^*clA .

Result 3.3 [2]. A fuzzy set A in X is fuzzy e^* -closed iff $A = e^* clA$.

Definition 3.4 [2]. The union of all fuzzy e^* -open sets contained in a fuzzy set A in X is called fuzzy e^* -interior of A, to be denoted by e^*intA .

Result 3.5 [2]. A fuzzy set A is fuzzy e^* -open iff $A = e^* intA$.

Result 3.6 [2]. (i) For any fuzzy set A in X, $x_t \in e^* clA \Leftrightarrow UqA$ for any fuzzy e^* -open set U in X with $x_t qU$.

(ii) for any two fuzzy sets U, V in X where V is fuzzy e^* -open set, $UqV \Rightarrow e^*clUqV$.

Definition 3.7. Let X be an fts and A, a crisp subset of X. A collection \mathcal{U} of fuzzy sets in X is called an α -shading (where $0 < \alpha < 1$) of A if for each $x \in A$, there is some $U_x \in \mathcal{U}$ such that $U_x(x) > \alpha$ [6]. If, in addition, the members are fuzzy open (resp., fuzzy e^* -open) sets, then \mathcal{U} is called a fuzzy open [6] (resp., fuzzy e^* -open [3]) α -shading of A.

Definition 3.8 [3]. Let X be an fts and A, a crisp subset of X. A is said to be $\alpha - e^*$ -almost compact if each fuzzy e^* -open α -shading \mathcal{U} of A has a finite e^* -proximate α -subshading, i.e., there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\{e^*clU: U \in \mathcal{U}_0\}$ is again an α -shading of A. If, in particular A = X, we get the definition of $\alpha - e^*$ -almost compact space X.

4. α^{e^*} -Closed Set: Some Properties

Let us now introduce a class of crisp sets in an fts X, as follows.

Definition 4.1. Let (X,τ) be an fts and $A \subseteq X$. A point $x \in X$ is said to be an α^{e^*} -limit point of A if for every fuzzy e^* -open set U in X with $U(x) > \alpha$, there exists $y \in A \setminus \{x\}$ such that $(e^*clU)(y) > \alpha$. The set of all α^{e^*} -limit points of A will be denoted by $[A]^{\alpha}_{x^*}$.

The α^{e^*} -closure of A, to be denoted by α^{e^*} -clA, is defined by α^{e^*} -clA = $A \bigcup [A]_{e^*}^{\alpha}$.

Definition 4.2. A crisp subset A of an fts X is said to be α^{e^*} -closed if it contains all its α^{e^*} -limit points. Any subset B of X is called α^{e^*} -open if $X \setminus B$ is α^{e^*} -closed.

Remark 6.3. It is clear from Definition 4.1 that for any set $A \subseteq X$, $A \subseteq \alpha^{e^*} - clA$ and $\alpha^{e^*} - clA = A$ if and only if $[A]_{e^*}^{\alpha} \subseteq A$. Again it follows from Definition 4.1 that A is α^{e^*} -closed if and only if $\alpha^{e^*} - clA = A$. It is also clear that $A \subseteq B \subseteq X \Rightarrow [A]_{e^*}^{\alpha} \subseteq [B]_{e^*}^{\alpha}$.

Theorem 4.4. An α^{e^*} -closed subset A of an $\alpha - e^*$ -almost compact space X is $\alpha - e^*$ -almost compact.

PROOF. Let $A(\subseteq X)$ be an α^{e^*} -closed set in an $\alpha - e^*$ -almost compact space X. Then for any $x \notin A$, there is a fuzzy e^* -open set U_x in X such that $U_x(x) > \alpha$, and $(e^*clU_x)(y) \le \alpha$, for every $y \in A$. Consider the collection $\mathcal{U} = \{U_x : x \notin A\}$. For proving A to be $\alpha - e^*$ -almost compact, consider a fuzzy e^* -open α -shading \mathcal{V} of A. Clearly $\mathcal{U} \bigcup \mathcal{V}$ is a fuzzy e^* -open α -shading of X. Since X is $\alpha - e^*$ -almost compact, there exists a finite subcollection $\{V_1, V_2, ..., V_n\}$ of $\mathcal{U} \bigcup \mathcal{V}$ such that for every $t \in X$, there exists $V_i(1 \le i \le n)$ such that $(e^*clV_i)(t) > \alpha$. For every member U_x of \mathcal{U} , $(e^*clU_x)(y) \le \alpha$, for every $y \in A$. So if this subcollection contains any member of \mathcal{U} , we omit it and hence we get the result.

To achieve the converse of Theorem 4.4, we define the following.

Definition 4.5. An fts (X, τ) is said to be $\alpha - e^*$ -Urysohn if for any two distinct points x, y of X, there exist a fuzzy open set U and a fuzzy e^* -open set V in X with $U(x) > \alpha$, $V(y) > \alpha$ and $min((e^*clU)(z), (e^*clV(z)) \le \alpha$, for each $z \in X$.

Theorem 4.6. An $\alpha - e^*$ -almost compact set in an $\alpha - e^*$ -Urysohn space X is α^{e^*} -closed.

Proof. Let A be an $\alpha - e^*$ -almost compact set and $x \in X \setminus A$. Then for each $y \in A$, $x \neq y$. As X is $\alpha - e^*$ -Urysohn, there exist a fuzzy open set U_y and a fuzzy e^* -open set V_y in X such that $U_y(x) > \alpha, V_y(y) > \alpha$ and $min((e^*clU_y)(z), (e^*clV_y)(z)) \le \alpha$, for all $z \in X$... (1).

Then $\mathcal{U} = \{V_y : y \in A\}$ is a fuzzy e^* -open α -shading of A and so by $\alpha - e^*$ -almost compactness of A, there exist finitely many points $y_1, y_2, ..., y_n$ of A such that $\mathcal{U}_0 = \{e^* clV_{y_1}, e^* clV_{y_2}, ..., e^* clV_{y_n}\}$ is again an α -shading of A. Now $U = U_{y_1} \bigcap ... \bigcap U_{y_n}$ being a fuzzy open set is a fuzzy e^* -open set in X such that $U(x) > \alpha$. In order to show that A to be α^{e^*} -closed, it now suffices to show that $(e^* clU)(y) \leq \alpha$, for each $y \in A$. In fact, if for some $z \in A$, we assume $(e^* clU)(z) > \alpha$, then as $z \in A$, we have $(e^* clV_{y_k})(z) > \alpha$, for some k $(1 \leq k \leq n)$. Also $(e^* clU_{y_k})(z) > \alpha$. Hence $min((e^* clU_{y_k})(z), (e^* clV_{y_k})(z)) > \alpha$, contradicting (1).

Corollary 4.7. In an $\alpha - e^*$ -almost compact, $\alpha - e^*$ -Urysohn space X, a subset A of X is $\alpha - e^*$ -almost compact if and only if it is α^{e^*} -closed.

Theorem 4.8. In an $\alpha - e^*$ -almost compact space X, every cover of X by α^{e^*} -open sets has a finite subcover.

Proof. Let $\mathcal{U} = \{U_i : i \in \Lambda\}$ be a cover of X by α^{e^*} -open sets. Then for each $x \in X$, there exists $U_x \in \mathcal{U}$ such that $x \in U_x$. Since $X \setminus U_x$ is α^{e^*} -closed, there exists a fuzzy e^* -open set V_x in X such that $V_x(x) > \alpha$ and $(e^* c l V_x)(y) \le \alpha$, for each $y \in X \setminus U_x$... (1).

Then $\{V_x : x \in X\}$ forms a fuzzy e^* -open α -shading of the α - e^* -almost compact space X. Thus there exists a finite subset $\{x_1, x_2, ..., x_n\}$ of X such that $\{e^*clV_{x_i} : i = 1, 2, ..., n\}$ is an α -shading of X ... (2).

We claim that $\{U_{x_1}, U_{x_2}, ..., U_{x_n}\}$ is a finite subcover of \mathcal{U} . If not, then there exists $y \in X \setminus \bigcup_{i=1}^{n} U_{x_i} = \bigcap_{i=1}^{n} (X \setminus U_{x_i})$. Then by (1), $(e^* clV_{x_i})(y) \leq \alpha$, for i = 1, 2, ..., n and so $(\bigcup_{i=1}^{n} e^* clV_{x_i})(y) \leq \alpha$, contradicting (2).

Theorem 4.9. Let (X, τ) be an fts. If X is $\alpha - e^*$ -almost compact, then every collection of α^{e^*} -closed sets in X with finite intersection property has non-empty intersection.

Proof. Let $\mathcal{F} = \{F_i : i \in \Lambda\}$ be a collection of α^{e^*} -closed sets in an $\alpha - e^*$ -almost compact space X having finite intersection property. If possible, let $\bigcap_{i \in \Lambda} F_i = \phi$. Then $X \setminus \bigcap_{i \in \Lambda} F_i = \bigcup_{i \in \Lambda} (X \setminus F_i) = X \Rightarrow \mathcal{U} = \{X \setminus F_i : i \in \Lambda\}$ is an α^{e^*} -open cover of X. Then by Theorem 4.8, there is a finite subset Λ_0 of Λ such that $\bigcup_{i \in \Lambda_0} (X \setminus F_i) = X \Rightarrow \bigcap_{i \in \Lambda_0} F_i = \phi$, a contradiction.

5. α^{e^*} -Continuity: Some Applications

In this section, we now introduce a class of functions under which $\alpha - e^*$ -almost compactness remains invariant.

Definition 5.1. Let X, Y be fts's. A function $f: X \to Y$ is said to be α^{e^*} -continuous if for each point $x \in X$ and each fuzzy e^* -open set V in Y with $V(f(x)) > \alpha$, there exists a fuzzy e^* -open set U in X with $U(x) > \alpha$ such that $e^* clU \le f^{-1}(e^* clV)$.

Theorem 5.2. If $f: X \to Y$ is α^{e^*} -continuous (where X, Y are, as usual, fts's), then the following are true :

- (a) $f([A]_{a^*}^{\alpha}) \subseteq [f(A)]_{a^*}^{\alpha}$, for every $A \subseteq X$.
- (b) $[f^{-1}(A)]_{e^*}^{\alpha} \subseteq f^{-1}([A]_{e^*}^{\alpha})$, for every $A \subseteq Y$.
- (c) For each α^{e^*} -closed set A in Y, $f^{-1}(A)$ is α^{e^*} -closed in X.
- (d) For each α^{e^*} -open set A in Y, $f^{-1}(A)$ is α^{e^*} -open in X.

Proof (a). Let $x \in [A]_{e^*}^{\alpha}$ and U be any fuzzy e^* -open set in Y with $U(f(x)) > \alpha$. Then there is a fuzzy e^* -open set V in X with $V(x) > \alpha$ and $e^*clV \le f^{-1}(e^*clU)$. Now $x \in [A]_{e^*}^{\alpha}$ and Vis a fuzzy e^* -open set in X with $V(x) > \alpha \Rightarrow e^*clV(x_0) > \alpha$, for some $x_0 \in A \setminus \{x\}$ $\Rightarrow \alpha < e^*clV(x_0) \le (f^{-1}(e^*clU))(x_0) = (e^*clU)(f(x_0))$ where $f(x_0) \in f(A) \setminus \{f(x)\} \Rightarrow f(x) \in [f(A)]_{e^*}^{\alpha}$. Thus (a) follows.

(b) By (a), $f([f^{-1}(A)]^{\alpha}_{e^*}) \subseteq [ff^{-1}(A)]^{\alpha}_{e^*} \subseteq [A]^{\alpha}_{e^*} \Longrightarrow [f^{-1}(A)]^{\alpha}_{e^*} \subseteq f^{-1}([A]^{\alpha}_{e^*})$.

(c) We have
$$[A]_{e^*}^{\alpha} = A$$
. By (b), $[f^{-1}(A)]_{e^*}^{\alpha} \subseteq f^{-1}([A]_{e^*}^{\alpha}) = f^{-1}(A) \Longrightarrow [f^{-1}(A)]_{e^*}^{\alpha} = f^{-1}(A) \Longrightarrow$

- $f^{-1}(A)$ is α^{e^*} -closed set in X.
 - (d) Follows from (c).

Theorem 5.3. Let X, Y be fts's and $f: X \to Y$ be fuzzy α^{e^*} -continuous function. If $A(\subseteq X)$ is $\alpha - e^*$ -almost compact set in X, then so is f(A) in Y.

Proof. Let $V = \{V_i : i \in \Lambda\}$ be a fuzzy e^* -open α -shading of f(A), where A is $\alpha - e^*$ -almost compact set in X. For each $x \in A$, $f(x) \in f(A)$ and so there exists $V_x \in \mathcal{V}$ such that $V_x(f(x)) > \alpha$. As f is fuzzy α^{e^*} -continuous, there exists a fuzzy e^* -open set U_x in X such that $U_x(x) > \alpha$ and $f(e^*clU_x) \le e^*clV_x$. Then $\{U_x : x \in A\}$ is a fuzzy e^* -open α -shading of A. By $\alpha - e^*$ -almost compactness of A, there are finitely many points $a_1, a_2, ..., a_n$ in A such that $\{e^*clU_{a_i} : i = 1, 2, ..., n\}$ is again an α -shading of A.

We claim that $\{e^*clV_{a_i}: i = 1, 2, ..., n\}$ is an α -shading of f(A). In fact, $y \in f(A) \Rightarrow$ there exists $x \in A$ such that y = f(x). Now there is a U_{a_j} (for some $j, 1 \le j \le n$) such that $(e^*clU_{a_j})(x) > \alpha$ and hence $(e^*clV_{a_j})(y) \ge f(e^*clU_{a_j})(y) \ge e^*clU_{a_j}(x) > \alpha$.

We now introduce a function under which α^{e^*} -closedness of a set remains invariant.

Definition 5.4. Let X, Y be fts's. A function $f: X \to Y$ is said to be fuzzy e^* -open if f(A) is fuzzy e^* -open in Y whenever A is fuzzy e^* -open in X.

Remark 5.5. For a fuzzy e^* -open function $f: X \to Y$, for every fuzzy e^* -closed set A in X, f(A) is fuzzy e^* -closed in Y.

Theorem 5.6. If $f:(X,\tau) \to (Y,\tau_1)$ is a bijective fuzzy e^* -open function, then the image of a α^{e^*} -closed set in (X,τ) is α^{e^*} -closed in (Y,τ_1) .

Proof. Let A be a α^{e^*} -closed set in (X, τ) and let $y \in Y \setminus f(A)$. Then there exists a unique $z \in X$ such that f(z) = y. As $y \notin f(A)$, $z \notin A$. Now, A being α^{e^*} -closed in X, there exists a fuzzy e^* -open set V in X such that $V(z) > \alpha$ and $e^* clV(p) \le \alpha$, for each $p \in A$... (1).

As f is fuzzy e^* -open, f(V) is a fuzzy e^* -open set in Y, and also $(f(V))(y) = V(z) > \alpha$. Let $t \in f(A)$. Then there is a unique $t_0 \in A$ such that $f(t_0) = t$. As f is bijective and fuzzy e^* -open, by Remark 5.5, $e^*clf(V) \le f(e^*clV)$. Then $(e^*clf(V))(t) \le f(e^*clV)(t) = e^*clV(t_0) \le \alpha$, by

(1). Thus y is not an α^{e^*} -limit point of f(A). Hence the proof.

From Theorem 5.2 (c) and Theorem 5.6, it follows that

Corollary 5.7. Let $f: X \to Y$ be a fuzzy α^{e^*} -continuous, bijective and fuzzy e^* -open function. Then A is α^{e^*} -closed in Y if and only if $f^{-1}(A)$ is α^{e^*} -closed in X.

References

- Azad, K.K., On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- [2]. Bhattacharyya, Anjana, *Several concepts of continuity in fuzzy setting*, e-Proceedings, The 10th International Conference MSAST 5 (2016),282-293.
- [3]. Bhattacharyya, Anjana, e^* -almost compactness via α -shading, Journal of Mathematics and Statistical Sciences (Accepted for Publication).
- [4]. Chang, C.L., Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [5]. Ganguly, S. and Saha, S., A note on δ-continuity and δ-connected sets in fuzzy set theory, Simon Stevin 62 (1988), 127-141.
- [6]. Gantner, T.E., Steinlage, R.C. and Warren, R.H., Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978), 547-562.

- [7]. Pu, Pao Ming and Liu, Ying Ming, *Fuzzy topology I*, Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math. Anal. Appl. 76 (1980), 571-599.
- [8]. Zadeh, L.A., *Fuzzy Sets*, Inform. Control 8 (1965), 338-353.

Published: Volume 2018, Issue 3 / March 25, 2018