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Abstract 

This paper describes a model-based estimation procedure for the variance of the generalized regression (GREG) 
estimator for the finite population totals. Two model-based estimators for the design variance of the GREG 
estimator are proposed. A simulation study is conducted to study the bias and efficiency of both estimators. 
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1. Introduction 

Let U be a finite population of size N. Let 𝑠𝑠 ⊂ 𝑈𝑈 be a sample of size n drawn according to a known 
probability sampling design 𝑝𝑝(𝑠𝑠) (non-informative) with positive first and second order inclusion probabilities 
𝜋𝜋𝑖𝑖  and 𝜋𝜋𝑖𝑖𝑖𝑖 .  Let (𝑦𝑦𝑖𝑖 , 𝑥𝑥𝑖𝑖) be pair of values associated with each unit 𝑖𝑖 ∈ 𝑈𝑈. Suppose that the values 𝑦𝑦𝑖𝑖 , 𝑖𝑖 ∈ 𝑠𝑠, 
and 𝑥𝑥𝑖𝑖 , 𝑖𝑖 ∈ 𝑈𝑈, are known. The problem is  how to use this information to make inference about the finite 
population total 𝑌𝑌 = ∑ 𝑦𝑦𝑖𝑖𝑈𝑈 . If 𝐴𝐴 ⊆ 𝑈𝑈, we write ∑ for𝐴𝐴   ∑ and𝑖𝑖∈𝐴𝐴   ∑∑ for𝐴𝐴   ∑∑ .𝑖𝑖≠𝑗𝑗∈𝐴𝐴  The customary design-
based unbiased estimator of Y which makes no use of auxiliary information at the estimation stage is the 
Horvitz-Thompson [8] (HT) estimator 

 𝑌𝑌�𝐻𝐻𝐻𝐻 = ∑ 𝑦𝑦𝑖𝑖 𝜋𝜋𝑖𝑖⁄𝑠𝑠  (1) 

with variance 

 𝑉𝑉𝐻𝐻𝐻𝐻 = 𝑉𝑉𝐻𝐻𝐻𝐻�𝑌𝑌�𝐻𝐻𝐻𝐻� = ∑ 𝛥𝛥𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖2 + ∑∑ 𝛥𝛥𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑈𝑈𝑈𝑈 , (2) 

for which an unbiased estimator is given by 

 𝑉𝑉�𝐻𝐻𝐻𝐻�𝑌𝑌�𝐻𝐻𝐻𝐻� = ∑ 𝛥𝛥𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖
𝑦𝑦𝑖𝑖2 + ∑∑ 𝛥𝛥𝑖𝑖𝑖𝑖

𝜋𝜋𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑠𝑠𝑠𝑠  (3) 

where 𝛥𝛥𝑖𝑖𝑖𝑖 = 𝜋𝜋𝑖𝑖−1 − 1 if  𝑖𝑖 = 𝑗𝑗 and  = 𝜋𝜋𝑖𝑖𝑖𝑖 𝜋𝜋𝑖𝑖−1𝜋𝜋𝑗𝑗−1 − 1 if 𝑖𝑖 ≠ 𝑗𝑗. 
If n is fixed, (2) may be expressed in the form  

 𝑉𝑉𝑌𝑌𝑌𝑌�𝑌𝑌�𝐻𝐻𝐻𝐻� = ∑∑ 𝛬𝛬𝑖𝑖𝑖𝑖 �
𝑦𝑦𝑖𝑖
𝜋𝜋𝑖𝑖
− 𝑦𝑦𝑗𝑗

𝜋𝜋𝑗𝑗
�

2

𝑖𝑖<𝑗𝑗∈𝑈𝑈      (4) 

(see [20], [24]) for which an unbiased estimator is given by 
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 𝑉𝑉�𝑌𝑌𝑌𝑌�𝑌𝑌�𝐻𝐻𝐻𝐻� = ∑∑ 𝛬𝛬𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖
�𝑦𝑦𝑖𝑖
𝜋𝜋𝑖𝑖
− 𝑦𝑦𝑗𝑗

𝜋𝜋𝑗𝑗
�

2

𝑖𝑖<𝑗𝑗∈𝑠𝑠  (5) 

where 𝛬𝛬𝑖𝑖𝑖𝑖 = 𝜋𝜋𝑖𝑖𝜋𝜋𝑗𝑗 − 𝜋𝜋𝑖𝑖𝑖𝑖 , 𝑖𝑖 ≠ 𝑗𝑗 ∈ 𝑈𝑈. This restriction eliminated this variance estimator from consideration for 
many applications (See, [22]). 

In survey sampling, auxiliary information about the finite population is often available at the estimation 
stage. Utilizing this information more efficient estimators may be obtained. There exist several approaches, 
such as model-based, calibration, etc., each of which provides a practical approach to incorporate auxiliary 
information at the estimation stage (e.g. ratio and regression estimators). 

Recently, more attention has been given to the design-consistent generalized regression (GREG) 
estimator [2] of a finite population total. One of the reasons is that most of estimators of the total belong to the 
class of the GREG estimators. Some other reasons are discussed in [17]. Latter on, it was obtained as a model-
assisted estimator (see, [19]). Deville and Särndal [4] proposed a general method of deriving calibration 
estimators 𝑌𝑌� = ∑ 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑠𝑠     by minimizing a distance measure ∑ 𝑐𝑐𝑖𝑖(𝑤𝑤𝑖𝑖 − 𝑎𝑎𝑖𝑖)2 𝑎𝑎𝑖𝑖⁄𝑠𝑠  subject to the calibration 
constraint  ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 = 𝑋𝑋𝑠𝑠 , where 𝑎𝑎𝑖𝑖 = 𝜋𝜋𝑖𝑖−1 are the basic weights and 𝑐𝑐𝑖𝑖 ′𝑠𝑠 are constants. They have also shown 
that a chi-square distance leads to the GREG estimator. There are a number of ways to construct a regression 
estimator of the population total (see, e.g., [6]). See [19] for more thorough coverage of the GREG estimator. 

A GREG estimator of 𝑌𝑌, using a single auxiliary variable x, is given by 

 𝑌𝑌�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑌𝑌�𝐻𝐻𝐻𝐻 + 𝛽̂𝛽�𝑋𝑋 − 𝑋𝑋�𝐻𝐻𝐻𝐻� (6) 

where 𝑋𝑋�𝐻𝐻𝐻𝐻  is the HT estimator of an auxiliary variable x and 𝛽̂𝛽 = �∑ 𝑥𝑥𝑖𝑖2 𝜂𝜂𝑖𝑖𝜋𝜋𝑖𝑖⁄𝑠𝑠 �−1(∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 𝜂𝜂𝑖𝑖𝜋𝜋𝑖𝑖⁄𝑠𝑠 )  is a 

consistent regression estimator of 𝛽𝛽𝑈𝑈 = �∑ 𝑥𝑥𝑖𝑖2 𝜂𝜂𝑖𝑖⁄𝑈𝑈 �−1(∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 𝜂𝜂𝑖𝑖⁄𝑈𝑈 ), the weighted least squares population 
regression estimator of 𝛽𝛽 for the superpopulation model 

 𝐸𝐸𝜉𝜉(𝑌𝑌𝑖𝑖) = 𝛽𝛽𝑥𝑥𝑖𝑖 ,     𝑉𝑉𝜉𝜉(𝑌𝑌𝑖𝑖) = 𝜎𝜎2𝜂𝜂𝑖𝑖    𝑎𝑎𝑎𝑎𝑎𝑎    𝐶𝐶𝜉𝜉�𝑌𝑌𝑖𝑖 ,𝑌𝑌𝑗𝑗 � = 0  for 𝑖𝑖 ≠ 𝑗𝑗 ∈ 𝑈𝑈 (7) 

where 𝛽𝛽 and 𝜎𝜎2 > 0  are the parameters and 𝜂𝜂𝑖𝑖  are known constants. Here 𝐸𝐸𝜉𝜉 ,  𝑉𝑉𝜉𝜉   𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝜉𝜉  denote expected 

value, variance and covariance under the model, respectively. 
The GREG- estimator, given in (6), can also be written as 

 𝑌𝑌�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖
𝜋𝜋𝑖𝑖𝑠𝑠 = 𝛽𝛽𝛽𝛽 + ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖

𝜋𝜋𝑖𝑖𝑠𝑠  (8) 

where 𝑔𝑔𝑖𝑖𝑖𝑖 = 1 + �∑ 𝑥𝑥𝑖𝑖2 𝜂𝜂𝑖𝑖𝜋𝜋𝑖𝑖⁄𝑠𝑠 �−1�𝑋𝑋 − 𝑋𝑋�𝐻𝐻𝐻𝐻�(𝑥𝑥𝑖𝑖 𝜂𝜂𝑖𝑖⁄ ) and 𝑒𝑒𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝛽̂𝛽𝑥𝑥𝑖𝑖 , 𝑖𝑖 ∈ 𝑠𝑠 are the sample fit residuals. 
𝑔𝑔𝑖𝑖𝑖𝑖  converges in design probability to unity, under certain regularity conditions [15], [16] and [18]. As a 

consequence the GREG estimator can be approximated by 𝛽𝛽𝛽𝛽 plus the HT estimator of the sample residuals 
𝑒𝑒𝑖𝑖′ 𝑠𝑠. Using (4) and (5), Särndal et al. [18] had suggested approximate variance and simple (ordinary) variance 
estimator as 
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 𝑉𝑉𝑌𝑌𝑌𝑌�𝑌𝑌�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺� ≈ ∑∑ 𝛬𝛬𝑖𝑖𝑖𝑖 �
𝐸𝐸𝑖𝑖
𝜋𝜋𝑖𝑖
− 𝐸𝐸𝑗𝑗

𝜋𝜋𝑗𝑗
�

2

𝑖𝑖<𝑗𝑗∈𝑈𝑈  (9) 

 𝑣𝑣𝑠𝑠 = ∑∑ 𝛬𝛬𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖
�𝑒𝑒𝑖𝑖
𝜋𝜋𝑖𝑖
− 𝑒𝑒𝑗𝑗

𝜋𝜋𝑗𝑗
�

2

𝑖𝑖<𝑗𝑗∈𝑠𝑠  (10) 

where 𝐸𝐸𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝛽𝛽𝑈𝑈𝑥𝑥𝑖𝑖 ,  the population fit residuals. 
Duchesne discussed a design-based jackknife variance estimation [5]. [9], [18] proposed different model-

based variance estimators for the GREG estimator. Both are design consistent estimators under reasonable 
conditions. Särndal et al. [18] proposed the following g-weighted variance estimators for (9) and investigated 
their properties: 

 𝑣𝑣𝑔𝑔 = ∑∑ 𝛬𝛬𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖
�𝑔𝑔𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖

𝜋𝜋𝑖𝑖
− 𝑔𝑔𝑗𝑗𝑗𝑗 𝑒𝑒𝑗𝑗

𝜋𝜋𝑗𝑗
�

2

𝑖𝑖<𝑗𝑗∈𝑠𝑠  (11) 

This estimator is not exactly model-unbiased of model variance in most cases. 
An alternative model variance estimator was proposed by Kott [9]. His point of departure is to create a 

variance estimator that is unbiased with respect to the model but is still design consistent. The objective is 
achieved by attaching a ratio adjustment to the estimator [10]. However, his variance estimator is some what 
more complicated than [10]. [3], following Kott suggested various model-assisted variance estimators. [21] 
proposed a high-level calibration approach for estimation of variance of the GREG estimator. But their 
estimators require additional auxiliary variable over and above the one used to define the inclusion 
probabilities. 

The Yates-Grundy type variance estimators [10] and [11] are useful only for fixed-size designs and 
𝜋𝜋𝑖𝑖𝜋𝜋𝑗𝑗 − 𝜋𝜋𝑖𝑖𝑖𝑖 ≠ 0. Random-size designs sometimes have advantages from a survey operations viewpoint. The 
use of Bernoulli sampling reduces delays in data capture and provides relatively uniform workload to 
operations staff, as explained by [1]. Motivated by this we propose two variance estimators for the GREG 
estimator, which are general in that they apply for any sampling design. This article is organized as follows. In 
Section 2, we derive an optimal model-unbiased estimator of the HT variance, given in (2), based on a 
working model (7) with 𝑉𝑉𝜉𝜉(𝑌𝑌𝑖𝑖) = 𝜎𝜎2𝑥𝑥𝑖𝑖2. Following the optimal estimator, derived in the previous section, we 
suggest two variance estimators for the GREG estimator. In Section 4 we present the results of a Monte Carlo 
comparison of the various estimators of the variance of the GREG estimator. Our conclusions will be 
presented in Section 5. 

2. The Optimal Variance Estimator for the HT Estimator 

To construct alternative design-based variance estimators of (2) that make efficient use of auxiliary 
information, we combine design-based and model-based approaches. For this we consider (7) as our working 
model where we assume that 𝑌𝑌1, …𝑌𝑌𝑁𝑁  are exchangeable random variables with 𝑉𝑉𝜉𝜉(𝑌𝑌𝑖𝑖) = 𝜎𝜎2𝑥𝑥𝑖𝑖2 𝑖𝑖. 𝑒𝑒. , 𝜂𝜂𝑖𝑖 = 𝑥𝑥𝑖𝑖2. 

We shall first focus on deriving the optimal (in the sense minimum𝐸𝐸𝜉𝜉𝐸𝐸𝑝𝑝(𝑣𝑣 − 𝑉𝑉𝐻𝐻𝐻𝐻)2,   𝐸𝐸𝑝𝑝(∙) denotes p 

(design)-expectation) predictor for the HT variance, given in (2), 
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among a class of all quadratic p-unbiased predictors of 𝑉𝑉𝐻𝐻𝐻𝐻  under Model (7).  
We must find 𝑣𝑣 to minimize 

𝐸𝐸𝜉𝜉𝐸𝐸𝑝𝑝(𝑣𝑣 − 𝑉𝑉𝐻𝐻𝐻𝐻)2 = 𝐸𝐸𝑝𝑝�𝑉𝑉𝜉𝜉(𝑣𝑣)� + 𝐸𝐸𝑝𝑝�𝐵𝐵𝜉𝜉(𝑣𝑣)�2
 

subject to 𝐸𝐸𝜉𝜉𝐸𝐸𝑝𝑝(𝑣𝑣) = 𝐸𝐸𝜉𝜉(𝑉𝑉𝐻𝐻𝐻𝐻),  where  𝐵𝐵𝜉𝜉(𝑣𝑣) = 𝐸𝐸𝜉𝜉(𝑣𝑣 − 𝑉𝑉𝐻𝐻𝐻𝐻). 
Under the working model, 𝜉𝜉-expectation of 𝑉𝑉𝐻𝐻𝐻𝐻  is readily found to be 

 𝐸𝐸𝜉𝜉(𝑉𝑉𝐻𝐻𝐻𝐻) = (𝜎𝜎2 + 𝛽𝛽2)∑ 𝛥𝛥𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2 + 𝛽𝛽2 ∑∑ 𝛥𝛥𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑈𝑈𝑈𝑈  (12) 

where 𝜎𝜎2 + 𝛽𝛽2 and 𝛽𝛽2 are the parameters to be estimated. To obtain the best estimators of these parameters 
and consequently the optimal predictor of 𝑉𝑉𝐻𝐻𝐻𝐻   we shall use theory on one-sample U-statistics (see, e.g., [14]). 

Note that 𝜎𝜎2 + 𝛽𝛽2  and 𝛽𝛽2  both are 𝜉𝜉 -estimable of degree 2 with the kernels 𝑦𝑦𝑖𝑖2 𝑥𝑥𝑖𝑖2⁄  and 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗⁄ , 

respectively. Moreover 𝑦𝑦𝑖𝑖2 𝑥𝑥𝑖𝑖2⁄  and �𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗⁄ + 𝑦𝑦𝑗𝑗 𝑦𝑦𝑖𝑖 𝑥𝑥𝑗𝑗 𝑥𝑥𝑖𝑖⁄ � 2⁄  are symmetric kernels and so the U-statistic 

estimators of 𝜎𝜎2 + 𝛽𝛽2 and 𝛽𝛽2 are, respectively, given by ∑ 𝑦𝑦𝑖𝑖2 𝑛𝑛𝑥𝑥𝑖𝑖2⁄𝑠𝑠   and ∑∑ 𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 𝑛𝑛(𝑛𝑛 − 1)𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗⁄𝑠𝑠  which are 

𝜉𝜉 -unbiased and consequently 𝑝𝑝𝑝𝑝 -unbiased. Since 𝑌𝑌𝑖𝑖′𝑠𝑠  are exchangeable variables, it follows that such U-
statistics are the unique minimum 𝜉𝜉-variance 𝜉𝜉-unbiased predictors of 𝜎𝜎2 + 𝛽𝛽2  and 𝛽𝛽2 . As 𝜉𝜉-unbiasedness 
implies 𝑝𝑝𝑝𝑝-unbiasedness, the optimal 𝑝𝑝𝑝𝑝-unbiased predictor of  𝑉𝑉𝐻𝐻𝐻𝐻 , after inserting 𝑝𝑝𝑝𝑝-unbiased predictors of 
𝜎𝜎2 + 𝛽𝛽2 and 𝛽𝛽2 in [12], is found to be 

 𝑉𝑉�𝑂𝑂𝑂𝑂𝑂𝑂�𝑌𝑌�𝐻𝐻𝐻𝐻� = ∑ 𝛥𝛥𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖0

𝑦𝑦𝑖𝑖2 + ∑∑ 𝛥𝛥𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖 0

𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑠𝑠𝑠𝑠  (13) 

where 

𝜋𝜋𝑖𝑖0 = 𝑛𝑛𝛥𝛥𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖
2

∑ 𝛥𝛥𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖
2

𝑈𝑈
 and 𝜋𝜋𝑖𝑖𝑖𝑖0 = 𝑛𝑛(𝑛𝑛−1)𝛥𝛥𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

∑∑ 𝛥𝛥𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑈𝑈
 

These inclusion probabilities are not consistent since ∑ 𝜋𝜋𝑖𝑖𝑖𝑖0 ≠ (𝑛𝑛 − 1)𝜋𝜋𝑖𝑖0.𝑗𝑗 (≠𝑖𝑖)∈𝑈𝑈  See, also, [13]. 

Remark 1. It is unlikely that a design is chosen solely for the purpose of optimum estimation of a 
variance function. 

3. The Proposed Variance Estimators for the GREG Estimator 

In this section we now extend the above result to the GREG estimator. Recall that the GREG estimator 
𝑌𝑌�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖 𝜋𝜋𝑖𝑖⁄   𝑠𝑠  can be approximated, under mild restrictions, as 𝛽𝛽𝛽𝛽  plus the HT estimator of the 
sample residuals. Its variance is then approximated by the HT variance expression given at (2) just by 
replacing population values 𝑦𝑦𝑖𝑖  by the population residuals 𝐸𝐸𝑖𝑖 , i.e. 

 𝑉𝑉𝐻𝐻𝐻𝐻�𝑌𝑌�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺� ≈ ∑ 𝛥𝛥𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖2 + ∑∑ 𝛥𝛥𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖𝐸𝐸𝑗𝑗𝑈𝑈𝑈𝑈  (14) 

The ordinary design-based estimator of (14) is given by 

 𝑣𝑣𝐻𝐻𝐻𝐻�𝑌𝑌�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺� = ∑ 𝛥𝛥𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖
𝑒𝑒𝑖𝑖2 + ∑∑ 𝛥𝛥𝑖𝑖𝑖𝑖

𝜋𝜋𝑖𝑖𝑖𝑖
𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗𝑠𝑠𝑠𝑠  (15) 

This estimator does not make any use of auxiliary information at the estimation stage. 
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3.1 The Optimal-type Variance Estimator 

Imitating (13), we suggest the following optimal-type variance estimator for the GREG estimator: 

 𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑉𝑉�𝑂𝑂𝑂𝑂𝑂𝑂�𝑌𝑌�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺� = ∑ 𝛥𝛥𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖0

𝑒𝑒𝑖𝑖2 + ∑∑ 𝛥𝛥𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖 0

𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗𝑠𝑠𝑠𝑠  (16) 

where 𝜋𝜋𝑖𝑖0  and 𝜋𝜋𝑖𝑖𝑖𝑖0 are defined as above and the 𝑒𝑒𝑖𝑖′𝑠𝑠 are sample residuals. 

3.2 The Internally Adjusted Ratio-type Variance Estimator 

There are two methods to make ratio adjustment to improve an estimator. The first method is an external 
ratio adjustment and second method is an internal ratio adjustment to the estimator. The idea is to multiply the 
estimator or each term of the estimator by a suitable ratio, constructed using an appropriate model, so that the 
resultant estimator becomes model unbiased and design-consistent.  

Applying the second method to [15] we suggest the internally adjusted ratio-type (IAR) variance 
estimator 

 𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼 = ∑ 𝛥𝛥𝑖𝑖𝑖𝑖 𝑒𝑒𝑖𝑖
2 𝜋𝜋𝑖𝑖�𝑠𝑠

∑ 𝛥𝛥𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖
2 𝜋𝜋𝑖𝑖⁄𝑠𝑠

∑ 𝛥𝛥𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2𝑈𝑈 +
∑∑ 𝛥𝛥𝑖𝑖𝑖𝑖 𝑒𝑒𝑖𝑖𝑒𝑒𝑗𝑗 𝜋𝜋𝑖𝑖𝑖𝑖⁄𝑠𝑠

∑∑ 𝛥𝛥𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 𝜋𝜋𝑖𝑖𝑖𝑖⁄𝑠𝑠
∑∑ 𝛥𝛥𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑈𝑈  (17) 

Remark 2. Following [12], it is easy to verify that 𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼   is asymptotically design unbiased and 
asymptotically design-consistence.  

Remark 3. The construction of 𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂  and 𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼  would suggest that these estimators perform well if the 
variance structure is strongly heteroscedastic so that the variance of the population scatter increases with x  at 
least as strongly as 𝑉𝑉𝜉𝜉(𝑦𝑦𝑖𝑖) ∝ 𝑥𝑥𝑖𝑖2. 

Remark 4. The estimators 𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂  and 𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼  are general in the sense that these can be used for fixed-size or 
non-fixed-size design; 𝜋𝜋𝜋𝜋𝜋𝜋  or non-  𝜋𝜋𝜋𝜋𝜋𝜋  sampling design; designs having 𝜋𝜋𝑖𝑖𝑖𝑖 = 𝜋𝜋𝑖𝑖𝜋𝜋𝑗𝑗   for all 𝑖𝑖 ≠ 𝑗𝑗  (e.g., 
Poisson sampling, Bernoulli sampling, Promix sampling), the case for which (10) and (11) can not be used as 
𝛬𝛬𝑖𝑖𝑖𝑖 = 𝜋𝜋𝑖𝑖𝜋𝜋𝑗𝑗 − 𝜋𝜋𝑖𝑖𝑖𝑖 = 0. 

4. Simulation Study 

A small scale simulation study was carried out in order to compare the finite sample performance of the 
estimators 𝑣𝑣𝑔𝑔 , 𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂 , 𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼  and the conventional estimator 𝑣𝑣𝑠𝑠. For this study, we used the populations listed in 
Table 2 of Appendix A. We drew 5000 samples each of size n = 6 using Sunter sampling design [23] from 
each of the study populations. From each sample, we then calculated the estimates of  𝑉𝑉𝐻𝐻𝐻𝐻(𝑌𝑌�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ).  

Table 1 reports the relative biases (RBs) in percentage and relative efficiencies (REs) of the estimators, 
where for any estimator 𝑣𝑣 we define the relative bias as 

𝑅𝑅𝑅𝑅(𝑣𝑣) =
1

𝑉𝑉𝐻𝐻𝐻𝐻�𝑌𝑌�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�
�

1
5000

��𝑣𝑣(𝑟𝑟) − 𝑉𝑉𝐻𝐻𝐻𝐻�𝑌𝑌�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺��
5000

𝑟𝑟=1

� × 100 

and the relative efficiency of 𝑣𝑣 as compared to the simple estimator 𝑣𝑣𝑠𝑠 as 
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𝑅𝑅𝑅𝑅(𝑣𝑣) = � �𝑣𝑣𝑠𝑠
(𝑟𝑟) − 𝑉𝑉𝐻𝐻𝐻𝐻�𝑌𝑌�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺��

2
5000

𝑟𝑟=1

��𝑣𝑣(𝑟𝑟) − 𝑉𝑉𝐻𝐻𝐻𝐻�𝑌𝑌�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺��
2

5000

𝑟𝑟=1

�  

where 𝑣𝑣(𝑟𝑟) is the value of 𝑣𝑣 for the 𝑟𝑟th simulated sample. 

Table 1. RBs and REs of estimators under the Sunter’s sampling scheme. 

 
Table 1 leads to the following comments. 
(1) In 𝑣𝑣𝑔𝑔  the value of 𝜂𝜂𝑖𝑖  in (7) should be chosen such that the value of 𝑔𝑔𝑖𝑖𝑖𝑖  lies near the unity for a 

majority of the units 𝑖𝑖 ∈ 𝑠𝑠. The larger the sample size, the stronger is the tendency for the  𝑔𝑔𝑖𝑖𝑖𝑖  to hover 
near unity. Here, in our small scale simulation, we have drawn a sample of size n = 6. This may be one 
of the reasons for very poor performance of 𝑣𝑣𝑔𝑔  as compared to 𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂  and 𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼  with respect to the 
relative efficiencies. 

(2) In terms of REs, the optimal-type estimator 𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂  is considerably more efficient than 𝑣𝑣𝑔𝑔 . The price 

paid for this efficiency is marginal increase in overall relative bias as compared to 𝑣𝑣𝑔𝑔  for some 
populations.   

(3) All the variance estimators included in the study have taken non-negative values with probabilities 1 
and therefore these probabilities have not reported. 

Remark 5. The above simulations are rather artificial since the population size and the sample size are 
extremely small and the sampling fraction is extremely large. To facilitate the computation of the real 
population variance we had chosen small population and sample sizes. 

Population No 
Relative biases in percentage Relative efficiency 

𝑣𝑣𝑠𝑠 𝑣𝑣𝑔𝑔  𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂  𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼  𝑣𝑣𝑠𝑠 𝑣𝑣𝑔𝑔  𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂  𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼  
1 -85.4189 7.073 -7.904 -21.556 1 1.259 2.767 2.502 
2 -89.7759 -8.456 -30.035 -30.824 1 1.368 3.044 2.598 
3 -92.1025 -12.932 -1.448 -46.782 1 1.207 6.871 2.581 
4 -94.2926 12.808 -20.075 -16.921 1 1.598 5.558 5.352 
5 -86.5436 -5.210 -29.328 -15.557 1 3.491 3.993 4.312 
6 -94.7124 21.405 -19.394 -24.089 1 0.607 5.100 3.468 
7 -84.5782 3.027 11.306 -17.802 1 1.739 4.225 3.554 
8 -90.3122 -10.853 -42.058 -23.227 1 4.916 3.362 4.489 
9 -91.3650 -32.345 -63.978 -50.554 1 2.051 1.912 2.266 

10 -91.0820 -15.527 -49.590 -25.275 1 2.537 2.627 3.196 
11 -94.9503 46.596 -27.928 0.309 1 0.313 4.298 3.015 
12 -95.0675 33.963 -34.883 -11.057 1 0.410 3.853 3.434 
13 -87.878 -22.454 -26.904 -34.660 1 2.185 4.239 3.129 
14 -95.6632 -42.283 -66.996 -66.249 1 1.930 1.854 1.730 
15 -87.7766 -4.300 -26.269 -7.556 1 1.600 4.604 2.601 
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Appendix A 

Table 2. List of Study Populations 

Popl. No. N CV(x) CV(y) ρ(x,y) Source x y 

1 15 0.137 0.301 0.451 D. Gujarati (1995), p.307 [7] Mean Family Size % in labor Force 

2 16 0.254 0.161 0.497 D. Gujarati (1995), p.277 
Housing Starts thousands of 
units 

Total Plastic Purchases 

3 24 0.136 0.173 0.531 
Montgomery et al. 
(2003),Appendix B, Table 
B.4, p.571 [10] 

Number of rooms 
Sale price of the 
house/1000 

4 14 0.298 0.217 0.759 D. Gujarati (1995), p.352 Farm income Consumption 

5 15 0.052 0.197 0.826 D. Gujarati (1995), p.216 
Labor input (per thousand 
persons) 

Real gross product 
millions of NT ($) 

6 23 0.232 0.186 0.840 D. Gujarati (1995), p.228 
Real retail price of chicken 
per lb (¢) 

Per capita consumption 
of chickens (lbs) 

7 17 0.607 0.712 0.853 
Murthy(1967), p.399 (18-34) 
[11] 

cultivated area (1961) area under wheat (1964) 

8 17 0.089 0.287 0.861 D. Gujarati (1995), p.230 Implicit Price deflator 
Nominal money crores of 
rupees 

9 15 0.289 0.197 0.871 D. Gujarati (1995), p.216 
Real Capital input (millions 
of NT,$) 

Real gross product 
millions of NT ($) 

10 17 0.136 0.287 0.887 D. Gujarati (1995), p.230 Long-term interest rate (%) 
Nominal money crores of 
rupees 

11 23 0.390 0.186 0.912 D. Gujarati (1995), p.228 
Real retail price of pork per 
lb 

Per capita consumption 
of chickens (lbs) 

12 23 0.369 0.186 0.937 D. Gujarati (1995), p.228 
Composite real price of 
chicken substitutes per lb 
weighted avg.of x2 to x5 

Per capita consumption 
of chickens (lbs) 

13 14 0.260 0.217 0.944 D. Gujarati (1995), p.352 
Non wage, Nonfarm 
income 

Consumption 

14 20 0.480 0.346 0.980 D. Gujarati (1995), p.227 Aerospace industry sales Defense budget outlays 

15 15 0.240 0.571 0.995 D. Gujarati (1995), p.224 
Real Capital input (millions 
of NT,$) 

Real gross product 
millions of NT ($) 
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