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Abstract 

In this paper, we consider the nonparametric estimation of the limiting interval reliability of a repairable 

system when the sequences of failure and repair times are generated by stationary dependent sequence 

of random variables. The proposed nonparametric estimator is shown to be consistent and 

asymptotically normal. A simulation study is also conducted to assess the performance of the proposed 

estimator using a first-order exponential autoregressive process. 
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1. Introduction  

Consider a one-unit repairable system which is at any time either in operation or under repair after 

failure. Suppose that the system starts to operate at time t = 0. If we define ( )tξ  as the state of the system 

at time ‘t’, we have 

1     if the system is operating at time 
( )

0 otherwise                                    
t

tξ


= 

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Based on ( )tξ , a number of useful measures of the system availability may be constructed. The 

point availability, ( ) [ ( ) 1]A t P tξ= =  and the limiting availability, lim ( )
t

A A t
→∞

=  are two commonly 

used availability measures.  

In the context of repairable system, another important measure of successful performance of a system 

is the interval reliability. The interval reliability, ( , )R x t , is defined as the probability that at a specified 

time ‘t’ the system is operating and will continue to operate for an interval of duration ‘x’[3]. That is, 

( , ) [ ( ) 1,  ]R x t P s t s t xξ= = ≤ ≤ + . The interval reliability becomes simply reliability when 0t =  and 

point availability at time ‘t’ as 0x → . Thus, the interval reliability is one of the most important measures 

of system performance from the viewpoint of reliability and availability, and it is useful in many practical 

situations. Since it is difficult to obtain an explicit expression for the interval reliability except for few 

simple cases, in the literature more attention is being paid to its limiting measure ( ) lim ( , )
t

R x R x t
→∞

= . The 

limiting interval reliability, ( )R x , is a useful measure when one may be interested in knowing the extent 

to which the system will survive an interval of duration after it has been run for a long time. The properties 

of these measures are usually studied using the successive failure times { }nX  and repair times { }nY  of 

the system. 

If { }nX  and { }nY  are independent and identically distributed (i.i.d) non-negative random variables 

with marginal distribution functions (.)XF  and (.)YF  respectively, then 

( , ) ( ) ( ) ( )X YR x t R x xυ µ µ→ = + , 

where 1( )X E Xµ =  and 1( )Y E Yµ =  and ( )
0

( ) ( ) ( ) ( )X u x X
x

x F u du u x I dF uυ
∞ ∞

>= = −∫ ∫ .  

If we define (.) (.) /X XFψ µ=  as the density of the asymptotic recurrence time of a renewal process 

governed by the distribution function (.)XF , the limiting interval reliability can be expressed as  

( ) [1 ( )]X

X Y

R x xµ
µ µ

= − Ψ
+

, 
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where (.)Ψ  is the distribution function with density (.)ψ . Thus, ( )R x  is the product of the limiting 

probability that the system is available at some point and the limiting probability that it survives an 

interval of duration at least ‘x’ [5, 11].  

One of the major limitations of the existing approaches is the assumption of independence among the 

successive sequences of failure and repair times. When the system is operating in a random environment it 

is natural to observe dependence among successive sequence of failure and repair times. Several 

non-Gaussian time series models such as first-order random coefficient autoregressive models are 

discussed in the literature for modeling life time data [6, 9]. In the case of repairable systems, the study of 

availability measures for stationary dependent sequences is not discussed much, except those considered 

by Abraham and Balakrishna [1], Balakrishna and Mathew [2] and Mathew [10].  

This paper is organized as follows. In section 2, we consider the nonparametric estimation of the 

limiting interval reliability of a repairable system when the failure and repair times are generated by 

stationary dependent sequence of random variables. A simulation study is presented in section 3 using 

first-order exponential autoregressive process. The conclusion will be given in section 4. 

2. Nonparametric Estimation of the Limiting Interval Reliability 

Suppose that { }nX  and { }nY  are two mutually independent strictly stationary and strong mixing 

sequence of non-negative random variables with mixing coefficients ( )X hα  and ( )Y hα  respectively. 

When the observations on n  failure times 1 2, ,..., nX X X  and n  repair times 1 2, ,..., nY Y Y  are 

recorded for a repairable one-unit system, a natural nonparametric estimator for the limiting interval 

availability ( )R x  is 

 

ˆ ( ) n
n

n n

UR x
X Y

=
+

, (1) 

where 
1

n

n i
i

X X n
=

= ∑ , 
1

n

n i
i

Y Y n
=

= ∑ , 
1

n

n i
i

U U n
=

= ∑  with ( ) ( )i i iU X w I X w= − > . 

Since { }nX  and { }nY  are strictly stationary, we have n XX µ→ , m YY µ→ , and ( )nU xυ→  
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almost surely as n → ∞  and hence we conclude that ˆ ( ) ( )nR x R x→  almost surely as n → ∞ . 

In order to establish the asymptotic normality of ˆ ( )nR x , we assume that for some 0δ > , 

2
1( ) ,E X δ+ < ∞ 2

1( )E Y δ+ < ∞ , /(2 )

1
( )X

h
hδ δα

∞
+

=

< ∞∑  and /(2 )

1
( )Y

h
hδ δα

∞
+

=

< ∞∑ . 

Since { }nX  and { }nY  are strictly stationary and strong mixing, under the above assumptions, by 

the central limit theorem for such sequences [7, p. 346] we have as n → ∞  

( ) ( )0,D
n Y YYn Y Nµ σ− → and 

( ) ( )2 2, ( ) 0,D
n X nn X U x Nµ υ− − → ∑ , 

where 2 2(0, )N ∑  is a 2-variate normal vector with mean (0,0) '=0  and dispersion matrix 

2
XX XU

XU UU

σ σ
σ σ

 
∑ =  

 
, 

with 1 1
2

var( ) 2 cov( , )XX h
h

X X Xσ
∞

=

= + ∑ , 1 1
2

var( ) 2 cov( , )YY h
h

Y Y Yσ
∞

=

= + ∑ ,  

1 1
2

var( ) 2 cov( , )UU h
h

U U Uσ
∞

=

= + ∑ and 1 1 1 1
2 2

cov( , ) cov( , ) cov( , )XU h h
h h

X U X U X Uσ
∞ ∞

= =

= + +∑ ∑ . 

Now, by the Cramer-Wold device [4, p.49], we have as n → ∞ , 

( ) 3 3, , ( ) ( , ),L
n X n Y nn X Y U x Nµ µ υ− − − → ∑0  

where 3 3(0, )N ∑  is a 3-variate normal vector with mean (0,0,0) '=0  and dispersion matrix 

3

0
0 0

0

XX XU

YY

XU UU

σ σ
σ

σ σ

 
 ∑ =  
 
 

. 

If we define ( , , ) ,zf x y z
x y

=
+

 then ˆ( , , ) ( )n n n nf X Y U R x=  and ( , , ( )) ( )X Yf x R xµ µ υ =  and 

hence, employing a Taylor series expansion, we can write 
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2 2

( ) ( ) 1ˆ ( ) ( ) ( ) ( ) ( ( ))
( ) ( )n n X n Y n

X Y X Y X Y

x xR x R x X Y U xυ υµ µ υ
µ µ µ µ µ µ

≅ − − − − + −
+ + +

 

Now, by using the results from Serfling [12, p.122] we can show that as n → ∞  

( ) ( )2ˆ ( ) ( ) 0, ( )D
nn R x R x N xτ− → , 

where 

   

2
2

4 3 2

( ) 2 ( ) 1( ) ( )
( ) ( ) ( )XX YY XU UU

X Y X Y X Y

x xx υ υτ σ σ σ σ
µ µ µ µ µ µ

= + − +
+ + +

.  (2) 

Thus we proved the following theorem. 

Theorem 1: If { }nX  and { }nY  are two mutually independent strictly stationary and strong mixing 

sequence of non-negative random variables such that for some 0δ > , 2
1( ) ,E X δ+ < ∞  2

1( )E Y δ+ < ∞ , 

/(2 )

1
( )X

h
hδ δα

∞
+

=

< ∞∑  and /(2 )

1
( )Y

h
hδ δα

∞
+

=

< ∞∑ , then ˆ ( )nR x  is a consistent and asymptotically normal 

(CAN) estimator for the limiting interval relaibility ( )R x . 

A consistent estimator 2ˆ ( )xτ  of 2 ( )xτ  can be obtained by replacing , , ( )X Y xµ µ υ , 

,  ,XX YY UUσ σ σ  and XUσ  with their corresponding consistent estimators in (2). Obviously ,n nX Y , and 

nU  are the consistent estimators for ,X Yµ µ , and ( )xυ  respectively. In order to construct consistent 

estimators for ,  ,XX YY UUσ σ σ  and XUσ , we use the moving-block jackknife method for variance 

estimation with dependent data [8]. The moving-block jackknife estimators for ,  ,XX YY UUσ σ σ  and 

XUσ  respectively are 

2
1 1

2 ( ) 1 ( )
,

1 1

ˆ ( 1)
1

n l n l
l l

XX l i j
i j

l X n l X
n l

σ
− + − +

−

= =

 
= − + − − +  

∑ ∑ , 

2
1 1

2 ( ) 1 ( )
,

1 1

ˆ ( 1)
1

n l n l
l l

ZZ l i j
i j

l Y n l Y
n l

σ
− + − +

−

= =

 
= − + − − +  

∑ ∑ , 
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2
1 1

2 ( ) 1 ( )
,

1 1

ˆ ( 1)
1

n l n l
l l

UU l i j
i j

l U n l U
n l

σ
− + − +

−

= =

 
= − + − − +  

∑ ∑ , and 

1 1 1
( ) 1 ( ) ( ) 1 ( )

,
1 1 1

ˆ ( 1) ( 1)
1

n l n l n l
l l l l

XU l i j i j
i j j

l X n l X U n l U
n l

σ
− + − + − +

− −

= = =

  
= − + − − + −  − +   

∑ ∑ ∑ , 

where 
1

( ) 1
i l

l
i j

j i
X l X

+ −
−

=

= ∑ , 
1

( ) 1
i l

l
i j

j i
Y l Y

+ −
−

=

= ∑ , 
1

( ) 1
i l

l
i j

j i
U l U

+ −
−

=

= ∑  and l is the block size. 

If we assume that for some 0δ > , 
6

1 ,E X δ+  < ∞   
6

1E Y δ+  < ∞  , 2 /(6 )( )Xk k δ δα + < ∞∑  

and 2 /(6 )( )Yk k δ δα + < ∞∑ , then the estimators 2 2 2
, , ,ˆ ˆ ˆ,  ,XX l YY l UU lσ σ σ  and ,ˆ XU lσ  converge almost surely 

to ,  ,XX YY UUσ σ σ  and XUσ  respectively if ( )l o n= , and l → ∞ [8].  

Then, it is easy to see that  

2 2ˆ ( ) ( )x xτ τ→  almost surely as n → ∞ . 

Thus, given a significance level (0,1)α ∈ , an approximate large sample 100(1 )%α−  confidence 

interval for the limiting interval reliability ( )R x is 

/2 /2
ˆ ˆ( ) ( )ˆ ˆ( ) ( ) ( )n n

x xR x z R x R x z
n nα α

τ τ
− ≤ ≤ + . 

3. Simulation Study 

A simulation study is conducted in this section to assess the performance of the proposed estimator 

and to compare their efficiencies with corresponding estimator in the i.i.d. set-up. Here, we assume that 

the failure and repair times are generated using two independent first-orderexponential autoregressive 

(EAR(1)) processes [6] given by, 

1

1

0.5 with probability 0.5,
0.5 with probability 0.5.

n
n

n n

X
X

X ε
−

−


=  +

and 

1

1

0.25 with probability 0.25,
0.25 with probability 0.75.

n
n

n n

Y
Y

Y η
−

−


=  +

, 1, 2,3,...n = , 
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where { }nε  and { }nη  are two independent i.i.d. exponential sequences with parameters 1 1/ 6λ =  and 

2 1/ 2λ =  respectively. Thus { }nX  and { }nY  have exponential marginal distributions with mean 

failure time 6Xµ =  and mean repair time 2Yµ =  respectively.  

We consider the limiting interval reliability ( )R x  at 0, 0.25, 0.50,x =  and 0.75 for the 

simulation study. In order to compare the performance of the estimator of ( )R x  in the stationary 

dependent case (EAR(1) model) with that of the i.i.d. exponential case, we compute the empirical 

coverage probabilities in the case of EAR(1) model and the i.i.d exponential model seperately.  

Table 1: Simulation results of limiting interval relaibility 

x  ( )R x  n  ˆ ( )R x  

EAR(1) Model i.i.d. Case 

2ˆ ( )xτ  CP  2
*̂ ( )xτ  *CP  

    25 0.75098 0.17619 0.9367 0.08013 0.6179 
      (0.0459) (0.0218)   (0.0283)   

0.00 0.75000 75 0.74986 0.16823 0.9392 0.07382 0.6243 
      (0.0361) (0.0156)   (0.0179)   
    150 0.75013 0.16672 0.9413 0.07259 0.6338 
      (0.0213) (0.0124)   (0.0131)   

    25 0.71816 0.19433 0.9326 0.08512 0.6020 
      (0.0437) (0.0269)   (0.0318)   

0.25 0.71939 75 0.72017 0.18996 0.9341 0.07962 0.6215 
      (0.0319) (0.0183)   (0.0243)   

    150 0.71998 0.18854 0.9392 0.07946 0.6298 
      (0.0198) (0.0112)   (0.0167)   
    25 0.70143 0.22198 0.9284 0.09117 0.5919 
      (0.0447) (0.0328)   (0.0329)   

0.50 0.69003 75 0.70019 0.21316 0.9331 0.08494 0.6012 
      (0.0306) (0.0235)   (0.0228)   
    150 0.68918 0.21194 0.9403 0.08322 0.6194 
      (0.0184) (0.0192)   (0.0173)   

    25 0.65902 0.24129 0.9421 0.09514 0.6226 
      (0.0491) (0.0311)   (0.0287)   

0.75 0.66187 75 0.66867 0.23417 0.9439 0.09192 0.6354 
      (0.0384) (0.0204)   (0.0187)   

    150 0.66091 0.23273 0.9503 0.09015 0.6546 
      (0.0176) (0.0156)   (0.0133)   
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The results of the simulation study are summarized in Table 1. The notations 2ˆ ˆ( ), ( )R x xτ  and CP 

denote the average of the estimated value of ( )R x , its asymptotic variance 2 ( )xτ  and the empirical 

coverage probability of 95% confidence interval for ( )R x  over 750 repetitions in the stationary 

dependent case. The same quantities are also computed by assuming the stationary dependent failure and 

repair times as i.i.d. exponential observations ignoring the autocorrelations present in the data. Let 2
*̂ ( )xτ  

and *CP  denote the average of the asymptotic variance and the empirical coverage probabilities in the 

i.i.d. case. Note that the estimated value of ( )R x  is the same for both the stationary dependent and i.i.d. 

case. The values within the parenthesis represent the MSE of the estimator. 

From the Tables, we can see that the estimated asymptotic variance of the estimator in the stationary 

dependent case is approximately twice of that in the i.i.d. case and hence the confidence interval of the 

estimator in the i.i.d. case is shorter than that in the stationary dependent case. Also, the empirical 

coverage probabilities of the estimators corresponding to 95% confidence interval in the i.i.d. set-up is 

around 0.60-0.65 and that in the case of stationary dependent model is around 0.90- 0.95. This suggests 

that when the successive failure and repair times are dependent, the ignorance of dependence present in 

the data will lead to poor coverage probabilities and this may lead to erroneous interpretations in the 

inference procedure. 

4. Conclusions 

In this paper,we discussed the nonparametric estimation of the limiting interval reliability when the 

failure and repair times are generated by two mutually independent strictly stationary dependent sequences 

of random variables. The proposed estimators were shown to be consistent and asymptotically normal. A 

simulation study was conducted to assess the performance of the proposed estimator in the stationary 

dependent casewith the corresponding estimator in the i.i.d. set-up. The simulation study showed that if 

the true process is generated from stationary dependent sequences of random variables, the ignorance of 

dependence among successive observations leads to poor coverage probabilities and results in erroneous 

conclusions. 
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