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Abstract 

In this paper, I present a method for utilizing the usually intrinsic spatial information in spatial data sets to 

improve the quality of temporal predictions within the framework of singular spectrum analysis (SSA) 

techniques. The SSA-based techniques constitute a model free approach to time series analysis and ordinarily, 

SSA can be applied to any time series with a notable structure. Indeed it has a wide area of application including 

social sciences, medical sciences, finance, environmental sciences, mathematics, dynamical systems and 

economics. SSA has two broad aims: 

i) To make a decomposition of the original series into a sum of a small number of independent and interpretable 

components such as a slowly varying trend, oscillatory components and a structure-less noise.  

ii) To reconstruct the decomposed series for further analysis in the absence of the noise component.  

Multivariate singular spectrum analysis (MSSA) is an extension of SSA to multivariate statistics and takes 

advantage of the delay procedure to obtain a similar formulation as SSA though with larger matrices for 

multivariate data. In situations where spatial data is an important focus of investigation, it is not uncommon to 

have attributes whose values change with space and time and an accurate prediction is thus important. The usual 

question asked is whether the intrinsic location parameters in spatial data can improve data analysis of such data 

sets. The proposed method is based on the inverse distance technique and is exemplified on climate data from 

Upper Austria for the period Jan 1994 to Dec 2009.  

Results show that the proposed technique of incorporating spatial dependence into MSSA analysis leads to 

improved quality of statistical inference. 

Keywords: time series analysis, MSSA, inverse distance weighting, spatial dependence. 

1. Introduction 

Singular Spectrum Analysis (SSA), a well developed tool for time series analysis, is a model free 

approach to time series analysis, as opposed to model based time series analysis with several restrictive 
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assumptions, see for example [5]. The beginning of SSA is usually attributed to [6]. Ordinarily, SSA can 

be applied to any time series with a notable structure, see [11]. 

SSA has two broad aims: 

i) To make a decomposition of the original series into a sum of a small number of independent and 

interpretable components such as a slowly varying trend, oscillatory components and a structureless 

noise.  

ii) To reconstruct the decomposed series for further analysis in the absence of the noise component.  

SSA is implemented through a sequence of steps and the following are the steps in brief, detailed 

exposition and background theory can be found in [11]. The first step is the Embedding step in which the 

time series 1( )N NF f f= , ,  is transformed into a multidimensional data matrix X, called the trajectory 

matrix using an embedding operator: ( )F → X . The single most important parameter in this step is 

the window length L . The second step is the Singular value decomposition (SVD) step in which the 

trajectory matrix is factorized into a sum of elementary matrices using the nonzero eigenvalues of TXX . 

The Grouping step is the third step where the elementary matrices are split further through the procedure 

known as eigentriple grouping. The final step is the Diagonal averaging or also commonly known as 

Hankelization. This step transfers the sum of the elementary matrices after eigentriple grouping back to 

the time series. It is in a way the reverse of step one. 

Of importance in SSA analysis is the concept of separability. Separability entails how well the 

(additive) components of the time series can be separated from each other to allow further analysis to be 

meaningfully done. A time series may comprise trend (slowly varying component), periodic or quasi 

periodic components and noise. These may be generalized into signal and noise components. SSA 

decomposition of the series NF  can only be successful if the resulting additive components of the 

seriesare approximately separable from each other and this enhances the quality of the decomposition, see 

[11].  

The notion of weak separability applies to orthogonality of the rows (and columns) of the matrices 

whereas strong separability imposes a further condition of distinct eigenvalues of the trajectory matrix.  

Multivariate Singular Spectrum Analysis (MSSA) is a direct extension of SSA to multivariate 

analysis and takes advantage of the (delay) embedding procedure to obtain a similar formulation as SSA, 

albeit with larger matrices for multidimensional time series. It has previously been successfully applied to 
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the study of climate fields, see [19]. When geographical coordinates of the data gathering sites are 

included as part of the data, then we talk of spatial data. In this paper, we propose a technique of 

harnessing this location information to improve statistical inference of spatial data within the framework 

of MSSA.  

Section 2 is devoted to reviewing the basics of MSSA. Section 3 contains the discussion on the 

inverse distance technique while in Section 4, we discuss the results and conclusions appear in Section 5. 

2. Multivariate Singular Spectrum Analysis, MSSA 

MSSA is an extension of the univariate SSA to the multidimensional time series. The main aim of 

MSSA is to extract signal from the multivariate time series leaving out the residual (noise) so as to 

perform further analysis, see [18], [13]. MSSA has been successfully applied to many different series: in 

Climatology [8], in Economics [18], [14] and in medical sciences [9] to mention just a few. 

2.1. Stages of MSSA 

MSSA, like SSA comprises two stages, namely: Decomposition and Reconstruction, each of which 

has two steps: Embedding and SVD for stage one and Grouping and Diagonal Averaging for stage two. 

Here we discuss mainly the embedding step which is the major difference from the SSA steps. 

2.1.1. Embedding 

Let (1) ( )( )
i i i

s
N N Ny y y= , ,  be an s -variate time series, iL  the window length, ( )iX  the trajectory 

matrix of the one dimensional time series ( ){ } ( 1 )
i

i
Ny i s, = , , .  

As in [10], [18] and [14], the trajectory matrix X  of the multivariate series is given as;  

 (1) ( ) ( )[ ]q sX X X X= : : : :   (1) 
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3. Inverse Distance Weighting, IDW 

For spatial data sets, there is always the intrinsic (geographic) information–the location attribute 

embedded in every recording. Whether it is in environmental sciences, economics, agriculture, 

climatology, geology or any other fields where spatial data is frequently encountered, the desire to harness 

this embedded information for purposes of analysis cannot be over emphasized. Data mining is an 

automated search for knowledge hidden in large collections of data set attributes. In environmental science 

and other areas where space-time behaviour is an important focus of investigation, it is not uncommon to 

have attributes whose values often change with space and time. This leads to spatial dependence which 

subsequently influences data analysis, see [17] and therefore a technique to incorporate spatial information 

into the analysis of such data sets is desirable. 

Data close together in space and time usually exhibit higher dependencies than those that are farther 

apart, see [7]. This dependency is thus inversely proportional to the distance of separation between any 

two data gathering sites. Amethod that utilizes this inverse proportionality in the distance of separation as 

a technique of incorporating spatial dependence into the analysis is the inverse distance weighting (IDW). 

Inverse distance weighting assigns bigger weights at near points and smaller weights at distant locations. 

There are several ways of computing the inverse distance weights to be used in the analysis, see [16]. Here, 

we present the inverse distance technique first introduced in [3] and developed further in [1]. 

The multivariate data set { }ijy y=  is an s N×  matrix and the inverse distance is given as 

1ij ijw d= /  where ijd  is the Euclidean distance between locations i  and j . For missing values in the 

data, a new weight is calculated by excluding the corresponding distance measure from the ijw s. To 

include spatial information into the analysis based on the model free MSSA framework, we premultiply 

the data set by the row-normalized spatial weight matrix, { }ijW w=  to yield the spatially weighted 

averages Wy . 

4. Application 

The proposed technique was applied to climate data from several recording sites in Upper Austria. 

The data was provided by the Zentralanstalt für Metereologie in Austria and is described in more detail in 

[16]. This data set contains climatic data measured at 37  stations irregularly placed over the region 

provided from http://www.zamg.ac.at/fix/klima/oe71-00/klima2000/klimadaten_oesterreich_1971_frame1. 

htm. Here, we have (incomplete) monthly data from Jan 1994 to Dec 2009 on average temperature and 
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total rainfall. Due to some missing observations, however, not all of the stations could be effectively used. 

A map of the region with the respective locations of the measurement stations and the contours for the 

rainfall data is displayed in Figure 1. 

 

Figure 1. The Sampling Locations of the Climatic Data Set Within Upper Austria 

For purposes of this application, we used the rainfall data from 11 locations that have no missing 
information, hence the series length is 192  (monthly recordings from Jan 1994 to Dec 2009). The rest of 
the sites have missing data to varying degrees of missingness. The data was also preprocessed by 
log-transformation, see [12]. 

To determine the effect of the spatial dependence on the data, we pooled together the data at different 

levels. The pooling was done by conditioning data from a particular site, iy  on data from the rest of the 

sites and likewise for the spatially weighted averages. To assess the accuracy, we calculated the root mean 

square errors, RMSE, i.e. ( )iR y y|  and ( )iR y Wy| . The RMSE ( )iR y  of the single unweighted 

series is referred to as the default RMSE in this paper. If ( ) ( )i iR y y R y| <  (or ( ) ( )i iR y Wy R y| < ), 

then the proposed technique leads to improved quality of the results, otherwise it is worse than results 
without pooling. The analyses were done using [15]. For comparative purposes, we computed the ratio of 
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the root mean square error, which is given by 
( )i

RMSE

RMSE y
RRMSE ∑= ∑ . For more information on how to 

perform spatial analysis in R , see [4]. 

4.1. Results 

The results are presented for both in-sample and out-of-sample analyses. We report findings for the 

unweighted and the spatially weighted for the set of entire sites. The other set of results fall between these 

two. 

4.1.1. In-Sample 

Figure 2 shows the time series graph of one of the sites, Freistadt which is typical of all the other sites. 

One of the basic capabilities of SSA-based techniques is shown in this graph, i.e. to separate the original 

series into its (additive) components. 

 

Figure 2. Time Series of one Selected Site 

Table 1 shows the RMSE values corresponding to the different window lengths. For MSSA, 1
sN
sL +≤ , 

see [10]. A good choice of the window length ensures proper separability. 
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Table 1. RMSE Values, R( iy y| ) for Different L 

Site 
Default RMSE RMSE Values corresponding to different Window Lengths 

L=96 L=96 L=144 L=156 L=168 L=180 
1 0.2661 0.2833 0.2197 0.2084 0.1786 0.1351 
2 0.2466 0.2662 0.1865 0.1630 0.1514 0.1419 
3 0.2503 0.2912 0.2352 0.2112 0.1803 0.1267 
4 0.2413 0.3087 0.2298 0.1998 0.1825 0.1651 
5 0.2394 0.3794 0.3709 0.2478 0.1863 0.0741 
6 0.2349 0.2624 0.2008 0.1931 0.1765 0.1475 
7 0.2065 0.2515 0.1722 0.1474 0.1456 0.1389 
8 0.2083 0.2516 0.1834 0.1530 0.1263 0.1020 
9 0.2017 0.2423 0.1821 0.1613 0.1281 0.1222 

10 0.2037 0.2574 0.2149 0.1903 0.1626 0.1020 
11 0.2010 0.2490 0.2053 0.1916 0.1484 0.0851 

Due to pooling of the data, the RMSE values progressively decrease towards their minimum at the 

optimal window length. 

4.1.2. Spatially Weighted Conditioning 

Figure 3 shows the Reconstructed series graphs of three selected sites being compared with their 

weighted counterparts. 

 

Figure 3. Reconstructed Series of Three Selected Sites Compared with their Weighted Counterparts 
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The graphs show a close similarity in the unweighted and the spatially weighted data sets implying 

that the ‘temporal structure’ of the series is not affected by the spatial weighting as the intra-seasonal 

variability remains in the spatially weighted series.  

In Table 2 are the RMSE values for the spatially weighted pooling for the set of entire sites and in 

Table 3 we have computed the RRMSE as described earlier as a measure of the performance at different 

window lengths. 

Table 2. RMSE Values, R( iy Wy| ) for Different L: Spatially Weighted for all Sites 

Site 
Default RMSE RMSE Values for different Window Lengths 

L=96 L=96 L=144 L=156 L=168 L=180  
1 0.2661 0.2841 0.2152 0.1778 0.0935 0.0062  
2 0.2466 0.2606 0.1771 0.1521 0.0836 0.0091  
3 0.2503 0.2838 0.2291 0.1783 0.0861 0.0062  
4 0.2413 0.3071 0.2302 0.1578 0.0979 0.0046  
5 0.2394 0.4137 0.3892 0.2440 0.0720 0.0031  
6 0.2349 0.2565 0.1904 0.1587 0.0829 0.0081  
7 0.2065 0.2450 0.1590 0.1281 0.0956 0.0081  
8 0.2083 0.2403 0.1633 0.1194 0.0799 0.0094  
9 0.2017 0.2373 0.1661 0.1198 0.0841 0.0100  

10 0.2037 0.2416 0.1876 0.1483 0.0811 0.0112  
11 0.2010 0.2365 0.1830 0.1417 0.0764 0.0153  

Table 3. Differences in RMSE Values 

Site 
Default RMSE Differences from default RMSE 

L=96 R( iy y| ) R( i iy Wy| ) R( iy Wy| ) R( iy Wy| ) ( 96)L=  

1 0.266111 0.131060 0.233964 0.259907 -0.017994  
2 0.246588 0.104707 0.219042 0.237449 -0.013963  
3 0.250342 0.123672 0.220715 0.244135 -0.033471  
4 0.241345 0.076241 0.210099 0.236794 -0.065711  
5 0.239399 0.165341 0.210293 0.236306 -0.174275  
6 0.234904 0.087389 0.202348 0.226827 -0.021546  
7 0.206510 0.067623 0.184227 0.198417 -0.038519  
8 0.208275 0.106287 0.185549 0.198860 -0.032012  
9 0.201736 0.079528 0.178254 0.191761 -0.035604  

10 0.203661 0.101666 0.179011 0.192459 -0.037911  
11 0.201021 0.115954 0.177240 0.185754 -0.035474  
  Ratios of RMSE (RRMSE)  
  0.536192 0.119664 0.036489 1.202602  
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Further details about in-sample prediction can be found in [2]. 

4.1.3. Out-of-Sample 

For the out-of-sample analysis, we used the data up to Dec 2008 implying that the window length 

reduced to 180 . The data for the final year, Jan-Dec 2009, was used to compare with the predicted values 

for the same period for different forecast procedures. To assess the effect of the spatial weighting, we 

computed both RMSE and the mean absolute percentage deviation, MAPD for the different forecast steps 

( ( )ˆ1

1

t t

t

M
y y

M y
t

MAPD | − |
| |

=

= ∑ ). 

Table 4. Out-of-Sample Forecasts 

Forecast for 
2009 

Actual  
Value 

Weighted 
Forecast 

Unweighted 
Forecast 

Weighted Unweighted 
MAPD RMSE MAPD RMSE 

Jan 3.044522 2.939382 5.208310 M=1:    
Feb 4.174387 2.770864 4.487440 0.0345 0.1051 0.7107 2.1638 
Mar 4.369448 3.915668 3.894846 M=3:    
Apr 3.091042 3.860014 4.259645     
May 4.615121 4.376068 3.735367 0.1582 0.8538 0.2981 1.2917 
Jun 5.347108 3.931153 4.622641 M=6:    
Jul 4.997212 5.077728 3.817844     

Aug 4.317488 4.812715 3.637416 0.1733 0.8982 0.2664 1.1306 
Sept 3.931826 4.607082 4.456604 M=12:    
Oct 4.127134 4.629895 3.005752     
Nov 3.637586 3.189317 2.980330     
Dec 3.433987 4.079065 2.969817 0.1480 0.7313 0.2261 0.9876 

 

Table 4 shows the results for the selected site. The spatially weighted forecasting conditioning on 

Wy  outperforms the default forecast at all levels of forecast steps. This performance can be checked 

against the RMSE and MAPD values for the spatially weighted and the unweighted forecasts. 

A rolling forecast was undertaken for the spatially weighted series for the same selected site. Results 

of the comparison with the year-long forecast is shown in Table 5. 
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Table 5. Comparison of Rolling and Year Long Predictions 

Actual Year-long Rolling Year-long Rolling 

ty  ˆ ty  ˆ ty  ˆt ty y| − |  ˆt ty y| − |  

3.044522 2.939382 2.939382 0.105140 0.105140 
4.174387 2.770864 2.559900 1.403523 1.614487 
4.369448 3.915668 3.380577 0.453780 0.988871 
3.091042 3.860014 3.468199 0.768972 0.377157 
4.615121 4.376068 3.696763 0.239053 0.918357 
5.347108 3.931153 3.308346 1.415954 2.038761 
4.997212 5.077728 4.753443 0.080516 0.243769 
4.317488 4.812715 4.575633 0.495227 0.258145 
3.931826 4.607082 5.613441 0.675257 1.681616 
4.127134 4.629895 7.590778 0.502761 3.463644 
3.637586 3.189317 6.127708 0.448269 2.490121 
3.433987 4.079065 6.221942 0.645078 2.787955 

  MAPD 0.1480 0.3518 
  RMSE 0.7313 1.7716 

 

5. Conclusion 

Using IDW to incorporate spatial dependence into the analysis of spatial data within the framework 

of MSSA time series analysis leads to improved quality of statistical analysis. This can be seen from Table 

1, where only qualitative neighbourhood effects have been included into the analysis, while in Table 2, 

spatial lag (weight) matrix was used to incorporate spatial dependence into the analysis and from Table 3 

where the RRMSE value is smallest for the spatially weighted set. Table 6 gives the comparison of the 

accuracy measures for the entire set of sites. The year-long prediction outperforms the rolling forecast 

potentially due to the seasonality within the original time series. 

We therefore highly recommend incorporation of spatial dependence (via spatial weight matrix) into 

the model free time series analysis within the framework of the SSA-based techniques. For prediction, the 

inherent characteristics or features of the time series under investigation should be taken into consideration 

before deciding upon the method to use. 
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Table 6. Comparison of Prediction Measures 

Site MAPD RMSE 

N o  Name Weighted Default Weighted Default 
1 Freistadt 0.1480 0.2261 0.7313 0.9876 
2 Linz/Stadt 0.2018 0.2632 1.0416 1.2058 
3 Reichenau 0.2161 0.2233 1.1048 1.0576 
4 Wolfsegg 0.2144 0.2606 1.1479 1.2745 
5 Wels 0.1979 0.2369 0.9044 1.0685 
6 Hoersching 0.1674 0.1573 0.8566 0.7227 
7 Kremsmuenster2 0.1904 0.2282 1.0005 1.1317 
8 Mondsee 0.1188 0.1757 0.7226 0.9917 
9 Gmunden 0.1473 0.2284 0.7541 1.1337 

10 Bad Goisern 0.1712 0.2105 0.9427 1.0822 
11 Bad Ischl 0.1830 0.1569 0.9915 0.8793 
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