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Abstract 

The contact problem of impressing absolutely rigid punch under normal and shear forces into an elastic 
layer is examined in presence Coulomb friction in the contact area. It is assumed that the lower 
boundary of the layer is fixed or there are no normal displacements and shear stresses on it, the punch-
strip system is in a condition of limit equilibrium, and the punch does not turn during deformation of 
the layer. First, considered contact problem is reformulated by Cauchy type singular integral equation 
of the second kind in which the unknown is the normal contact stresses beneath the punch, next this 
equation is reduced to system linear algebraic equations by using Gauss-Jacobi quadrature and 
collocation methods. The effects of geometrical and mechanical parameters of the materials on various 
subjects of interest are discussed and shown graphically and tabular form. 

Keywords: Singular Integral Equation, Plane Contact Problem, Cauchy kernel, Jacobi polynomial, A 
system of linear algebraic equation. 

1. Introduction

Problems of a layer with various boundary conditions were formulated and solved in many papers 
and books, e. g. [1-3]. Plane contact problems for a layer, taking into account the friction forces in the 
contact area, have been presented and investigated in many publications (see for example, [4-7], etc.). 
These problems are usually presented in the form of mixed type boundary problems in the elasticity theory, 
which can be reduced to singular integral equations and which can be tackled by the method originated 
from Muskheleshvili [8]. Another approach to the mixed problems in question suggested by Rostovtsev [9] 
does not involve singular integral equations. The unknown quantity in these problems is the pressure 
arising in the contact region. Analysis of this singular integral equation earlier performed in [2, 3] for an 
isotropic material, makes use of asymptotic series in a small or large relative strip thickness. Recently, an 
iterative method is applied to solve the plane contact problem in absence of friction for relative strip 
thickness [10]. Below, we consider a plane contact problem of the theory of elasticity about the interaction 
between a punch and a layer, taking Coulomb friction in the contact area into account. The aim of the 
present consideration is to obtain and analyze the results of a study of the effect of geometrical and 
mechanical parameters taking into account the friction forces in the contact area. 
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Know that, the considered contact problem can be reformulated by Cauchy type singular integral 
equation of the second kind in which the unknown is the normal contact stresses beneath the punch [3]. A 
general closed-form solution of this equation is not available; however substantial progress has been made 
in developing numerical methods of solution. One of these methods is a direct numerical method based on 
a Gaussian-type quadrature approximation of the integral parts in singular integral equation which was 
originally proposed by Erdogan and his colleagues [11] and extended by Krenk [12]. Recently X. Jin and 
his colleagues [13] proposed a practical method for singular integral equations of the second kind. This 
method features the standard Gauss–Jacobi quadrature and avoids the confinement on the collocation 
points. These advantages contribute to a convenient programming of the current algorithm. 

In the present paper, we used a practical method given in [13] to solve the above mentioned singular 
integral equation. As is known, this method is to make the transition from a singular integral equation to 
system of linear algebraic equations in values of the required function in roots of appropriate Jacobi 
polynomials. 

To illustrate the efficiency of the presented methodology, we will confine ourselves to consider the 
indentation of a plane punch with an elastic strip.  

2. Formulation of the Contact Problem

Let, infinite elastic layer is studied under plane strain conditions and its normal intersection occupies 

the region ,0x y h< ∞ ≤ ≤ . The stresses vanish at the infinity.  

While G denotes the shear modulus; ν denotes Poisson’s ratio of the elastic strip. A normal force P 
and a shear force T = μP acts on the punch, and the forces of Coulomb friction with a coefficient of 
friction μ act in the contact area ,c x c− ≤ ≤ y h= . Here, either the lower boundary of the layer y = 0 is 

fixed (Problem 1) or there are no normal displacements and shear stresses on it (Problem 2). The case of 
limit equilibrium is examined, and the punch does not turn during deformation of the layer. 

Fig. 1. The geometry of the problem 
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The plane contact problem outlined above as shown in Fig. 1 must be solved under the following 
boundary conditions: 
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for Problem 2, where u and v are the x- and y-components of the displacement vector, xyτ  and yσ  are 

shear and normal stress components, respectively. ( )xδ is a function describing the shape of the base of 

the punch. Using integral transforms, boundary conditions for Problems 1 and 2 and by the technique 
originated in [10], plane elasticity equations can be converted analytically into the following singular 
integral equation in which the unknown is the contact pressure q(x) 
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the kernel which can be represented in the following form is 
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, / (1 )Gθ ν= − . The first integral in Eq. (2.3) is evaluated in the sense of Cauchy 

principal value. Here, for Problem 1 
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and for Problem 2 
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The singular integral equation (2.3) should be solved together with the condition of bodies’ 
equilibrium 
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( ) .
c

c
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Changing Eqs. (2.3) and (2.7) to dimensionless variables and using the notations in the formulae 

, ,x ct cξ τ= = ( ) ( ) / , ( ) ( ) / , /t cq ct P f t ct P h cϕ θδ λ= = = , (2.8) 

we will have 
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Respectively. Such integral equations arise from the mixed boundary value problems of solid and 
fluid mechanics, and are solved frequently using direct methods based on quadrature and collocation. One 
of the methods for numerical solution of singular integral equation (2.9) with eq. (2.10), which is 
convenient for application of electronic computers, is proposed in [13] and a foundation is given briefly 
below. 

3. Discretization

Equation (2,9) is Cauchy-type integral equation of second kind for unknown pressure under the punch 
in the contact area. The unbounded solution at the both-end points of Eqs. (2.9) and (2.10) may be 
expressed as the product of a bounded function g(t), and a fundamental function ( )w t , 

( ) ( ) ( )t w t g tϕ =  (3.1) 

where the fundamental function is given by 

( ) (1 ) (1 )w t t tα β= − + .  (3.2) 

The numbers α and β are determined as 
1 1 ( )
2
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π

= − +  and 
1 1 ( )
2
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= − −  [8, 11-

14]. 

Let ( ),H x t  denotes the function obtained by

( )
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If the Eqs. (3.1) and (3.2) are used in Eq. (2.9), and the singularity in it is removed, then via Eq. (3.3), 
last equation can be converted to   
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Numerical discretization of the integral eq. (3.4) may be accomplished by using a numerical 
integration rule to evaluate the integral of the left-hand side. Gauss-Jacobi quadrature rule is an 
appropriate choice for the Jacobi weight function indicated by Eq. (3.2). According to [13], at the 

collocation points ,it Eq. (3.4) is reduced as 

( , )
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t
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where n is the total number of the integration points, the values ( , )
jA α β  (j=1,…,n) are the weights of the 

standard Gauss-Jacobi quadrature, and abscissas jt (j=1,…,n) are roots of the Jacobi polynomials 

( ) ( ),
nP tα β  of degree n corresponding to the function ( )w t . 

In the current algorithm proposed by X. Jin et al., the selection of the collocation points is flexible. 
However, it is important that the collocation points should not coincide with any of the integration points. 

The values ( )ig t  in ( , )i jH t τ  may be represented by linear combination of ( )jg τ  through Lagrangian 

interpolation 
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By virtue of Eq. (3.6), Eq. (3.5) may be converted to a system of linear algebraic equations 

1
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The additional condition (2.8) may be expressed as 
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1
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Eqs. (3.8) and (3.10) provide n linear algebraic equations to determine ( )jg τ , (j=1… n). 

It is obvious that, the approximate solution of the Eqs. (2.9) and (2.10) occurs as follows 
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where ( ) ( )i n it tϕ ϕ= (i=1… n) are valid. 
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The function ( )n tϕ  will be defined if we find the number ( )ig τ  (i=1… n) from the convenient 

system of n linear algebraic Eqs (3.8) and (3.10). 
The absolute error between approximate and exact solutions will be estimated by a theorem given in 

[14].  

4. Numerical Calculations

We will confine ourselves to consider the case of a plane punch, which interacts with the boundary of 

a strip y=h. In this case ( ) 0 ,x c x cδ δ= − ≤ ≤ , consequently ( ) 0, 1 1f t t′ = − ≤ ≤ . The parameter 0δ  

denotes the displacement of the punch in the vertical direction. 

Table 1. The values *M , *t , ( )*tϕ , ( )0.9ϕ −  and ( )0.9ϕ obtained by various values of λ and ν for the  Problem 1

λ  ν  *M *t ( )*tϕ ( )0.9ϕ − ( )0.9ϕ

μ=0.5 
0.5 0.1 -0.037 -0.118 0.461 0.555 0.495 
0.5 0.45 -0.106 -0.824 0.334 0.350 0.605 
1 0.1 -0.053  0.356 0.406 0.644 0.553 
1 0.45  0.075 -0.668 0.377 0.464 0.658 
2 0.1 -0.078  0.075 0.353 0.745 0.600 
2 0.45  0.036 -0.252 0.368 0.601 0.706 
4 0.1 -0.102  0.084 0.324 0.811 0.609 
4 0.45  0.007 -0.054 0.335 0.690 0.722 
8 0.1 -0.118  0.105 0.314 0.844 0.601 
8 0.45 -0.009 -0.009 0.323 0.730 0.717 

μ=0.9 
0.5 0.1 -0.064 -0.544 0.462 0.568 0.464 
0.5 0.45  0.182 -0.830 0.280 0.292 0.737 
1 0.1 -0.093  0.479 0.399 0.665 0.508 
1 0.45  0.134 -0.711 0.330 0.396 0.744 
2 0.1 -0.136  0.142 0.347 0.784 0.539 
2 0.45  0.066 -0.381 0.359 0.559 0.746 
4 0.1 -0.177  0.148 0.313 0.870 0.531 
4 0.45  0.013 -0.097 0.335 0.676 0.734 
8 0.1 -0.206  0.182 0.299 0.918 0.511 
8 0.45 -0.017 -0.016 0.323 0.734 0.712 

We will use the notations * / ( )M M Pc= . The collocation points in the discussion below are 

specified as the mid-point of two successive integration points. 

Tables 1 and 2 give the values of *M , *t , ( )*tϕ , ( )0.9ϕ −  and ( )0.9ϕ for Problem 1 and 2, where

* *x ct=  is the point of the contact area with the minimum contact stresses for certain values λ ,ν and µ . 
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Figs 2 and 3 show the influence of Poisson’s ratio on the dimensionless contact stresses ( )tϕ in the

contact area [-1, 1] for Problem 1 when 2λ = , 0.8µ =  and for Problem 2 when 3λ = , 0.7µ =  

respectively.  

Table 2. The values *M , *t , ( )*tϕ , ( )0.9ϕ −  and ( )0.9ϕ  obtained by various values of λ and ν for the Problem 2

λ  ν  *M *t ( )*tϕ ( )0.9ϕ − ( )0.9ϕ

μ=0.5 
0.5 0.1  0.008  0.360 0.470 0.500 0.549 
0.5 0.45  0.285 -0.823 0.216 0.228 0.934 
1 0.1 -0.031 -0.297 0.405 0.620 0.585 
1 0.45  0.141 -0.634 0.337 0.432 0.800 
2 0.1 -0.068  0.029 0.351 0.736 0.617 
2 0.45  0.061 -0.241 0.346 0.597 0.767 
4 0.1 -0.097  0.072 0.323 0.807 0.617 
4 0.45  0.017 -0.072 0.328 0.686 0.745 
8 0.1 -0.116  0.010 0.314 0.842 0.604 
8 0.45 -0.005 -0.018 0.321 0.726 0.726 

μ = 0.9 
0.5 0.1  0.014 -0.710 0.402 0.470 0.553 
0.5 0.45  0.492 -0.931 0.711 0.072 1.300 
1 0.1 -0.056 -0.378 0.405 0.618 0.557 
1 0.45  0.253 -0.746 0.257 0.299 0.960 
2 0.1 -0.119  0.060 0.347 0.765 0.564 
2 0.45  0.110 -0.393 0.334 0.528 0.834 
4 0.1 -0.170  0.126 0.314 0.861 0.542 
4 0.45  0.032 -0.129 0.327 0.661 0.767 
8 0.1 -0.202  0.174 0.299 0.914 0.515 
8 0.45 -0.009 -0.033 0.321 0.725 0.725 

The results of calculations given in Tables 1 and 2 and also Figs. 2 and 3 are enable us to draw a 
number of important conclusions. When the Poisson’s ratio increases or the coefficient friction reduces 

assuming the value of the relative thickness of the strip is fixed, the quantity *t  is displaced in the negative 

direction of the x axis. In these cases the nature of the contact pressure distributions in the vicinity of the 

contact zones ends also changes: while the values of ( )tϕ  drop in the vicinity of the point t=-1, it grows

in the vicinity of the point t=1. 

391



A Practical Quadrature - Collocation Method to Solve Frictional Contact Problems 

Fig. 2. The influence of the ν on the φ (t) for the Problem 1 for the case λ = 2, μ = 0.8. 

Fig. 3. The influence of the ν on the φ (t) for the Problem 2 for the case λ = 3, μ = 0.7. 
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Fig. 4. The graphs of the dependencies between φ (t) and μ for the Problem 1 for the case λ = 2, v = 0.3. 

Fig. 5. The graphs of the dependencies between φ (t) and μ for the Problem 2 for the case λ = 2, v = 0.3. 

The graphs given in Figs. 4 and 5 show the influence of the coefficient of friction on the 
dimensionless contact pressure under λ = 2, v = 0.3 for Problem 1 and Problem 2. As is seen, the 
intensivity of pressure grow at the left semi contact zone, and drops at the right semi contact zone by 
increasing the coefficient of friction. 
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Figs 6 and 7 show the effect of the relative thickness λ on the normalized φ (t) for Problem 1 and when 
Problem 2 v = 0.3, μ = 0.6. It might be observed that the increase of intensivity of pressure occurs in the 
left semi contact zone, when the opposite in the right semi contact zone. 

Fig. 6. The dependencies between φ (t) and λ for the Problem 1 for the case v = 0.3, μ = 0.6. 

Fig. 7. The dependencies between φ (t) and λ for the Problem 2 for the case where v = 0.3, μ = 0.6. 
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5. Conclusion
In this paper, the contact of a punch with an elastic isotropic layer, taking Coulomb friction in the 

contact region into account, is considered. It is assumed that either the lower boundary of the layer is fixed 
or three are no normal displacements and shear stresses on it, and that normal and shear forces are acting 
on the punch. The contact problem is reformulated by Cauchy type singular integral equation of the second 
kind in which the unknown is the normal contact stresses beneath the punch. A practical quadrature-
collocation method is adapted to transmission of the singular integral equation to the system of the 
algebraic linear equations. The indentation of a plane punch to layer is examined and the effects of 
geometrical and mechanical parameters of the materials on distribution contact pressure are studied in order 
to demonstrate the efficiency of the developed methodology. 
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