

A New Type of Crisp Set via λ -Shading

Anjana Bhattacharyya

Department of Mathematics, Victoria Institution (College), 78 B, A.P.C. Road, Kolkata - 700009, India.

Abstract

In this paper a new class of crisp subsets has been introduced and studied which inherits λ - α -almost compactness of a space X, endowed with a fuzzy topology. Also a new type of continuous function between two fuzzy topological spaces is introduced under which λ - α -almost compactness for crisp subsets remains invariant.

AMS Subject Classifications: 54A40, 54C99,54D20.

Keywords: λ - α -almost compact set, α^{λ} -closed set, α^{λ} -continuity, fuzzy α -open set, fuzzy α -open function.

Introduction

From very beginning many mathematicians are engaged themselves for studying different types of compactness in fuzzy setting by using the definition of fuzzy cover initiated by Chang [4]. The concept of fuzzy cover was generalized by Gantner et al. [5] in 1978 by introducing a new concept of cover termed as α -shading (0 < α < 1). In this paper we use this idea of α -shading but in a different terminology, viz., λ -shading (0 < λ < 1) for avoiding confusion of the term ' α ' used in α -open set and α -shading.

Preliminaries

A fuzzy set A in an fts X means a function from X to the closed interval I = [0,1] of the real line, i.e., $A \in I^X$ [7]. By a crisp subset of an fts X, we mean an ordinary subset A of X, i.e., $A \subseteq X$, where the underlying structure on X is a fuzzy topology τ . For a fuzzy set A in an fts X, clA and intA stand for fuzzy closure and fuzzy interior of A in X respectively [4]. The support of a fuzzy set A in X will be denoted by suppA [7] and is defined by $suppA = \{x \in X : A(x) \neq 0\}$. A

Corresponding author: Anjana Bhattacharyya, Department of Mathematics, Victoria Institution (College), 78 B, A.P.C. Road, Kolkata - 700009, India. E-mail: anjanabhattacharyya@hotmail.com.

fuzzy point in X with the singleton support $\{x\}\subseteq X$ and the value t $(0 < t \le 1)$ will be denoted by x_t . For two fuzzy sets A and B in X, we write $A \le B$ if $A(x) \le B(x)$, for all $x \in X$, while we write AqB if A is quasi-coincident (q-coincident, for short) with B [6], i.e., A(x) + B(x) > 1, for some $x \in X$. The negation of these two statements are written as $A \le B$ and AqB respectively. A fuzzy set B is called a quasi neighbourhood (q-nbd, for short) of a fuzzy set A if there is a fuzzy open set A in A is called fuzzy open q-nbd of A. A fuzzy neighbourhood (nbd, for short) [6] A of a fuzzy point A in an fts A is defined in the usual way, i.e., whenever for some fuzzy open set A in A is a fuzzy open nbd of A is fuzzy open, in addition.

1. Fuzzy α -Open and Fuzzy α -Closed Sets and λ - α -Almost Compact Space

Let us recall some definitions for ready references.

Definition 1.1 [3]. A fuzzy set A in an fts X is said to be fuzzy α -open if $A \leq intclintA$. The complement of a fuzzy α -open set is called fuzzy α -closed.

Definition 1.2 [3]. The smallest fuzzy α -closed set containing a fuzzy set A in X is called fuzzy α -closure of A and is denoted by αclA , i.e., $\alpha clA = \bigwedge \{U : A \leq U \text{ and } U \text{ is fuzzy } \alpha \text{ -closed } \}$. A fuzzy set A in X is fuzzy α -closed if $A = \alpha clA$.

Definition 1.3 [3]. For a fuzzy set A in an fts X, the fuzzy α -interior of a fuzzy set A denoted by $\alpha intA$ is defined by the union of all fuzzy α -open sets contained in A, i.e., $\alpha intA = \bigvee \{V : V \le A \text{ and } V \text{ is fuzzy } \alpha \text{-open in } X\}$. A fuzzy set A in X is fuzzy α -open if $A = \alpha intA$.

Definition 1.4 [1]. A fuzzy set A in an fts X is called a fuzzy α -open q-nbd of a fuzzy point x, in X if there exists a fuzzy α -open set V in X such that $x_{i}qV \leq A$.

Definition 1.5 [5]. Let A be a crisp subset of an fts X. A collection \mathcal{U} of fuzzy sets in X is

called a λ -shading (where $0 < \lambda < 1$) (formerly known as α -shading (where $0 < \alpha < 1$)) of A if for each $x \in A$, there is some $U_x \in \mathcal{U}$ such that $U_x(x) > \lambda$. Taking A = X, we arrive at the definition of λ -shading of an fts X, as proposed by Gantner et. al [5].

If the members of a λ -shading $\mathcal U$ of A (or of X) are fuzzy α -open sets in X, then $\mathcal U$ is called a fuzzy α -open λ -shading of A (resp., of X).

Definition 1.6 [2]. Let X be an fts and A, a crisp subset of X. A is called λ - α -almost compact if each fuzzy α -open λ -shading of A has a finite α -proximate λ -subshading, i.e., there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\{\alpha clU: U \in U_0\}$ is again a λ -shading of A. If A = X, in addition, then X is called a λ - α -almost compact space.

2. α^{λ} -Closed Sets: Some Properties

Let us now introduce a class of crisp sets in an fts X, as follows.

Definition 2.1. Let (X, τ) be an fts and $A \subseteq X$. A point $x \in X$ is said to be an α^{λ} -limit point of A if for every fuzzy α -open set U in X with $U(x) > \lambda$, there exists $y \in A \setminus \{x\}$ such that $(\alpha clU)(y) > \lambda$. The set of all α^{λ} -limit points of A will be denoted by $[A]^{\lambda}_{\alpha}$.

The α^{λ} -closure of A, to be denoted by $\alpha^{\lambda} - clA$, is defined by $\alpha^{\lambda} - clA = A \bigcup [A]_{\alpha}^{\lambda}$.

Definition 2.2. A crisp subset A of an fts X is said to be α^{λ} -closed if it contains all its α^{λ} -limit points. Any subset B of X is called α^{λ} -open if $X \setminus B$ is α^{λ} -closed.

Remark 2.3. It is clear from Definition 2.1 that for any set $A \subseteq X$, $A \subseteq \alpha^{\lambda} - clA$ and $\alpha^{\lambda} - clA = A$ if and only if $[A]_{\alpha}^{\lambda} \subseteq A$. Again it follows from Definition 2.1 that A is α^{λ} -closed if and only if $\alpha^{\lambda} - clA = A$. It is also clear that $A \subseteq B \subseteq X \Rightarrow [A]_{\alpha}^{\lambda} \subseteq [B]_{\alpha}^{\lambda}$.

Theorem 2.4. An α^{λ} -closed subset A of a λ - α -almost compact space X is λ - α -almost compact.

Proof. Let $A \subseteq X$ be α^{λ} -closed in a $\lambda - \alpha$ -almost compact space X. Then for any $x \notin A$,

there is a fuzzy $\, \alpha$ -open set $\, U_x \,$ in $\, X \,$ such that $\, U_x(x) > \lambda \,$, and $\, (\alpha clU_x)(y) \leq \lambda \,$, for every $\, y \in A \,$. Consider the collection $\, \mathcal{U} = \{U_x : x \not\in A\} \,$. For proving $\, A \,$ to be $\, \lambda - \alpha \,$ -almost compact, consider a fuzzy $\, \alpha \,$ -open $\, \lambda \,$ -shading $\, \mathcal{V} \,$ of $\, A \,$. Clearly $\, \mathcal{U} \, \bigcup \, \mathcal{V} \,$ is a fuzzy $\, \alpha \,$ -open $\, \lambda \,$ -shading of $\, X \,$. Since $\, X \,$ is $\, \lambda - \alpha \,$ -almost compact, there exists a finite subcollection $\, \{V_1, V_2, ..., V_n\} \,$ of $\, \mathcal{U} \, \bigcup \, \mathcal{V} \,$ such that for every $\, t \in X \,$, there exists $\, V_i (1 \leq i \leq n) \,$ such that $\, (\alpha clV_i)(t) > \lambda \,$. For every member $\, U_x \,$ of $\, \mathcal{U} \,$, $\, (\alpha clU_x)(y) \leq \lambda \,$, for every $\, y \in A \,$. So if this subcollection contains any member of $\, \mathcal{U} \,$, we omit it and hence we get the result.

To achieve the converse of Theorem 2.4, we define the following.

Definition 2.5. An fts (X, τ) is said to be $\lambda - \alpha$ -Urysohn if for any two distinct points x, y of X, there exist a fuzzy open set U and a fuzzy α -open set V in X with $U(x) > \lambda$, $V(y) > \lambda$ and $min((\alpha clU)(z), (\alpha clV(z)) \le \lambda$, for each $z \in X$.

Theorem 2.6. A $\lambda - \alpha$ -almost compact set in a $\lambda - \alpha$ -Urysohn space X is α^{λ} -closed.

Proof. Let A be λ - α -almost compact set and $x \in X \setminus A$. Then for each $y \in A$, $x \neq y$. As X is λ - α -almost compact, there exist a fuzzy open set U_y and a fuzzy α -open set V_y in X such that $U_y(x) > \lambda, V_y(y) > \lambda$ and $min((\alpha clU_y)(z), (\alpha clV_y)(z)) \leq \lambda$, for all $z \in X$... (1).

Then $U=\{V_y:y\in A\}$ is a fuzzy α -open λ -shading of A and so by λ - α -almost compactness of A, there exist finitely many points $y_1,y_2,...,y_n$ of A such that $U_0=\{\alpha clV_{y_1},\alpha clV_{y_2},...,\alpha clV_{y_n}\}$ is again a λ -shading of A. Now $U=U_{y_1}\bigcap...\bigcap U_{y_n}$ being a fuzzy open set is a fuzzy α -open set in X such that $U(x)>\lambda$. In order to show that A to be α^λ -closed, it now suffices to show that $(\alpha clU)(y)\leq \lambda$, for each $y\in A$. In fact, if for some $z\in A$, we assume $(\alpha clU)(z)>\lambda$, then as $z\in A$, we have $(\alpha clV_{y_k})(z)>\lambda$, for some k $(1\leq k\leq n)$. Also

 $(\alpha clU_{v_k})(z) > \lambda$. Hence $min((\alpha clU_{v_k})(z), (\alpha clV_{v_k})(z)) > \lambda$, contradicting (1).

Corollary 2.7. In a λ - α -almost compact, λ - α -Urysohn space X, a subset A of X is λ - α -almost compact if and only if it is α^{λ} -closed.

Theorem 2.8. In a λ - α -almost compact space X, every cover of X by α^{λ} -open sets has a finite subcover.

Proof. Let $\mathcal{U}=\{U_i:i\in\Lambda\}$ be a cover of X by α^λ -open sets. Then for each $x\in X$, there exists $U_x\in\mathcal{U}$ such that $x\in U_x$. Since $X\setminus U_x$ is α^λ -closed, there exists a fuzzy α -open set V_x in X such that $V_x(x)>\lambda$ and $(\alpha clV_x)(y)\leq \lambda$, for each $y\in X\setminus U_x$... (1).

Then $\{V_x:x\in X\}$ forms a fuzzy α -open λ -shading of the λ - α -almost compact space X. Thus there exists a finite subset $\{x_1,x_2,...,x_n\}$ of X such that $\{\alpha clV_{x_i}:i=1,2,...,n\}$ is a λ -shading of X ... (2).

We claim that $\{U_{x_1}, U_{x_2}, ..., U_{x_n}\}$ is a finite subcover of $\mathcal U$. If not, then there exists $y \in X \setminus \bigcup_{i=1}^n U_{x_i} = \bigcap_{i=1}^n (X \setminus U_{x_i})$. Then by (1), $(\alpha clV_{x_i})(y) \leq \lambda$, for i=1,2,...,n and so $(\bigcup_{i=1}^n \alpha clV_{x_i})(y) \leq \lambda$, contradicting (2).

Theorem 2.9. Let (X, τ) be an fts. If X is $\lambda - \alpha$ -almost compact, then every collection of α^{λ} -closed sets in X with finite intersection property has non-empty intersection.

Proof. Let $\mathcal{F} = \{F_i : i \in \Lambda\}$ be a collection of α^λ -closed sets in a λ - α -almost compact space X having finite intersection property. If possible, let $\bigcap_{i \in \Lambda} F_i = \phi$. Then $X \setminus \bigcap_{i \in \Lambda} F_i = \bigcup_{i \in \Lambda} (X \setminus F_i) = X \Rightarrow \mathcal{U} = \{X \setminus F_i : i \in \Lambda\}$ is an α^λ -open cover of X. Then by Theorem 2.8, there is a finite subset Λ_0 of Λ such that $\bigcup_{i \in \Lambda_0} (X \setminus F_i) = X \Rightarrow \bigcap_{i \in \Lambda_0} F_i = \phi$, a contradiction.

3. α^{λ} -Continuity: Some Applications

In this section, we now introduce a class of functions under which λ - α -almost compactness remains invariant.

Definition 3.1. Let X,Y be fts's. A function $f:X\to Y$ is said to be α^λ -continuous if for each point $x\in X$ and each fuzzy α -open set V in Y with $V(f(x))>\lambda$, there exists a fuzzy α -open set U in X with $U(x)>\lambda$ such that $\alpha clU\leq f^{-1}(\alpha clV)$.

Theorem 3.2. If $f: X \to Y$ is α^{λ} -continuous (where X, Y are, as usual, fts's), then the following are true:

- (a) $f([A]_{\alpha}^{\lambda}) \subseteq [f(A)]_{\alpha}^{\lambda}$, for every $A \subseteq X$.
- (b) $[f^{-1}(A)]^{\lambda}_{\alpha} \subseteq f^{-1}([A]^{\lambda}_{\alpha})$, for every $A \subseteq Y$.
- (c) For each α^{λ} -closed set A in Y, $f^{-1}(A)$ is α^{λ} -closed in X.
- (d) For each α^{λ} -open set A in Y, $f^{-1}(A)$ is α^{λ} -open in X.

Proof (a). Let $x \in [A]_{\alpha}^{\lambda}$ and U be any fuzzy α -open set in Y with $U(f(x)) > \lambda$. Then there is a fuzzy α -open set V in X with $V(x) > \lambda$ and $\alpha clV \le f^{-1}(\alpha clU)$. Now $x \in [A]_{\alpha}^{\lambda}$ and V is a fuzzy α -open set in X with $V(x) > \lambda \Rightarrow \alpha clV(x_0) > \lambda$, for some $x_0 \in A \setminus \{x\}$ $\Rightarrow \lambda < \alpha clV(x_0) \le (f^{-1}(\alpha clU))(x_0) = (\alpha clU)(f(x_0))$ where

 $f(x_0) \in f(A) \setminus \{f(x)\} \Rightarrow f(x) \in [f(A)]^{\lambda}_{\alpha}$. Thus (a) follows.

- (b) By (a), $f([f^{-1}(A)]^{\lambda}_{\alpha}) \subseteq [ff^{-1}(A)]^{\lambda}_{\alpha} \subseteq [A]^{\lambda}_{\alpha} \Longrightarrow [f^{-1}(A)]^{\lambda}_{\alpha} \subseteq f^{-1}([A]^{\lambda}_{\alpha})$.
- (c) We have $[A]^{\lambda}_{\alpha} = A$. By (b), $[f^{-1}(A)]^{\lambda}_{\alpha} \subseteq f^{-1}([A]^{\lambda}_{\alpha}) = f^{-1}(A) \Rightarrow [f^{-1}(A)]^{\lambda}_{\alpha} = f^{-1}(A) \Rightarrow$ $f^{-1}(A) \text{ is } \alpha^{\lambda} \text{-closed set in } X.$
 - (d) Follows from (c).

Theorem 3.3. Let X,Y be fts's and $f:X\to Y$ be fuzzy α^{λ} -continuous function. If $A(\subseteq X)$ is $\lambda - \alpha$ -almost compact, then so is f(A) in Y.

Proof. Let $\mathcal{V} = \{V_i : i \in \Lambda\}$ be a fuzzy α -open λ -shading of f(A), where A is λ - α -almost compact set in X. For each $x \in A$, $f(x) \in f(A)$ and so there exists $V_x \in V$ such that $V_x(f(x)) > \lambda$. As f is fuzzy α^λ -continuous, there exists a fuzzy α -open set U_x in X such that $U_x(x) > \lambda$ and $f(\alpha clU_x) \leq \alpha clV_x$. Then $\{U_x : x \in X\}$ is a fuzzy α -open λ -shading of A. By λ - α -almost compactness of A, there are finitely many points $a_1, a_2, ..., a_n$ in A such that $\{\alpha clU_{a_i} : i = 1, 2, ..., n\}$ is again a λ -shading of A.

We claim that $\{\alpha clV_{a_i}: i=1,2,...,n\}$ is a λ -shading of f(A). In fact, $y\in f(A)$ \Rightarrow there exists $x\in A$ such that y=f(x). Now there is an U_{a_j} (for some $j,1\leq j\leq n$) such that $(\alpha clU_{a_j})(x)>\lambda$ and hence $(\alpha clV_{a_j})(y)\geq f(\alpha clU_{a_j})(y)\geq \alpha clU_{a_j}(x)>\lambda$.

Let us now give a definition of a function under which α^{λ} -closedness of a set remains invariant.

Definition 3.4. Let X,Y be fts's. A function $f:X\to Y$ is said to be fuzzy α -open if f(A) is fuzzy α -open in Y whenever A is fuzzy α -open in X.

Remark 3.5. For a fuzzy α -open function $f: X \to Y$, for every fuzzy α -closed set A in X, f(A) is fuzzy α -closed in Y.

Theorem 3.6. If $f:(X,\tau)\to (Y,\tau_1)$ is a bijective fuzzy α -open function, then the image of an α^{λ} -closed set in (X,τ) is α^{λ} -closed in (Y,τ_1) .

Proof. Let A be a α^{λ} -closed set in (X,τ) and let $y \in Y \setminus f(A)$. Then there exists a unique $z \in X$ such that f(z) = y. As $y \notin f(A)$, $z \notin A$. Now, A being α^{λ} -closed in X, there exists a fuzzy α -open set V in X such that $V(z) > \lambda$ and $\alpha clV(p) \le \lambda$, for each $p \in A$... (1).

A New Type of Crisp Set via λ -Shading

384

As f is fuzzy α -open, f(V) is a fuzzy α -open set in Y, and also $(f(V))(y) = V(z) > \lambda$

as f is bijective. Let $t \in f(A)$. Then there is a unique $t_0 \in A$ such that $f(t_0) = t$. As f is

bijective and fuzzy α -open, by Remark 3.5, $\alpha clf(V) \le f(\alpha clV)$. Then $(\alpha clf(V))(t) \le f(\alpha clV)(t)$

 $= \alpha c l V(t_0) \le \lambda$ as f id bijective, by (1). Thus y is not an α^{λ} -limit point of f(A). Hence the

proof.

From Theorem 3.2 (c) and Theorem 3.6, it follows that

Corollary 3.7. Let $f: X \to Y$ be a fuzzy α^{λ} -continuous, bijective and fuzzy α -open function.

Then A is α^{λ} -closed in Y if and only if $f^{-1}(A)$ is α^{λ} -closed in X.

References

[1]. Bhattacharyya, Anjana; α*-closure operator in fuzzy setting, Analele Universității Oradea, Fasc. Matematica,

Tom XXI Issue No. 2 (2014), 67-72.

[2]. Bhattacharyya, Anjana; λ - α -almost compactness for crisp subsets of a fuzzy topological space, International

Journal of Engineering and Scientific Research, vol. 4, No. 4 (2016), 29-39.

[3]. Bin Shahna, A.S.; On fuzzy strong semicontinuity and fuzzy precontinuity, Fussy Sets and Systems 44 (1991),

303-308.

[4]. Chang, C.L.; Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.

[5]. Gantner, T.E., Steinlage, R.C. and Warren, R.H.; Compactness in fuzzy topological spaces, J. Math. Anal. Appl.

62 (1978), 547-562.

[6]. Pu, Pao Ming and Liu, Ying Ming; Fuzzy topology I, Neighbourhood structure of a fuzzy point and

Moore-Smith Convergence, J. Math. Anal. Appl. 76 (1980), 571-599.

[7]. Zadeh, L.A.; Fuzzy Sets, Inform. Control 8 (1965), 338-353.

Published: Volume 2017, Issue 12 / December 25, 2017