

Fan-Gottesman Compactification and Completeness

Ceren Sultan ELMALI

Department of Mathematics, Faculty of Science, Erzurum Technical University, 25100 Erzurum-Turkey.

ceren.elmali@erzurum.edu.tr

Tamer UĞUR

Department of Mathematics, Faculty of Science, Atatürk University, 25240 Erzurum-Turkey.

tugur@atauni.edu.tr

Abstract

It is investigated that Fan-Gottesman compactification of (X,d) is homeomorphic to the completion of (X,d^{ϕ}) totally bounded metric space. As application, we construct Fan-Gottesman compactification of (\mathbb{R}^n,d_E) , where d_E is the euclidean metric and $n\geq 2$ and show that Fan-Gottesman compactification of (\mathbb{R}^n,d_E) is homeomorphic to its completion.

Keywords: Fan-Gottesman compactification, completion.

1. The Metric $d^{\phi,m}$

Let (X,d) be a metric space and $m \in X$. Suppose that $\phi: X \times X \to \mathbb{R}$ is a nonnegative symmetric function. As a usual, two metrics d_1 and d_2 on a set X are called equivalent if (X,d_1) and (X,d_2) are homeomorfic. It is defined a metric $d^{\phi,m}$ on X which is equivalent to d in [1]. For each $x,y\in X$, let

Corresponding author: Ceren Sultan ELMALI, Department of Mathematics, Faculty of Science, Erzurum Technical University, 25100 Erzurum-Turkey. E-mail: ceren.elmali@erzurum.edu.tr.

$$\delta^{\phi,m}(x,y) = \min \left\{ d(x,y), \frac{1}{1+d(m,x)} + \phi(x,y) + \frac{1}{1+d(m,y)} \right\}$$

And for each $x, y \in X$ and $n \in \mathbb{N}$, let

$$\Gamma_{x,y}^n = \{(x_0, x_1, ..., x_n) : x_0 = x, x_n = y \text{ and } x_i \in X \text{ for all } i\}$$

and

$$\Gamma_{x,y} =_{n \in \mathbb{N}} \Gamma_{x,y}^n$$

Notice that $\Gamma_{x,y} \neq \text{ for all } x,y \in X$. In the following definition, the infimum runs over all elements of $\Gamma_{x,y}$.

1.1. Definition:

Suppose that $x, y \in X$. Let

$$d^{\phi,m}(x,y) = \inf_{\Gamma_{x,y}} {}^{n} \delta^{\phi,m}(x_{i-1},x_{i})$$

For the sake of simplicity, It is simply writen d^{ϕ} , δ^{ϕ} to denote $d^{\phi,m}$, $\delta^{\phi,m}$ respectively. In particular, it is writen as

$$d^{\phi}(x,y) = \inf_{\Gamma_{x,y}} \delta^{\phi}(x_{i-1},x_i)$$

Young Deuk Kim showed that d^{ϕ} is a metric on X and $\left(X,d^{\phi}\right)$ is a homeomorphic to $\left(X,d\right)$. Also he investigated that $\left(X,d^{\phi}\right)$ is totally bounded. He construct the completion $\left(\overline{X},\rho\right)$ of totally bounded metric space $\left(X,d^{\phi}\right)$. He applied to Euclidean metric space \mathbb{R}^n with $n\geq 2$ in [1]. Therefore Young Deuk Kim showed that $\left(\mathbb{R}^n,d_E\right)$ is totally bounded and construct its completion.

 \overline{X} can be desired as the set of equivalence classes of all Cauchy sequences in $\left(X,d^{\phi}\right)$ with the

equivalence relation

$$x_i \sim y_i$$
 if and only if $\lim_{i \to \infty} d^{\phi}(x_i, y_i) = 0$

where a point x in X is identified to the equivalence class of constant Couchy sequence $\{x\}$.

Suppose that $\{x_i\}, \{y_i\} \in \overline{X}$. The metric ρ is given by

$$\rho(\lbrace x_i \rbrace, \lbrace y_i \rbrace) = \lim_{i \to \infty} d^{\phi}(x_i, y_i)$$

In particular, we have

$$\rho(\lbrace x \rbrace, \lbrace y \rbrace) = d^{\phi}(x, y) \text{ for all } x, y \in X$$

Notice that X is dense subset of \overline{X} and (\overline{X}, ρ) is a compact metric space.

2. Fan-Gottesman Compactification

A compactification of a topological space X is a compact hausdorff space Y containing X as a subspace such that $\overline{X} = Y$. It is known that every metric space has a compactification [3]. In addition there are a lot of compactification methods appling different topological space such as Aleksandrov (one-point), Wallman, Stone-Cech. But we study with Fan-Gottesman compactification.

Fan-Gottesman compactification of a regular space is introduced and studied by Fan Ky and Noel Gottesman. Let β is a class of open sets in X. β contains \emptyset and satisfies following three conditions,

- (1) If $B_1, B_2 \in \beta$, then $B_1 \cap B_2 \in \beta$
- (2) If $B \in \beta$, then $X cl_X B \in \beta$, where closure of B in X will be denoted $cl_X B$.
- (3) For every open set U in X and every $B \in \beta$ such that $cl_X B \subset U$, there exist a set $D \in \beta$ such that $cl_X B \subset D \subset cl_X D \subset U$.

Then β is called normal base.

It is considered that is a regular space having a normal base for open set which satisfies above three properties of normal base. A chain family on β is a non-empty family of sets of β such that

$$cl_X B_1 \cap cl_X B_2 \cap ... \cap cl_X B_n \neq \emptyset$$

for any finite number of sets B_i of the family. Every chain family on β is contained in at least one maximal chain family on β from Zorn lemma. Maximal chain families on β will be denoted by letters as $a^*, b^*, ...$ and also the set of all maximal chain families on β will be denoted by X^* . X^* is a compact hausdorff spaces and compactification of regular spaces. Afterwards this compactification is called Fan-Gottesman compactification [2].

We apply Fan-Gottesman compactification to metric space (X,d). Firstly, we take a base β for open set in metric space (X,d). We check whether β satisfies normal base conditions or not. β consist of $S(p,\delta) = \{x : d(p,x) \prec \delta, \delta \in \mathbb{R}\}$ for $\forall p \in X$.

- (1) If $S(p_1,\delta)$, $S(p_2,\delta) \in \beta$, then we must show $S(p_1,\delta) \cap S(p_2,\delta) \in \beta$.
- i) If $S(p_1, \delta) \cap S(p_2, \delta) = \emptyset$, it is trivial.
- ii) If $S(p_1, \delta) \cap S(p_2, \delta) \neq \emptyset$, $S(p_1, \delta) \cap S(p_2, \delta)$ is a open set in (X, d). Since intersection of two open set is open in metric space.
- (2) If $S(p,\delta) \in \beta$, then we must show $X cl(S(p,\delta)) \in \beta$, where closure of B in X will be denoted clB. If we show that every point of $X cl(S(p,\delta))$ is a interior point of it, the proof is completed. Let x be a arbitrary point in $X cl(S(p,\delta))$. Then $x \in X$ and $x \notin cl(S(p,\delta))$. Since (X,d) is a metric space, there exist $\exists S(x,\varepsilon)$ such that $x \in S(x,\varepsilon) \subset X cl(S(p,\delta))$. Thus $X cl(S(p,\delta))$ is open and $X cl(S(p,\delta)) \in \beta$.
 - (3) We take $U = S\left(p, \delta\right)$ and $B = S\left(p, \frac{\delta}{3}\right)$ such that $clB \subset U$. Therefore there exists a set

 $D = S\left(p, \frac{\delta}{2}\right) \in \beta$ for every $\delta \in R$ such that $clB \subset D \subset clD \subset U$. It is clearly that the process is correct for every $p \in X$ and every $\delta \succ 0$. Thus β is a normal base for (X, d).

A binding family x^* is defined as a family of element in β such that $\bigcap_{i=1}^m clB_i \neq \emptyset$ for every finite family $B_1, B_2, ..., B_m$ in x^* . By Zorn's lemma, every binding family on β is contained in at least one maximal binding family on β . For every $B \in \beta$, B^* is defined as the set of all maximal binding families x^* such that $D \in x^*$ for some $D \in \beta$ where $clD \subset B$. The set X^* of all maximal binding families is equipped with a topology having as a base for its open sets the class β^* of all sets $B^*, B \in \beta$. This space X^* is a Fan-Gottesman compactification of X.

Fan-Gottesman compactification of (X,d) metric space is homeomorphic to Aleksandrov compactification αX . Really it suffices to show that X^*-X has exactly one point in order that it is shown $X^*\cong \alpha X$. Because studied spaces (X,d) is local compact X-B or cl_XB is compact for all B open subsets of X. Let $b^*=\{B\in\beta: X-B \text{ is compact}\}$. As X is not compact, we get $\bigcup_{i=1}^n (X-B_i) \neq X \text{ for any finite number of sets } B_i \in b^*. \text{ This implies that } b^* \text{ is binding family on } \beta.$ Similarly we take $A\in a^*$ such that cl_XA is not compact. Hence X-A is compact for every $A\in a^*$. Then $a^*\subset b^*$ and thus $a^*=b^*$. This shows that b^* is the only point in X^*-X . Therefore it is gotten $X^*\cong\alpha X$.

Notice that X is a dense subset of \overline{X} and $\left(\overline{X},\rho\right)$ is a compact metric space [3]. Then our compactification Fan-Gottesman $\left(X^*,d^*\right)$ of $\left(X,d\right)$ is the completion $\left(\overline{X},\rho\right)$ of the totally bounded metric space $\left(X,d^{\phi}\right)$.

3. An Application to (\mathbb{R}^n, d_E)

Now we look at application to (\mathbb{R}^n,d_E) of above statement. We must show the completion of (\mathbb{R}^n,d^{ϕ}) is a homeomorphic to Fan-Gottesman compactification of (\mathbb{R}^n,d_E) . Firsly, we construct Fan-Gottesman compactification of (\mathbb{R}^n,d_E) . We consider that β consist of $S(p,1)=\{x:d_E(p,x)\prec 1\}$ for $\forall p\in\mathbb{R}^n$ as similar to above. It is clearly that β is a normal base in (\mathbb{R}^n,d_E) . A binding family x^* is family of element in β such that $\bigcap_{i=1}^m cl(S(p_i,1))\neq\emptyset$ for every finite family $S(p_1,1),S(p_2,1),...,S(p_m,1)$ in x^* and every binding family on β is contained in at least one maximal binding family on β . For every $S(p,1)\in\beta$, B^* is defined as the set of all maximal binding families x^* such that $D\in x^*$ for some $D\in\beta$ where $clD\subset S(p,1)$. The set $(\mathbb{R}^n)^*$ of all maximal binding families is equipped with a topology having as a base for its open sets the class β^* of all sets $B^*,B\in\beta$. This space $(\mathbb{R}^n)^*$ is a Fan-Gottesman compactification of \mathbb{R}^n . Since \mathbb{R}^n is a local compact hausdorff space, we get $(\mathbb{R}^n)^*=\alpha\mathbb{R}^n=\{x\in\mathbb{R}^n:d_E(0,x)\leq 1\}$.

We consider the function defined by Young Deuk Kim. He defined

$$h: (\alpha \mathbb{R}^n, d_E) \rightarrow (\overline{\mathbb{R}^n}, \rho)$$

as follows

$$h(x) = \begin{cases} \frac{1}{1 - d_E(0, x)} x \text{ (the constant Cauchy sequence) if } d_E(0, x) < 1\\ \{a_i x_i\} & \text{if } d_E(0, x) = 1 \end{cases}$$

where $\{a_i x_i\}$ is a Cauchy sequence not equivalent to any constant Cauchy sequence and $a_i = \sum_{i \in I} \frac{1}{i}$. And also he showed that h is a homeomorphism [1]. We know that $\left(\mathbb{R}^n\right)^* = \alpha \mathbb{R}^n$ and if we use this function, we'll get Fan-Gottesman compactification of $\left(\mathbb{R}^n, d_E\right)$, $\left(\mathbb{R}^n\right)^*$ is homeomorphic to the completion of $\left(\mathbb{R}^n, d^\phi\right)$, $\left(\overline{\mathbb{R}^n}, \rho\right)$.

References

- [1]. K. Fan and N. Gottesman, On compactification of Freduental and Wallman, Indag. Math. 13 (1952) 184-192.
- [2]. Y.D. Kim, Equivalent metrics and compactification, arXiv: 0710. 0080v1 [math.GT] 2007.
- [3]. J.R. Munkres, Topology at firs course, Prentice-Hall, New Jersey, 1975.

Published: Volume 2017, Issue 10 / October 25, 2017